1
|
Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A. Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 2000; 290:2309-12. [PMID: 11125146 DOI: 10.1126/science.290.5500.2309] [Citation(s) in RCA: 552] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In all eukaryotic organisms, inappropriate firing of replication origins during the G2 phase of the cell cycle is suppressed by cyclin-dependent kinases. Multicellular eukaryotes contain a second putative inhibitor of re-replication called geminin. Geminin is believed to block binding of the mini-chromosome maintenance (MCM) complex to origins of replication, but the mechanism of this inhibition is unclear. Here we show that geminin interacts tightly with Cdt1, a recently identified replication initiation factor necessary for MCM loading. The inhibition of DNA replication by geminin that is observed in cell-free DNA replication extracts is reversed by the addition of excess Cdt1. In the normal cell cycle, Cdt1 is present only in G1 and S, whereas geminin is present in S and G2 phases of the cell cycle. Together, these results suggest that geminin inhibits inappropriate origin firing by targeting Cdt1.
Collapse
|
|
25 |
552 |
2
|
Chen J, Jackson PK, Kirschner MW, Dutta A. Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA. Nature 1995; 374:386-8. [PMID: 7885482 DOI: 10.1038/374386a0] [Citation(s) in RCA: 412] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The protein p21 (WAF1, CIP1 or sdi1), induced by the tumour-suppressor protein p53, interacts with and inhibits two different targets essential for cell-cycle progression. One of these is the cyclin-Cdk family of kinases and the other is the essential DNA replication factor, proliferating-cell nuclear antigen (PCNA). We report here that separate domains of p21 are responsible for interacting with and inhibiting the two targets. An amino-terminal domain inhibits cyclin-Cdk kinases and a carboxy-terminal domain inhibits PCNA. Using these separated domains, we have determined that p21 inhibits different biological systems through different targets. The PCNA-binding domain is sufficient for inhibition of DNA replication based on simian virus 40, whereas the Cdk2-binding domain is sufficient for inhibition of DNA replication based on Xenopus egg extract and for growth suppression in transformed human cells.
Collapse
|
|
30 |
412 |
3
|
Abstract
The recent identification of proteins that recognize origins of DNA replication and control the initiation of eukaryotic DNA replication has provided critical molecular tools to dissect this process. Dynamic changes in the assembly and disassembly of protein complexes at origins are important for the initiation of DNA replication and occur throughout the cell cycle. Herein, we review the key proteins required for the initiation of DNA replication, their involvement in the protein complex assembly at replication origins, and how the cell cycle machinery regulates this process.
Collapse
|
Review |
27 |
310 |
4
|
Al-Salem SM, Antelava A, Constantinou A, Manos G, Dutta A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 197:177-198. [PMID: 28384612 DOI: 10.1016/j.jenvman.2017.03.084] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/26/2017] [Indexed: 05/21/2023]
Abstract
Plastic plays an important role in our daily lives due to its versatility, light weight and low production cost. Plastics became essential in many sectors such as construction, medical, engineering applications, automotive, aerospace, etc. In addition, economic growth and development also increased our demand and dependency on plastics which leads to its accumulation in landfills imposing risk on human health, animals and cause environmental pollution problems such as ground water contamination, sanitary related issues, etc. Hence, a sustainable and an efficient plastic waste treatment is essential to avoid such issues. Pyrolysis is a thermo-chemical plastic waste treatment technique which can solve such pollution problems, as well as, recover valuable energy and products such as oil and gas. Pyrolysis of plastic solid waste (PSW) has gained importance due to having better advantages towards environmental pollution and reduction of carbon footprint of plastic products by minimizing the emissions of carbon monoxide and carbon dioxide compared to combustion and gasification. This paper presents the existing techniques of pyrolysis, the parameters which affect the products yield and selectivity and identify major research gaps in this technology. The influence of different catalysts on the process as well as review and comparative assessment of pyrolysis with other thermal and catalytic plastic treatment methods, is also presented.
Collapse
|
Review |
8 |
280 |
5
|
Abstract
The tumour suppressor p53 specifically interferes with the onset of S phase. The mechanism of the growth suppression action of the protein is unclear, though recent evidence points to transcriptional activation and repression functions of the protein. A competing hypothesis suggests that p53 interacts with the DNA replication apparatus and directly interferes with DNA replication. The major evidence for this hypothesis is that p53 interacts with the simian virus 40 (SV40)-encoded protein T antigen and interferes with the ability of T antigen to unwind the SV40 origin of DNA replication, and recruit DNA polymerase alpha to the replication initiation complex. Here we report that p53 physically interacts with and inhibits the function of a cellular DNA replication factor, the single-stranded DNA-binding protein complex RPA.
Collapse
|
|
32 |
266 |
6
|
Chen J, Saha P, Kornbluth S, Dynlacht BD, Dutta A. Cyclin-binding motifs are essential for the function of p21CIP1. Mol Cell Biol 1996; 16:4673-82. [PMID: 8756624 PMCID: PMC231467 DOI: 10.1128/mcb.16.9.4673] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The cyclin-dependent kinase (Cdk) inhibitor p21 is induced by the tumor suppressor p53 and is required for the G1-S block in cells with DNA damage. We report that there are two copies of a cyclin-binding motif in p21, Cy1 and Cy2, which interact with the cyclins independently of Cdk2. The cyclin-binding motifs of p21 are required for optimum inhibition of cyclin-Cdk kinases in vitro and for growth suppression in vivo. Peptides containing only the Cy1 or Cy2 motif partially inhibit cyclin-Cdk kinase activity in vitro and DNA replication in Xenopus egg extracts. A monoclonal antibody which recognizes the Cy1 site of p21 specifically disrupts the association of p21 with cyclin E-Cdk2 and with cyclin D1-Cdk4 in cell extracts. Taken together, these observations suggest that the cyclin-binding motif of p21 is important for kinase inhibition and for formation of p21-cyclin-Cdk complexes in the cell. Finally, we show that the cyclin-Cdk complex is partially active if associated with only the cyclin-binding motif of p21, providing an explanation for how p21 is found associated with active cyclin-Cdk complexes in vivo. The Cy sequences may be general motifs used by Cdk inhibitors or substrates to interact with the cyclin in a cyclin-Cdk complex.
Collapse
|
research-article |
29 |
249 |
7
|
Dhar SK, Yoshida K, Machida Y, Khaira P, Chaudhuri B, Wohlschlegel JA, Leffak M, Yates J, Dutta A. Replication from oriP of Epstein-Barr virus requires human ORC and is inhibited by geminin. Cell 2001; 106:287-96. [PMID: 11509178 DOI: 10.1016/s0092-8674(01)00458-5] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A hypomorphic mutation made in the ORC2 gene of a human cancer cell line through homologous recombination decreased Orc2 protein levels by 90%. The G1 phase of the cell cycle was prolonged, but there was no effect on the utilization of either the c-Myc or beta-globin cellular origins of replication. Cells carrying this mutation failed to support the replication of a plasmid bearing the oriP replicator of Epstein Barr virus (EBV), and this defect was rescued by reintroduction of Orc2. Orc2 specifically associates with oriP in cells, most likely through its interaction with EBNA1. Geminin, an inhibitor of the mammalian replication initiation complex, inhibits replication from oriP. Therefore, ORC and the human replication initiation apparatus is required for replication from a viral origin of replication.
Collapse
|
|
24 |
235 |
8
|
|
|
46 |
225 |
9
|
Saha P, Chen J, Thome KC, Lawlis SJ, Hou ZH, Hendricks M, Parvin JD, Dutta A. Human CDC6/Cdc18 associates with Orc1 and cyclin-cdk and is selectively eliminated from the nucleus at the onset of S phase. Mol Cell Biol 1998; 18:2758-67. [PMID: 9566895 PMCID: PMC110655 DOI: 10.1128/mcb.18.5.2758] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In a two-hybrid screen for proteins that interact with human PCNA, we identified and cloned a human protein (hCdc18) homologous to yeast CDC6/Cdc18 and human Orc1. Unlike yeast, in which the rapid and total destruction of CDC6/Cdc18 protein in S phase is a central feature of DNA replication, the total level of the human protein is unchanged throughout the cell cycle. Epitope-tagged protein is nuclear in G1 and cytoplasmic in S-phase cells, suggesting that DNA replication may be regulated by either the translocation of this protein between the nucleus and the cytoplasm or the selective degradation of the protein in the nucleus. Mutation of the only nuclear localization signal of this protein does not alter its nuclear localization, implying that the protein is translocated to the nucleus through its association with other nuclear proteins. Rapid elimination of the nuclear pool of this protein after the onset of DNA replication and its association with human Orc1 protein and cyclin-cdks supports its identification as human CDC6/Cdc18 protein.
Collapse
|
research-article |
27 |
208 |
10
|
Dutta A, Stillman B. cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J 1992; 11:2189-99. [PMID: 1318195 PMCID: PMC556686 DOI: 10.1002/j.1460-2075.1992.tb05278.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
RPA is a single-stranded DNA binding protein complex purified from human cells and is essential for the initiation and elongation stages of SV40 DNA replication in vitro. In both human and yeast cells, the 34 kDa polypeptide subunit of RPA is phosphorylated in the S and G2 phases of the cell cycle and not in G1. One of the major RPA kinases present in extracts of human cells was purified and shown to be the cyclin B-cdc2 complex. This purified kinase, and a closely related cyclin A associated cdc2-like kinase, phosphorylated RPA p34 on a subset of the chymotryptic peptides that were phosphorylated in vivo at the G1-S transition. Two serines near the N-terminus of RPA p34 were identified as possible sites of phosphorylation by cdc2 kinase. These same serines were necessary for RPA phosphorylation in vivo. The purified cdc2 kinase stimulated SV40 DNA replication in vitro when added to G1 cell extracts. The kinase also stimulated unwinding at the origin of replication, one of the earliest steps in DNA replication requiring RPA, but only in the presence of an additional factor present in G1 cell extracts. Thus, one or more members of the cyclin-cdc2 kinase family may be required for the initiation and maintenance of S phase, in part due to their ability to phosphorylate and activate a cellular DNA replication factor, RPA.
Collapse
|
|
33 |
175 |
11
|
Chaudhuri B, Xu H, Todorov I, Dutta A, Yates JL. Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus. Proc Natl Acad Sci U S A 2001; 98:10085-9. [PMID: 11517328 PMCID: PMC56919 DOI: 10.1073/pnas.181347998] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2001] [Accepted: 07/09/2001] [Indexed: 11/18/2022] Open
Abstract
The 165-kb chromosome of Epstein-Barr virus (EBV) is replicated by cellular enzymes only once per cell cycle in human cells that are latently infected. Here, we report that the human origin recognition complex, ORC, can be detected in association with an EBV replication origin, oriP, in cells by using antibodies against three different subunits of human ORC to precipitate crosslinked chromatin. Mcm2, a subunit of the MCM replication licensing complex, was found to associate with oriP during G(1) and to dissociate from it during S phase. The detection of ORC and Mcm2 at oriP was shown to require the presence of the 120-bp replicator of oriP. Licensing and initiation of replication at oriP of EBV thus seem to be mediated by ORC. This is an example of a virus apparently using ORC and associated factors for the propagation of its genome.
Collapse
|
research-article |
24 |
158 |
12
|
Prywes R, Dutta A, Cromlish JA, Roeder RG. Phosphorylation of serum response factor, a factor that binds to the serum response element of the c-FOS enhancer. Proc Natl Acad Sci U S A 1988; 85:7206-10. [PMID: 2845402 PMCID: PMC282153 DOI: 10.1073/pnas.85.19.7206] [Citation(s) in RCA: 145] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Serum and growth factor regulation of c-FOS protooncogene transcription is mediated by the serum response element. A factor, serum response factor, binding to this element has already been identified. We demonstrate that serum response factor is phosphorylated in vivo on serine residues and that phosphatase treatment of this factor in vitro abolishes its DNA-binding activity. These results show phosphorylation of serum response factor to be required for its DNA-binding activity. The importance of serum response factor phosphorylation for the regulation of c-FOS expression is discussed.
Collapse
|
research-article |
37 |
145 |
13
|
Dutta A, Chandra R, Leiter LM, Lester S. Cyclins as markers of tumor proliferation: immunocytochemical studies in breast cancer. Proc Natl Acad Sci U S A 1995; 92:5386-90. [PMID: 7539916 PMCID: PMC41699 DOI: 10.1073/pnas.92.12.5386] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have developed methods to use anticyclin A, B, and E antibodies as reagents to specifically detect proliferating cells in specific phases of the cell cycle in formalin-fixed, paraffin-embedded sections of tissues and cells. Staining of 48 archival cases of breast cancer showed that these antibodies estimate the tumor proliferation fraction and therefore are potentially useful for the prediction of prognosis. A subset of cancers had a high frequency of tumor cells expressing cyclins A and E, out of proportion to other proliferation markers, suggesting that these tumors may have deregulated cyclin expression. In addition to recognizing authentic cyclin E in the nucleus of proliferating cells, anticyclin E antibody cross-reacted with a cytoplasmic protein in nonproliferating endothelial cells. This cross-reaction allows the simultaneous visualization and quantitation of microvessels in the tumors, measuring a second potential predictor of breast cancer prognosis, tumor angiogenesis.
Collapse
|
research-article |
30 |
125 |
14
|
Lin YL, Shivji MK, Chen C, Kolodner R, Wood RD, Dutta A. The evolutionarily conserved zinc finger motif in the largest subunit of human replication protein A is required for DNA replication and mismatch repair but not for nucleotide excision repair. J Biol Chem 1998; 273:1453-61. [PMID: 9430682 DOI: 10.1074/jbc.273.3.1453] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The largest subunit of the replication protein A (RPA) contains an evolutionarily conserved zinc finger motif that lies outside of the domains required for binding to single-stranded DNA or forming the RPA holocomplex. In previous studies, we showed that a point mutation in this motif (RPAm) cannot support SV40 DNA replication. We have now investigated the role of this motif in several steps of DNA replication and in two DNA repair pathways. RPAm associates with T antigen, assists the unwinding of double-stranded DNA at an origin of replication, stimulates DNA polymerases alpha and delta, and supports the formation of the initial short Okazaki fragments. However, the synthesis of a leading strand and later Okazaki fragments is impaired. In contrast, RPAm can function well during the incision step of nucleotide excision repair and in a full repair synthesis reaction, with either UV-damaged or cisplatin-adducted DNA. Two deletion mutants of the Rpa1 subunit (eliminating amino acids 1-278 or 222-411) were not functional in nucleotide excision repair. We report for the first time that wild type RPA is required for a mismatch repair reaction in vitro. Neither the deletion mutants nor RPAm can support this reaction. Therefore, the zinc finger of the largest subunit of RPA is required for a function that is essential for DNA replication and mismatch repair but not for nucleotide excision repair.
Collapse
|
|
27 |
114 |
15
|
Chen U, Chen S, Saha P, Dutta A. p21Cip1/Waf1 disrupts the recruitment of human Fen1 by proliferating-cell nuclear antigen into the DNA replication complex. Proc Natl Acad Sci U S A 1996; 93:11597-602. [PMID: 8876181 PMCID: PMC38103 DOI: 10.1073/pnas.93.21.11597] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Fen1 or maturation factor 1 is a 5'-3' exonuclease essential for the degradation of the RNA primer-DNA junctions at the 5' ends of immature Okazaki fragments prior to their ligation into a continuous DNA strand. The gene is also necessary for repair of damaged DNA in yeast. We report that human proliferating-cell nuclear antigen (PCNA) associates with human Fen1 with a Kd of 60 nM and an apparent stoichiometry of three Fen1 molecules per PCNA trimer. The Fen1-PCNA association is seen in cell extracts without overexpression of either partner and is mediated by a basic region at the C terminus of Fen1. Therefore, the polymerase delta-PCNA-Fen1 complex has all the activities associated with prokaryotic DNA polymerases involved in replication: 5'-3' polymerase, 3'-5' exonuclease, and 5'-3' exonuclease. Although p21, a regulatory protein induced by p53 in response to DNA damage, interacts with PCNA with a comparable Kd (10 nM) and a stoichiometry of three molecules of p21 per PCNA trimer, a p21-PCNA-Fen1 complex is not formed. This mutually exclusive interaction suggests that the conformation of a PCNA trimer switches such that it can either bind p21 or Fen1. Furthermore, overexpression of p21 can disrupt Fen1-PCNA interaction in vivo. Therefore, besides interfering with the processivity of polymerase delta-PCNA, p21 also uncouples Fen1 from the PCNA scaffold.
Collapse
|
research-article |
29 |
106 |
16
|
Qiu XB, Lin YL, Thome KC, Pian P, Schlegel BP, Weremowicz S, Parvin JD, Dutta A. An eukaryotic RuvB-like protein (RUVBL1) essential for growth. J Biol Chem 1998; 273:27786-93. [PMID: 9774387 DOI: 10.1074/jbc.273.43.27786] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A human protein (RUVBL1), consisting of 456 amino acids (50 kDa) and highly homologous to RuvB, was identified by using the 14-kDa subunit of replication protein A (hsRPA3) as bait in a yeast two-hybrid system. RuvB is a bacterial protein involved in genetic recombination that bears structural similarity to subunits of the RF-C clamp loader family of proteins. Fluorescence in situ hybridization analysis demonstrated that the RUVBL1 gene is located at 3q21, a region with frequent rearrangements in different types of leukemia and solid tumors. RUVBL1 co-immunoprecipitated with at least three other unidentified cellular proteins and was detected in the RNA polymerase II holoenzyme complex purified over multiple chromatographic steps. In addition, two yeast homologs, scRUVBL1 and scRUVBL2 with 70 and 42% identity to RUVBL1, respectively, were revealed by screening the complete Saccharomyces cerevisiae genome sequence. Yeast with a null mutation in scRUVBL1 was nonviable. Thus RUVBL1 is an eukaryotic member of the RuvB/clamp loader family of structurally related proteins from bacteria and eukaryotes that is essential for viability of yeast.
Collapse
|
Comparative Study |
27 |
106 |
17
|
|
|
46 |
104 |
18
|
Agarwal U, Dutta A, Mashelkar R. Migration of macromolecules under flow: the physical origin and engineering implications. Chem Eng Sci 1994. [DOI: 10.1016/0009-2509(94)80057-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
|
31 |
101 |
19
|
Takeda DY, Wohlschlegel JA, Dutta A. A bipartite substrate recognition motif for cyclin-dependent kinases. J Biol Chem 2001; 276:1993-7. [PMID: 11067844 DOI: 10.1074/jbc.m005719200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cy or RXL motifs have been previously shown to be cyclin binding motifs found in a wide range of cyclin-Cdk interacting proteins. We report the first kinetic analysis of the contribution of a Cy motif on a substrate to phosphorylation by cyclin-dependent kinases. For both cyclin A-Cdk2 and cyclin E-Cdk2 enzymes, the presence of a Cy motif decreased the K(m(peptide)) 75-120-fold while the k(cat) remained unchanged. The large effect of the Cy motif on the K(m(peptide)) suggests that the Cy motif and (S/T)PX(K/R) together constitute a bipartite substrate recognition sequence for cyclin-dependent kinases. Systematic changes in the length of the linker between the Cy motif and the phosphoacceptor serine suggest that both sites are engaged simultaneously to the cyclin and the Cdk, respectively, and eliminate a "bind and release" mechanism to increase the local concentration of the substrate. PS100, a peptide containing a Cy motif, acts as a competitive inhibitor of cyclin-Cdk complexes with a 15-fold lower K(i) for cyclin E-Cdk2 than for cyclin A-Cdk2. These results provide kinetic proof that a Cy motif located a minimal distance from the SPXK is essential for optimal phosphorylation by Cdks and suggest that small chemicals that mimic the Cy motif would be specific inhibitors of substrate recognition by cyclin-dependent kinases.
Collapse
|
|
24 |
101 |
20
|
Gratuito MKB, Panyathanmaporn T, Chumnanklang RA, Sirinuntawittaya N, Dutta A. Production of activated carbon from coconut shell: optimization using response surface methodology. BIORESOURCE TECHNOLOGY 2008; 99:4887-4895. [PMID: 17993271 DOI: 10.1016/j.biortech.2007.09.042] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 09/11/2007] [Accepted: 09/15/2007] [Indexed: 05/25/2023]
Abstract
The production of activated carbon from coconut shell treated with phosphoric acid (H3PO4) was optimized using the response surface methodology (RSM). Fifteen combinations of the three variables namely; impregnation ratio (1, 1.5, and 2); activation time (10, 20, and 30 min); and activation temperature (400, 450, and 500 degrees C) were optimized based on the responses evaluated (yield, bulk density, average pore diameter, small pore diameter, and number of pores in a unit area). Pore diameters were directly measured from scanning electron microscope (SEM) images. Individual second-order response surface models were developed and contour plots were generated for the optimization analysis. The optimum range identified for impregnation ratio was from 1.345 to 2, while for the activation time was from 14.9 to 23.9 min. For the activation temperature it was from 394 to 416 degrees C. The optimum points are 1.725, 19.5 min, and 416 degrees C, respectively. The models were able to predict well the values of the responses when the optimum variable parameters were validated as proven by the generally acceptable values of the residual percentages. Direct characterization of the pores using the SEM was found to be a good technique to actually see the pores and get actual measurements. Additionally, RSM has also proven to be a good tool in optimization analysis to get not only optimum production condition points but ranges, which are crucial for the flexibility of the production process, as well.
Collapse
|
|
17 |
97 |
21
|
Abstract
All the human homologs of the six subunits of Saccharomyces cerevisiae origin recognition complex have been reported so far. However, not much has been reported on the nature and the characteristics of the human origin recognition complex. In an attempt to purify recombinant human ORC from insect cells infected with baculoviruses expressing HsORC subunits, we found that human ORC2, -3, -4, and -5 form a core complex. HsORC1 and HsORC6 subunits did not enter into this core complex, suggesting that the interaction of these two subunits with the core ORC2-5 complex is extremely labile. We found that the C-terminal region of ORC2 interacts directly with the N-terminal region of ORC3. The C-terminal region of ORC3 was, however, necessary to bring ORC4 and ORC5 into the core complex. A fragment containing the N-terminal 200 residues of ORC3 (ORC3N) competitively inhibited the ORC2-ORC3 interaction. Overexpression of this fragment in U2OS cells blocked the cells in G(1), providing the first evidence that a mammalian ORC subunit is important for the G(1)-S transition in mammalian cells.
Collapse
|
|
24 |
94 |
22
|
Jónsson ZO, Dhar SK, Narlikar GJ, Auty R, Wagle N, Pellman D, Pratt RE, Kingston R, Dutta A. Rvb1p and Rvb2p are essential components of a chromatin remodeling complex that regulates transcription of over 5% of yeast genes. J Biol Chem 2001; 276:16279-88. [PMID: 11278922 DOI: 10.1074/jbc.m011523200] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic Rvb1p and Rvb2p are two highly conserved proteins related to the helicase subset of the AAA+ family of ATPases. Conditional mutants in both genes show rapid changes in the transcription of over 5% of yeast genes, with a similar number of genes being repressed and activated. Both Rvb1p and Rvb2p are required for maintaining the induced state of many inducible promoters. ATP binding and hydrolysis by Rvb1p and Rvb2p is individually essential in vivo, and the two proteins are associated with each other in a high molecular weight complex that shows ATP-dependent chromatin remodeling activity in vitro. Our findings show that Rvb1p and Rvb2p are essential components of a chromatin remodeling complex and determine genes regulated by the complex.
Collapse
|
|
24 |
91 |
23
|
Pinto S, Quintana DG, Smith P, Mihalek RM, Hou ZH, Boynton S, Jones CJ, Hendricks M, Velinzon K, Wohlschlegel JA, Austin RJ, Lane WS, Tully T, Dutta A. latheo encodes a subunit of the origin recognition complex and disrupts neuronal proliferation and adult olfactory memory when mutant. Neuron 1999; 23:45-54. [PMID: 10402192 DOI: 10.1016/s0896-6273(00)80752-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Drosophila latheo (lat) gene was identified in a behavioral screen for olfactory memory mutants. The original hypomorphic latP1 mutant (Boynton and Tully, 1992) shows a structural defect in adult brain. Homozygous lethal lat mutants lack imaginal discs, show little cell proliferation in the CNS of third instar larvae, and die as early pupae. latP1 was cloned, and all of the above mentioned defects of hypomorphic or homozygous lethal lat mutants were rescued with a lat+ transgene. lat encodes a novel protein with homology to a subunit of the origin recognition complex (ORC). Human and Drosophila LAT both associate with ORC2 and are related to yeast ORC3, suggesting that LAT functions in DNA replication during cell proliferation.
Collapse
|
|
26 |
91 |
24
|
Saha P, Eichbaum Q, Silberman ED, Mayer BJ, Dutta A. p21CIP1 and Cdc25A: competition between an inhibitor and an activator of cyclin-dependent kinases. Mol Cell Biol 1997; 17:4338-45. [PMID: 9234691 PMCID: PMC232287 DOI: 10.1128/mcb.17.8.4338] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cdc25A, a phosphatase essential for G1-S transition, associates with, dephosphorylates, and activates the cell cycle kinase cyclin E-cdk2. p21CIP1 and p27 are cyclin-dependent kinase (cdk) inhibitors induced by growth-suppressive signals such as p53 and transforming growth factor beta (TGF-beta). We have identified a cyclin binding motif near the N terminus of Cdc25A that is similar to the cyclin binding Cy (or RR LFG) motif of the p21CIP1 family of cdk inhibitors and separate from the catalytic domain. Mutations in this motif disrupt the association of Cdc25A with cyclin E- or cyclin A-cdk2 in vitro and in vivo and selectively interfere with the dephosphorylation of cyclin E-cdk2. A peptide based on the Cy motif of p21 competitively disrupts the association of Cdc25A with cyclin-cdks and inhibits the dephosphorylation of the kinase. p21 inhibits Cdc25A-cyclin-cdk2 association and the dephosphorylation of cdk2. Conversely, Cdc25A, which is itself an oncogene up-regulated by the Myc oncogene, associates with cyclin-cdk and protects it from inhibition by p21. Cdc25A also protects DNA replication in Xenopus egg extracts from inhibition by p21. These results describe a mechanism by which the Myc- or Cdc25A-induced oncogenic and p53- or TGF-beta-induced growth-suppressive pathways counterbalance each other by competing for cyclin-cdks.
Collapse
|
research-article |
28 |
87 |
25
|
Sun D, Layer R, Mueller AC, Cichewicz MA, Negishi M, Paschal BM, Dutta A. Regulation of several androgen-induced genes through the repression of the miR-99a/let-7c/miR-125b-2 miRNA cluster in prostate cancer cells. Oncogene 2013; 33:1448-57. [PMID: 23503464 PMCID: PMC3915043 DOI: 10.1038/onc.2013.77] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 12/17/2012] [Accepted: 01/28/2013] [Indexed: 12/23/2022]
Abstract
The androgen receptor (AR) stimulates and represses gene expression to promote the initiation and progression of prostate cancer. Here, we report that androgen represses the miR-99a/let7c/125b-2 cluster through AR and anti-androgen drugs block the androgen-repression of the miRNA cluster. AR directly binds to the host gene of the miR-99a/let7c/125b-2 cluster, LINC00478. Expression of the cluster is repressed or activated by chromatin remodelers EZH2 or JMJD3 in the presence or absence of androgen, respectively. Bioinformatics analysis reveals a significant enrichment of targets of miR-99a, let-7c and miR-125b in androgen-induced gene sets, suggesting that downregulation of the miR-99a/let7c/125b-2 cluster by androgen protects many of their target mRNAs from degradation and indirectly assists in the gene induction. We validated the hypothesis with 12 potential targets of the miR-99a/let7c/125b-2 cluster induced by androgen: 9 out of the 12 mRNAs are downregulated by the microRNA cluster. To ascertain the biological significance of this hypothesis, we focused on IGF1R, a known prostate cancer growth factor that is induced by androgen and directly targeted by the miR-99a/let7c/125b-2 cluster. The androgen-induced cell proliferation is ameliorated to a similar extent as anti-androgen drugs by preventing the repression of the microRNAs or induction of IGF1R in androgen-dependent prostate cancer cells. Expression of a microRNA-resistant form of IGF1R protects these cells from inhibition by the miR-99a/let7c/125b-2 cluster. These results indicate that a thorough understanding of how androgen stimulates prostate cancer growth requires not only an understanding of genes directly induced/repressed by AR, but also of genes indirectly induced by AR through the repression of key microRNAs.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
79 |