Turner CT, Zeglinski MR, Boivin W, Zhao H, Pawluk MA, Richardson KC, Chandrabalan A, Bird P, Ramachandran R, Sehmi R, Lima H, Gauvreau G, Granville DJ. Granzyme K contributes to endothelial microvascular damage and leakage during skin inflammation.
Br J Dermatol 2023;
189:279-291. [PMID:
36652225 DOI:
10.1093/bjd/ljac017]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/06/2022] [Accepted: 09/13/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND
Granzyme K (GzmK) is a serine protease with minimal presence in healthy tissues while abundant in inflamed tissues. Initially thought to play an exclusive role in immune-mediated cell death, extracellular GzmK can also promote inflammation.
OBJECTIVES
To evaluate the role of GzmK in the pathogenesis of atopic dermatitis (AD), the most common inflammatory skin disease.
METHODS
A panel of human AD and control samples was analysed to determine if GzmK is elevated. Next, to determine a pathological role for GzmK in AD-like skin inflammation, oxazolone-induced dermatitis was induced in GzmK-/- and wild-type (WT) mice.
RESULTS
In human lesional AD samples, there was an increase in the number of GzmK+ cells compared with healthy controls. GzmK-/- mice exhibited reduced overall disease severity characterized by reductions in scaling, erosions and erythema. Surprisingly, the presence of GzmK did not notably increase the overall pro-inflammatory response or epidermal barrier permeability in WT mice; rather, GzmK impaired angiogenesis, increased microvascular damage and microhaemorrhage. Mechanistically, GzmK contributed to vessel damage through cleavage of syndecan-1, a key structural component of the glycocalyx, which coats the luminal surface of vascular endothelia.
CONCLUSIONS
GzmK may provide a potential therapeutic target for skin conditions associated with persistent inflammation, vasculitis and pathological angiogenesis.
Collapse