1
|
Bogdanova M, Kostina A, Zihlavnikova Enayati K, Zabirnyk A, Malashicheva A, Stensløkken KO, Sullivan GJ, Kaljusto ML, Kvitting JP, Kostareva A, Vaage J, Rutkovskiy A. Inflammation and Mechanical Stress Stimulate Osteogenic Differentiation of Human Aortic Valve Interstitial Cells. Front Physiol 2018; 9:1635. [PMID: 30524301 PMCID: PMC6256176 DOI: 10.3389/fphys.2018.01635] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
Background: Aortic valve calcification is an active proliferative process, where interstitial cells of the valve transform into either myofibroblasts or osteoblast-like cells causing valve deformation, thickening of cusps and finally stenosis. This process may be triggered by several factors including inflammation, mechanical stress or interaction of cells with certain components of extracellular matrix. The matrix is different on the two sides of the valve leaflets. We hypothesize that inflammation and mechanical stress stimulate osteogenic differentiation of human aortic valve interstitial cells (VICs) and this may depend on the side of the leaflet. Methods: Interstitial cells isolated from healthy and calcified human aortic valves were cultured on collagen or elastin coated plates with flexible bottoms, simulating the matrix on the aortic and ventricular side of the valve leaflets, respectively. The cells were subjected to 10% stretch at 1 Hz (FlexCell bioreactor) or treated with 0.1 μg/ml lipopolysaccharide, or both during 24 h. Gene expression of myofibroblast- and osteoblast-specific genes was analyzed by qPCR. VICs cultured in presence of osteogenic medium together with lipopolysaccharide, 10% stretch or both for 14 days were stained for calcification using Alizarin Red. Results: Treatment with lipopolysaccharide increased expression of osteogenic gene bone morphogenetic protein 2 (BMP2) (5-fold increase from control; p = 0.02) and decreased expression of mRNA of myofibroblastic markers: α-smooth muscle actin (ACTA2) (50% reduction from control; p = 0.0006) and calponin (CNN1) (80% reduction from control; p = 0.0001) when cells from calcified valves were cultured on collagen, but not on elastin. Mechanical stretch of VICs cultured on collagen augmented the effect of lipopolysaccharide. Expression of periostin (POSTN) was inhibited in cells from calcified donors after treatment with lipopolysaccharide on collagen (70% reduction from control, p = 0.001), but not on elastin. Lipopolysaccharide and stretch both enhanced the pro-calcific effect of osteogenic medium, further increasing the effect when combined for cells cultured on collagen, but not on elastin. Conclusion: Inflammation and mechanical stress trigger expression of osteogenic genes in VICs in a side-specific manner, while inhibiting the myofibroblastic pathway. Stretch and lipopolysaccharide synergistically increase calcification.
Collapse
|
Journal Article |
7 |
29 |
2
|
Malashicheva A, Bogdanova M, Zabirnyk A, Smolina N, Ignatieva E, Freilikhman O, Fedorov A, Dmitrieva R, Sjöberg G, Sejersen T, Kostareva A. Various lamin A/C mutations alter expression profile of mesenchymal stem cells in mutation specific manner. Mol Genet Metab 2015; 115:118-27. [PMID: 25982065 DOI: 10.1016/j.ymgme.2015.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/31/2022]
Abstract
Various mutations in LMNA gene, encoding for nuclear lamin A/C protein, lead to laminopathies and contribute to over ten human disorders, mostly affecting tissues of mesenchymal origin such as fat tissue, muscle tissue, and bones. Recently it was demonstrated that lamins not only play a structural role providing communication between extra-nuclear structures and components of cell nucleus but also control cell fate and differentiation. In our study we assessed the effect of various LMNA mutations on the expression profile of mesenchymal multipotent stem cells (MMSC) during adipogenic and osteogenic differentiation. We used lentiviral approach to modify human MMSC with LMNA-constructs bearing mutations associated with different laminopathies--G465D, R482L, G232E, R527C, and R471C. The impact of various mutations on MMSC differentiation properties and expression profile was assessed by colony-forming unit analysis, histological staining, expression of the key differentiation markers promoting adipogenesis and osteogenesis followed by the analysis of the whole set of genes involved in lineage-specific differentiation using PCR expression arrays. We demonstrate that various LMNA mutations influence the differentiation efficacy of MMSC in mutation-specific manner. Each LMNA mutation promotes a unique expression pattern of genes involved in a lineage-specific differentiation and this pattern is shared by the phenotype-specific mutations.
Collapse
|
|
10 |
20 |
3
|
Zabirnyk A, Perez MDM, Blasco M, Stensløkken KO, Ferrer MD, Salcedo C, Vaage J. A Novel Ex Vivo Model of Aortic Valve Calcification. A Preliminary Report. Front Pharmacol 2020; 11:568764. [PMID: 33390945 PMCID: PMC7773652 DOI: 10.3389/fphar.2020.568764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/16/2020] [Indexed: 12/27/2022] Open
Abstract
Background: No pharmacological treatment exists to prevent or stop the calcification process of aortic valves causing aortic stenosis. The aim of this study was to develop a robust model of induced calcification in whole aortic valve leaflets which could be suitable for studies of the basic mechanisms and for testing potentially inhibitory drugs. Methods: Pig hearts were obtained from a commercial abattoir. The aortic valve leaflets were dissected free and randomized between experimental groups. Whole leaflets were cultured in individual wells. Two growth media were used for cultivation: standard growth medium and an antimyofibroblastic growth medium. The latter was employed to inhibit contraction of the leaflet into a ball-like structure. Calcification was induced in the growth medium by supplementation with an osteogenic medium. Leaflets were cultivated for four weeks and medium was changed every third day. To block calcification, the inhibitor SNF472 (a formulation of the hexasodium salt of myo-inositol hexaphosphate hexasodium salt) was used at concentrations between 1 and 100 µM. After cultivation for four weeks the leaflets were snap frozen in liquid nitrogen and kept at −80 °C until blind assessment of the calcium amount in leaflets by inductively coupled plasma optical emission spectroscopy. For statistical analysis, a Kruskal–Wallis test with Dunn’s post-test was applied. Results: Osteodifferentiation with calcium accumulation was in principle absent when standard medium was used. However, when the antimyofibroblastic medium was used, a strong calcium accumulation was induced (p = 0.006 compared to controls), and this was blocked in a dose-dependent manner by the calcification inhibitor SNF472 (p = 0.008), with an EC50 of 3.3 µM. Conclusion: A model of experimentally induced calcification in cultured whole leaflets from porcine aortic valves was developed. This model can be useful for studying the basic mechanisms of valve calcification and to test pharmacological approaches to inhibit calcification.
Collapse
|
Journal Article |
5 |
13 |
4
|
Zabirnyk A, Ferrer MD, Bogdanova M, Pérez MM, Salcedo C, Kaljusto ML, Kvitting JPE, Stensløkken KO, Perelló J, Vaage J. SNF472, a novel anti-crystallization agent, inhibits induced calcification in an in vitro model of human aortic valve calcification. Vascul Pharmacol 2019; 122-123:106583. [PMID: 31437530 DOI: 10.1016/j.vph.2019.106583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/03/2019] [Accepted: 08/18/2019] [Indexed: 12/27/2022]
Abstract
The purpose of the present study was to investigate whether SNF472, the hexasodium salt of myo-inositol hexaphosphate (IP6 or phytate): 1. Inhibits induced calcification in cultured aortic valve interstitial cells (VIC) as an in vitro model of aortic valve stenosis and 2. Whether inhibition is different in VIC obtained from healthy and calcified aortic valves. VIC from healthy (n = 5) and calcified (n = 7) human aortic valves were seeded in basic growth medium, osteogenic differentiation medium alone, or in osteogenic medium with SNF472 (3, 10, and 30 μM) and cultivated for 3 weeks. Calcification was quantified spectrophotometrically after Alizarin Red staining. In VIC from calcified valves, a complete inhibition of calcification was observed with SNF472 concentrations of 10 and 30 μM (p < .01), significantly stronger than in VIC from healthy valves. When SNF472 was added to VIC after 1 week in osteogenic medium, 30 and 100 μM SNF472 inhibited the progression of ongoing calcification by 81 and 100% (p < .01), respectively. The same concentrations of SNF472 given after 2 weeks reduced calcification by 35 and 40% respectively (not significant). SNF472 inhibited both the formation and the progression of calcification with the strongest effect in VIC from calcified valves.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
8 |
5
|
Semenova D, Zabirnyk A, Lobov A, Boyarskaya N, Kachanova O, Uspensky V, Zainullina B, Denisov E, Gerashchenko T, Kvitting JPE, Kaljusto ML, Thiede B, Kostareva A, Stensløkken KO, Vaage J, Malashicheva A. Multi-omics of in vitro aortic valve calcification. Front Cardiovasc Med 2022; 9:1043165. [PMID: 36407442 PMCID: PMC9669078 DOI: 10.3389/fcvm.2022.1043165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 09/10/2023] Open
Abstract
Heart valve calcification is an active cellular and molecular process that partly remains unknown. Osteogenic differentiation of valve interstitial cells (VIC) is a central mechanism in calcific aortic valve disease (CAVD). Studying mechanisms in CAVD progression is clearly needed. In this study, we compared molecular mechanisms of osteogenic differentiation of human VIC isolated from healthy donors or patients with CAVD by RNA-seq transcriptomics in early timepoint (48 h) and by shotgun proteomics at later timepoint (10th day). Bioinformatic analysis revealed genes and pathways involved in the regulation of VIC osteogenic differentiation. We found a high amount of stage-specific differentially expressed genes and good accordance between transcriptomic and proteomic data. Functional annotation of differentially expressed proteins revealed that osteogenic differentiation of VIC involved many signaling cascades such as: PI3K-Akt, MAPK, Ras, TNF signaling pathways. Wnt, FoxO, and HIF-1 signaling pathways were modulated only at the early timepoint and thus probably involved in the commitment of VIC to osteogenic differentiation. We also observed a significant shift of some metabolic pathways in the early stage of VIC osteogenic differentiation. Lentiviral overexpression of one of the most upregulated genes (ZBTB16, PLZF) increased calcification of VIC after osteogenic stimulation. Analysis with qPCR and shotgun proteomics suggested a proosteogenic role of ZBTB16 in the early stages of osteogenic differentiation.
Collapse
|
research-article |
3 |
5 |
6
|
Bogdanova M, Zabirnyk A, Malashicheva A, Semenova D, Kvitting JPE, Kaljusto ML, Perez MDM, Kostareva A, Stensløkken KO, Sullivan GJ, Rutkovskiy A, Vaage J. Models and Techniques to Study Aortic Valve Calcification in Vitro, ex Vivo and in Vivo. An Overview. Front Pharmacol 2022; 13:835825. [PMID: 35721220 PMCID: PMC9203042 DOI: 10.3389/fphar.2022.835825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Aortic valve stenosis secondary to aortic valve calcification is the most common valve disease in the Western world. Calcification is a result of pathological proliferation and osteogenic differentiation of resident valve interstitial cells. To develop non-surgical treatments, the molecular and cellular mechanisms of pathological calcification must be revealed. In the current overview, we present methods for evaluation of calcification in different ex vivo, in vitro and in vivo situations including imaging in patients. The latter include echocardiography, scanning with computed tomography and magnetic resonance imaging. Particular emphasis is on translational studies of calcific aortic valve stenosis with a special focus on cell culture using human primary cell cultures. Such models are widely used and suitable for screening of drugs against calcification. Animal models are presented, but there is no animal model that faithfully mimics human calcific aortic valve disease. A model of experimentally induced calcification in whole porcine aortic valve leaflets ex vivo is also included. Finally, miscellaneous methods and aspects of aortic valve calcification, such as, for instance, biomarkers are presented.
Collapse
|
Review |
3 |
4 |
7
|
Bogdanova M, Zabirnyk A, Malashicheva A, Enayati KZ, Stensløkken KO, Rutkovskiy A, Vaage J. Interstitial Cells from Calcified and Healthy Aortic Valves Have Different Phenotype and Functions. STRUCTURAL HEART-THE JOURNAL OF THE HEART TEAM 2019. [DOI: 10.1080/24748706.2019.1589321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
|
6 |
1 |
8
|
Semenova D, Zabirnyk A, Lobov A, Vaage J, Malashicheva A. Investigation of transcriptional changes underlying calcification of aortic valve. Cardiovasc Res 2022. [DOI: 10.1093/cvr/cvac066.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Funding Acknowledgements
Type of funding sources: Foundation. Main funding source(s): The Russian Science Foundation
Introduction
Aortic valve stenosis due to calcification of valve cusps is the most common valve disease in the world today. The main feature of this condition is a progressive mineralization of valve tissue. The mechanisms underlying this process is still unknown, but in recent years it has become clear that pathological mineralization of heart and blood vessels has some similarities with the physiological process of bone formation. It has been suggested that interstitial cells (VICs) are the main functional units in the valve that undergo calcification. However, the early initiating mechanisms that trigger osteogenic transformation of cells remain unclear.
Purpose
The aim of the present study was to elucidate the most responsive time point of osteogenic differentiation induction and to identify the main osteogenic markers that mediate pathological calcification in human aortic valve.
Methods
VICs were obtained from patients with aortic valve calcification and from healthy aortic valves. The effectiveness of cell cultures osteogenic differentiation was estimated by Alizarin Red staining. Investigation of gene expression changes upon osteogenic differentiation was performed by qPCR and RNA sequencing.
Results
We found that 48 hours after the induction of osteogenic differentiation is the most relevant time point to identify the early regulators of osteogenic transformation of the cells. That is the time when the most intensive response from osteogenic markers takes place – BGLAP, OPG, OGN, RUNX2 – in comparison to 24, 72 and 96 hours of differentiation in both patient’s and healthy cells. We found out that induction of osteogenic differentiation on early stages initiates transcriptional program that serve to induce the next molecular events which recruit phenotype-specific osteogenes. We revealed that 558 and 232 genes which were up and down regulated during differentiation were the same for healthy and patient’s cells. However, there was a number of genes which was specific for either patient’s or healthy cells.
Conclusions
We presume that a great amount of the main molecular participants of osteogenic differentiation is shared between different types of cells which are prone to differentiation. However, we perform the results about specificity and difference between the mechanisms of osteogenic differentiation of patient’s and healthy cells.
Collapse
|
|
3 |
1 |
9
|
Zabirnyk A, Bogdanova M, Ferrer M, Perez M, Kaljusto M, Stenslokken K, Salcedo C, Fiane A, Vaage J. P4487Inhibition of aortic valve calcification by SNF472 in vitro. Eur Heart J 2019. [DOI: 10.1093/eurheartj/ehz745.0880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Calcific aortic valve disease is the 2nd most frequent cause of open heart surgery. The valve interstitial cells (VIC) are crucial for calcification. SNF472 (a derivative of phytic acid) is a calcification inhibitor currently in clinical development for the treatment of cardiovascular calcification (Phase 2 CaLIPSO trial, EudraCT 2016–002834–59). SNF472 has been shown to inhibit vascular calcification in several preclinical models.
Purpose
1. Establish a new model of calcification in cultured human VIC; 2. Investigate whether SNF472 would inhibit calcification in this model, and 3. Study if SNF472 might inhibit ongoing calcification processes.
Methods
Healthy and calcified aortic valves were obtained from heart transplant recipients and patients undergoing aortic valve replacement due to calcific valve disease, respectively. VIC were isolated and seeded in basic growth medium, osteogenic differentiation medium (Osteodiff) alone, and with addition of different concentrations of SNF472. The following series of studies were performed: 1. VIC from healthy and calcified valves were cultured for three weeks with Osteodiff; 2. VIC from calcified valves were cultured for 3 weeks in Osteodiff media with 0, 1, 3, 10, 30, or 100 μM SNF472; 3. VIC from calcified valves were cultured for 3 weeks in Osteodiff media in total, but after 1 or 2 weeks 30 or 100 μM SNF472 was added to the cultures (n=8). Calcification was visualized by Alzarin Red staining and quantified by spectrophotometry. Statistics analysis was performed nonparametric One-Way ANOVA (Friedman and Kruskal–Wallis tests) with Dunn's post-test.
Results
Calcification was found to be 30% stronger in cultures of VIC from calcified valves as compared to cultured VIC from healthy valves (p=0.03). SNF472 successfully inhibited VIC calcification in a dose-dependent manner. SNF472 concentrations of 1, and 3 μM inhibited calcification by 7% (not significant) and 66% (p=0.08) respectively. Concentrations of 10, 30, and 100 μM completely inhibited calcification. 30 and 100 μM of SNF472 added after 1 week reduced ongoing calcification by 84% (p<0.01) and 100% (p<0.01) respectively. When given after 2 weeks of ongoing calcification non-significant inhibition was still observed (21 and 30%, respectively).
Conclusions
VIC from calcified valves have a more pro-calcification phenotype than VIC from healthy valves. SNF472 is able to inhibit the development VIC calcification in vitro. By early intervention SNF472 is also able to stop the progression of ongoing calcification. SNF472 shows to be a promising therapy to treat heart valve calcification.
Acknowledgement/Funding
EC FP7 (GA 609020), Balearic Islands Government grant (ES01/TCAI/41_2017), FEDER 2014-2020, Laboratoris Sanifit, Palma, Spain; University of Oslo
Collapse
|
|
6 |
|
10
|
Zabirnyk A, Evensen D, Kvitting JPE, Kaljusto ML, Stensløkken KO, Vaage J. Hyperglycemia-simulating environment attenuated experimentally induced calcification in cultured human aortic valve interstitial cells. SCAND CARDIOVASC J 2024; 58:2353070. [PMID: 38757904 DOI: 10.1080/14017431.2024.2353070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/08/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Objectives: The role of diabetes mellitus as a risk factor for the development of calcific aortic valve disease has not been fully clarified. Aortic valve interstitial cells (VICs) have been suggested to be crucial for calcification of the valve. Induced calcification in cultured VICs is a good in vitro model for aortic valve calcification. The purpose of this study was to investigate whether increased glucose levels increase experimentally induced calcification in cultured human VICs. Design: VICs were isolated from explanted calcified aortic valves after valve replacement. Osteogenic medium induced calcification of cultured VICs at different glucose levels (5, 15, and 25 mM). Calcium deposits were visualized using Alizarin Red staining and measured spectrophotometrically. Results: The higher the glucose concentration, the lower the level of calcification. High glucose (25 mM) reduced calcification by 52% compared with calcification at a physiological (5 mM) glucose concentration (correlation and regression analysis: r = -0.55, p = .025 with increased concentration of glucose). Conclusions: In vitro hyperglycemia-like conditions attenuated calcification in VICs. High glucose levels may trigger a series of events that secondarily stimulate calcification of VICs in vivo.
Collapse
|
|
1 |
|