1
|
Kumar P, Nagarajan A, Uchil PD. Analysis of Cell Viability by the Lactate Dehydrogenase Assay. Cold Spring Harb Protoc 2018; 2018:2018/6/pdb.prot095497. [PMID: 29858337 DOI: 10.1101/pdb.prot095497] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A common method for determining cytotoxicity is based on measuring the activity of cytoplasmic enzymes released by damaged cells. Lactate dehydrogenase (LDH) is a stable cytoplasmic enzyme that is found in all cells. LDH is rapidly released into the cell culture supernatant when the plasma membrane is damaged, a key feature of cells undergoing apoptosis, necrosis, and other forms of cellular damage. LDH activity can be easily quantified by using the NADH produced during the conversion of lactate to pyruvate to reduce a second compound in a coupled reaction into a product with properties that are easily quantitated. This protocol measures the reduction of a yellow tetrazolium salt, INT, by NADH into a red, water-soluble formazan-class dye by absorbance at 492 nm. The amount of formazan is directly proportional to the amount of LDH in the culture, which is, in turn, directly proportional to the number of dead or damaged cells.
Collapse
|
Journal Article |
7 |
231 |
2
|
Nagarajan A, Dogra SK, Sun L, Gandotra N, Ho T, Cai G, Cline G, Kumar P, Cowles RA, Wajapeyee N. Paraoxonase 2 Facilitates Pancreatic Cancer Growth and Metastasis by Stimulating GLUT1-Mediated Glucose Transport. Mol Cell 2017; 67:685-701.e6. [PMID: 28803777 DOI: 10.1016/j.molcel.2017.07.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/07/2017] [Accepted: 07/11/2017] [Indexed: 12/28/2022]
Abstract
Metabolic deregulation is a hallmark of human cancers, and the glycolytic and glutamine metabolism pathways were shown to be deregulated in pancreatic ductal adenocarcinoma (PDAC). To identify new metabolic regulators of PDAC tumor growth and metastasis, we systematically knocked down metabolic genes that were overexpressed in human PDAC tumor samples using short hairpin RNAs. We found that p53 transcriptionally represses paraoxonase 2 (PON2), which regulates GLUT1-mediated glucose transport via stomatin. The loss of PON2 initiates the cellular starvation response and activates AMP-activated protein kinase (AMPK). In turn, AMPK activates FOXO3A and its transcriptional target, PUMA, which induces anoikis to suppress PDAC tumor growth and metastasis. Pharmacological or genetic activation of AMPK, similar to PON2 inhibition, blocks PDAC tumor growth. Collectively, our results identify PON2 as a new modulator of glucose transport that regulates a pharmacologically tractable pathway necessary for PDAC tumor growth and metastasis.
Collapse
|
Journal Article |
8 |
103 |
3
|
Nagarajan A, Malvi P, Wajapeyee N. Heparan Sulfate and Heparan Sulfate Proteoglycans in Cancer Initiation and Progression. Front Endocrinol (Lausanne) 2018; 9:483. [PMID: 30197623 PMCID: PMC6118229 DOI: 10.3389/fendo.2018.00483] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/03/2018] [Indexed: 12/28/2022] Open
Abstract
Heparan sulfate (HS) are complex unbranched carbohydrate chains that are heavily modified by sulfate and exist either conjugated to proteins or as free, unconjugated chains. Proteins with covalently bound Heparan sulfate chains are termed Heparan Sulfate Proteoglycans (HSPGs). Both HS and HSPGs bind to various growth factors and act as co-receptors for different cell surface receptors. They also modulate the dynamics and kinetics of various ligand-receptor interactions, which in turn can influence the duration and potency of the signaling. HS and HSPGs have also been shown to exert a structural role as a component of the extracellular matrix, thereby altering processes such as cell adhesion, immune cell infiltration and angiogenesis. Previous studies have shown that HS are deregulated in a variety of solid tumors and hematological malignancies and regulate key aspects of cancer initiation and progression. HS deregulation in cancer can occur as a result of changes in the level of HSPGs or due to changes in the levels of HS biosynthesis and remodeling enzymes. Here, we describe the major cell-autonomous (proliferation, apoptosis/senescence and differentiation) and cell-non-autonomous (angiogenesis, immune evasion, and matrix remodeling) roles of HS and HSPGs in cancer. Finally, we discuss therapeutic opportunities for targeting deregulated HS biosynthesis and HSPGs as a strategy for cancer treatment.
Collapse
|
Review |
7 |
100 |
4
|
Herrera R, Nagarajan A, Morales MA, Méndez F, Jiménez-Vázquez HA, Zepeda LG, Tamariz J. Regio- and stereoselectivity of captodative olefins in 1,3-dipolar cycloadditions. A DFT/HSAB theory rationale for the observed regiochemistry of nitrones. J Org Chem 2001; 66:1252-63. [PMID: 11312955 DOI: 10.1021/jo001393n] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Captodative olefins 1-acetylvinyl carboxylates proved to be highly regioselective dipolarophiles in 1,3-dipolar cycloadditon to propionitrile oxide, arylphenylnitrile imines, diazoalkanes, and nitrones to yield the corresponding 5-substituted heterocycles. The addition of the latter was also stereoselective, being slightly susceptible to steric demand of the carboxylate substituent in the olefin. All atempts to cleave the isoxazolidine N-O bond under reductive conditions failed, providing diverse products with side-group reduction. FMO theory was unsuccessful to explain the regioselectivity observed with nitrones, since the opposite orientation was predicted. The recently formulated DFT/HSAB theoretical model was able to rationalize this regioselectivity, identifying the nucleophilic and electrophilic atoms involved in the process via calculation of interaction energies, suggesting the specific direction of the electronic process at each of the reaction sites.
Collapse
|
|
24 |
68 |
5
|
Forloni M, Gupta R, Nagarajan A, Sun LS, Dong Y, Pirazzoli V, Toki M, Wurtz A, Melnick MA, Kobayashi S, Homer RJ, Rimm DL, Gettinger SJ, Politi K, Dogra SK, Wajapeyee N. Oncogenic EGFR Represses the TET1 DNA Demethylase to Induce Silencing of Tumor Suppressors in Cancer Cells. Cell Rep 2016; 16:457-471. [PMID: 27346347 DOI: 10.1016/j.celrep.2016.05.087] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/16/2016] [Accepted: 05/21/2016] [Indexed: 12/21/2022] Open
Abstract
Oncogene-induced DNA methylation-mediated transcriptional silencing of tumor suppressors frequently occurs in cancer, but the mechanism and functional role of this silencing in oncogenesis are not fully understood. Here, we show that oncogenic epidermal growth factor receptor (EGFR) induces silencing of multiple unrelated tumor suppressors in lung adenocarcinomas and glioblastomas by inhibiting the DNA demethylase TET oncogene family member 1 (TET1) via the C/EBPα transcription factor. After oncogenic EGFR inhibition, TET1 binds to tumor suppressor promoters and induces their re-expression through active DNA demethylation. Ectopic expression of TET1 potently inhibits lung and glioblastoma tumor growth, and TET1 knockdown confers resistance to EGFR inhibitors in lung cancer cells. Lung cancer samples exhibited reduced TET1 expression or TET1 cytoplasmic localization in the majority of cases. Collectively, these results identify a conserved pathway of oncogenic EGFR-induced DNA methylation-mediated transcriptional silencing of tumor suppressors that may have therapeutic benefits for oncogenic EGFR-mediated lung cancers and glioblastomas.
Collapse
|
Journal Article |
9 |
46 |
6
|
Nagarajan A, Janostiak R, Wajapeyee N. Dot Blot Analysis for Measuring Global N 6-Methyladenosine Modification of RNA. Methods Mol Biol 2019; 1870:263-271. [PMID: 30539562 DOI: 10.1007/978-1-4939-8808-2_20] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Posttranscriptional modification of mRNAs plays an important role in establishing the functional diversity of the proteome. The m6A modification is found in many species of RNA, including tRNA, mRNA, rRNA, and long noncoding RNAs. The physiological role of m6A modification of RNA is not fully explored and is a topic of current research. It is predicted that the major effect of m6A modification of mRNAs is on its stability and/or translation. The global changes in m6A levels in total RNA or particular species of RNAs can be measured by dot blot analysis using m6A specific antibodies or using mass spectrometry following chromatographic separation. The dot blot method for detection of global m6A changes is a relatively straightforward method to quantitate m6A modification but suffers from low sensitivity when the fraction of m6A-modified RNA is small in analyzed samples. Here, we describe a modified dot blot method that is sensitive and quantitative for detecting m6A-modified RNA by adding an immunoprecipitation step to enrich for m6A-modified RNA.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
43 |
7
|
Kumar P, Nagarajan A, Uchil PD. Analysis of Cell Viability by the alamarBlue Assay. Cold Spring Harb Protoc 2018; 2018:2018/6/pdb.prot095489. [PMID: 29858336 DOI: 10.1101/pdb.prot095489] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This protocol describes viability measurements for cell cultures in a 96-well tissue culture plate using alamarBlue (resazurin). The assay can be modified to accommodate larger plates; however, for a preliminary analysis of transfection reagents and parameters of the transfection protocol on cell viability, a 96-well plate format is the most cost effective.
Collapse
|
|
7 |
41 |
8
|
Malvi P, Janostiak R, Nagarajan A, Cai G, Wajapeyee N. Loss of thymidine kinase 1 inhibits lung cancer growth and metastatic attributes by reducing GDF15 expression. PLoS Genet 2019; 15:e1008439. [PMID: 31589613 PMCID: PMC6797230 DOI: 10.1371/journal.pgen.1008439] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/17/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022] Open
Abstract
Metabolic alterations that are critical for cancer cell growth and metastasis are one of the key hallmarks of cancer. Here, we show that thymidine kinase 1 (TK1) is significantly overexpressed in tumor samples from lung adenocarcinoma (LUAD) patients relative to normal controls, and this TK1 overexpression is associated with significantly reduced overall survival and cancer recurrence. Genetic knockdown of TK1 with short hairpin RNAs (shRNAs) inhibits both the growth and metastatic attributes of LUAD cells in culture and in mice. We further show that transcriptional overexpression of TK1 in LUAD cells is driven, in part, by MAP kinase pathway in a transcription factor MAZ dependent manner. Using targeted and gene expression profiling-based approaches, we then show that loss of TK1 in LUAD cells results in reduced Rho GTPase activity and reduced expression of growth and differentiation factor 15 (GDF15). Furthermore, ectopic expression of GDF15 can partially rescue TK1 knockdown-induced LUAD growth and metastasis inhibition, confirming its important role as a downstream mediator of TK1 function in LUAD. Collectively, our findings demonstrate that TK1 facilitates LUAD tumor and metastatic growth and represents a target for LUAD therapy. Thymidine kinase 1 (TK1) is overexpressed and associated with poor prognosis in a number of different cancers. However, despite these data suggesting an important role for TK1 in cancer pathogenesis, no study thus far has analyzed the functional effect of TK1 inhibition on tumor growth and metastasis. In this study, we performed TK1 knockdown and found that this protein is necessary for lung adenocarcinoma (LUAD) tumor growth and metastasis. Notably, inhibition of another nucleotide kinase, deoxycytidine kinase (DCK), had no effect on LUAD tumor growth and metastatic attributes. We therefore performed experiments to determine if the TK1 mechanism of action in cancer is distinct from its previously reported role in DNA damage, DNA replication, and DNA repair. We found that TK1 can promote LUAD tumor growth and metastasis in a non-canonical manner by activating Rho GTPase activity and growth and differentiation factor 15 (GDF15) expression. Taken together, our data suggest that TK1 may represent a potential target for development of LUAD therapy, due to its critical role in maintaining lung tumor growth and metastasis.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
30 |
9
|
N. Gummadi S, Nagarajan A, Thirunavuk N, Suryanaray T. Screening and Isolation of Novel Glutaminase Free L-asparaginase from Fungal Endophytes. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/jm.2014.163.176] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
|
11 |
29 |
10
|
Abstract
Electroporation is a process in which brief electrical pulses create transient pores in the plasma membrane that allow nucleic acids to enter the cellular cytoplasm. Here, we provide information on the history, mechanism, and optimization of electroporation. We also describe nucleofection, an improvement of the electroporation technology that permits the introduction of nucleic acids directly into the nucleus.
Collapse
|
Historical Article |
6 |
24 |
11
|
Ramanand K, Nagarajan A, Suflita JM. Reductive Dechlorination of the Nitrogen Heterocyclic Herbicide Picloram. Appl Environ Microbiol 1993; 59:2251-6. [PMID: 16348997 PMCID: PMC182265 DOI: 10.1128/aem.59.7.2251-2256.1993] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anaerobic biodegradation of picloram (3,5,6-trichloro-4-amino-2-pyridinecarboxylic acid) in freshwater sediment was favored under methanogenic conditions but not when sulfate or nitrate was available as a terminal electron acceptor. Under the former conditions, more than 85% of the parent substrate (340 μM) was removed from nonsterile incubations in 30 days, following a 50-day acclimation period. Concomitant with substrate decay, an intermediate transiently accumulated in the sediment slurries. By liquid chromatography-mass spectrometry, the intermediate was identified as an isomer of dichloro-4-amino-2-pyridinecarboxylic acid. Proton nuclear magnetic resonance evidence suggested that a chlorine was reductively removed from the parent substrate at the position
meta
to the nitrogen heteroatom. Upon continued incubation, the dechlorinated product was transformed into an unidentified compound which accumulated and resisted further decay. The addition of sulfate or bromoethanesulfonic acid to sediment slurries inhibited picloram dehalogenation, but molybdate reversed the inhibitory effect of sulfate on pesticide metabolism. These findings help clarify the fate of a halogenated nitrogen heterocyclic herbicide in anaerobic environments.
Collapse
|
|
32 |
18 |
12
|
Kisku KH, Panigrahi MK, Sudhakar R, Nagarajan A, Ravikumar R, Daniel JR. Agenesis of lung - a report of two cases. Lung India 2011; 25:28-30. [PMID: 20396661 PMCID: PMC2853047 DOI: 10.4103/0970-2113.44136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Agenesis of lung is a rare congenital disorder. We are reporting varied degree of pulmonary agenesis in two adult patients.
Collapse
|
Journal Article |
14 |
17 |
13
|
Delia TJ, Nagarajan A. 2,4,6-trichloropyrimidine. Reaction with 4-substituted phenolate ions. J Heterocycl Chem 1998. [DOI: 10.1002/jhet.5570350201] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
|
27 |
17 |
14
|
Abstract
Strategies for the delivery of genes into eukaryotic cells fall into three categories: transfection by biochemical methods, transfection by physical methods, and virus-mediated transduction. "Optical transfection"-a physical transfection method-exploits the ability of light to create small transient pores in the plasma membrane of mammalian cells.
Collapse
|
|
7 |
13 |
15
|
Lin L, Chamberlain L, Pak ML, Nagarajan A, Gupta R, Zhu LJ, Wright CM, Fong KM, Wajapeyee N, Green MR. A large-scale RNAi-based mouse tumorigenesis screen identifies new lung cancer tumor suppressors that repress FGFR signaling. Cancer Discov 2014; 4:1168-81. [PMID: 25015643 DOI: 10.1158/2159-8290.cd-13-0747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED To discover new tumor-suppressor genes (TSG), we developed a functional genomics approach in which immortalized but nontumorigenic cells were stably transduced with large-scale shRNA pools and tested for tumor formation in mice. Identification of shRNAs in resulting tumors revealed candidate TSGs, which were validated experimentally and by analyzing expression in human tumor samples. Using this approach, we identified 24 TSGs that were significantly downregulated in human lung squamous cell carcinomas (hLSCC). Amplification of fibroblast growth factor receptor 1 (FGFR1), which aberrantly increases FGFR signaling, is a common genetic alteration in hLSCCs. Remarkably, we found that 17 of the TSGs encode repressors of FGFR signaling. Knockdown of 14 of these TSGs transformed immortalized human bronchial epithelial cells and, in most cases, rendered them sensitive to FGFR inhibitors. Our results indicate that increased FGFR signaling promotes tumorigenesis in many hLSCCs that lack FGFR1 amplification or activating mutations. SIGNIFICANCE A functional genomics approach identifies new lung TSGs whose loss aberrantly increases FGFR signaling to promote tumorigenesis. These TSGs are frequently downregulated in hLSCCs, indicating that increased FGFR signaling promotes tumorigenesis in many hLSCCs lacking FGFR1 amplification or activating mutations.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
12 |
16
|
Kumar P, Nagarajan A, Uchil PD. DNA Transfection Mediated by Cationic Lipid Reagents. Cold Spring Harb Protoc 2019; 2019:2019/3/pdb.prot095414. [PMID: 30824617 DOI: 10.1101/pdb.prot095414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Liposomal transfection reagents vary in their ability to transfect cell lines efficiently. Some are generalists, whereas others are best used with specific cell types. The nonliposomal FuGENE 6 and the cationic liposomal Lipofectamine 2000 are examples of reagents that can successfully transfect most adherent and suspension cell types (including several primary and hard-to-transfect cell types) with negligible toxicity and a minimal number of manipulations. Importantly, both reagents can be used to transfect cells in the presence of serum, minimizing the number of manipulations during the transfection procedure. We also provide an alternative protocol that uses the cationic lipid reagents Lipofectin and Transfectam.
Collapse
|
|
6 |
11 |
17
|
Kalyanam N, Nagarajan A, Majeed M. A Single‐Step Assembly of Coumarin Ring Skeleton from Oxygenated Phenols and Acetylenic Esters by Catalytic Indium Chloride in the Absence of Solvent. SYNTHETIC COMMUN 2006. [DOI: 10.1081/scc-120034175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
|
19 |
10 |
18
|
Nagarajan A, Roden C, Wajapeyee N. Reduced representation bisulfite sequencing to identify global alteration of DNA methylation. Methods Mol Biol 2014; 1176:23-31. [PMID: 25030916 DOI: 10.1007/978-1-4939-0992-6_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reduced representation bisulfite sequencing is a cost-effective high-throughput sequencing-based method to obtain DNA methylation status at a single-nucleotide level. DNA methylation status is determined by utilizing DNA methylation-specific restriction enzymes to selectively amplify for genomic regions that are rich in methylated DNA. Although the method is genome-wide, DNA methyl sequencing does not require the sequencing of the whole genome, hence the name "reduced representation." However, a large majority of CpG islands are covered by reduced representation bisulfite sequencing allowing for the acquisition of comprehensive information of the methylation landscape in diseases like cancer. Data generated by this approach is typically reproducible and often covers between 65 and 75 % of the whole genome.
Collapse
|
|
11 |
9 |
19
|
Kumar P, Nagarajan A, Uchil PD. Calcium Phosphate-Mediated Transfection of Eukaryotic Cells with Plasmid DNAs. Cold Spring Harb Protoc 2019; 2019:2019/10/pdb.prot095430. [PMID: 31575793 DOI: 10.1101/pdb.prot095430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This protocol describes a calcium phosphate-mediated transfection method for use with plasmid DNAs and adherent cells. At the end of the protocol is an alternative method for high-efficiency generation of stable transfectants.
Collapse
|
Journal Article |
6 |
9 |
20
|
Malvi P, Janostiak R, Nagarajan A, Zhang X, Wajapeyee N. N-acylsphingosine amidohydrolase 1 promotes melanoma growth and metastasis by suppressing peroxisome biogenesis-induced ROS production. Mol Metab 2021; 48:101217. [PMID: 33766731 PMCID: PMC8081993 DOI: 10.1016/j.molmet.2021.101217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/02/2021] [Accepted: 03/17/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Metabolic deregulation is a key hallmark of cancer cells and has been shown to drive cancer growth and metastasis. However, not all metabolic drivers of melanoma are known. Based on our finding that N-acylsphingosine amidohydrolase 1 (ASAH1) is overexpressed in melanoma, the objective of these studies was to establish its role in melanoma tumor growth and metastasis, understand its mechanism of action, and evaluate ASAH1 targeting for melanoma therapy. METHODS We used publicly available melanoma datasets and patient-derived samples of melanoma and normal skin tissue and analyzed them for ASAH1 mRNA expression and ASAH1 protein expression using immunohistochemistry. ASAH1 was knocked down using short-hairpin RNAs in multiple melanoma cell lines that were tested in a series of cell culture-based assays and mouse-based melanoma xenograft assays to monitor the effect of ASAH1 knockdown on melanoma tumor growth and metastasis. An unbiased metabolomics analysis was performed to identify the mechanism of ASAH1 action. Based on the metabolomics findings, the role of peroxisome-mediated reactive oxygen species (ROS) production was explored in regard to mediating the effect of ASAH1. The ASAH1 inhibitor was used alone or in combination with a BRAFV600E inhibitor to evaluate the therapeutic value of ASAH1 targeting for melanoma therapy. RESULTS We determined that ASAH1 was overexpressed in a large percentage of melanoma cells and regulated by transcription factor E2F1 in a mitogen-activated protein (MAP) kinase pathway-dependent manner. ASAH1 expression was necessary to maintain melanoma tumor growth and metastatic attributes in cell cultures and mouse models of melanoma tumor growth and metastasis. To identify the mechanism by which ASAH1 facilitates melanoma tumor growth and metastasis, we performed a large-scale and unbiased metabolomics analysis of melanoma cells expressing ASAH1 short-hairpin RNAs (shRNAs). We found that ASAH1 inhibition increased peroxisome biogenesis through ceramide-mediated PPARγ activation. ASAH1 loss increased ceramide and peroxisome-derived ROS, which in turn inhibited melanoma growth. Pharmacological inhibition of ASAH1 also attenuated melanoma growth and enhanced the effectiveness of BRAF kinase inhibitor in the cell cultures and mice. CONCLUSIONS Collectively, these results demonstrate that ASAH1 is a druggable driver of melanoma tumor growth and metastasis that functions by suppressing peroxisome biogenesis, thereby inhibiting peroxisome-derived ROS production. These studies also highlight the therapeutic utility of ASAH1 inhibitors for melanoma therapy.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
8 |
21
|
Nagarajan A, van Erve K, Gerini G. Ultra-narrowband polarization insensitive transmission filter using a coupled dielectric-metal metasurface. OPTICS EXPRESS 2020; 28:773-787. [PMID: 32118999 DOI: 10.1364/oe.383781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
A coupled dielectric-metal metasurface (CDMM) filter consisting of amorphous silicon (a-Si) rings and subwavelength holes in Au layer separated by a SiO2 layer is presented. The design parameters of the CDMM filter is numerically optimized to have a polarization independent peak transmittance of 0.55 at 1540 nm with a Full Width at Half Maximum (FWHM) of 10 nm. The filter also has a 100 nm quiet zone with ∼10-2 transmittance. A radiating two-oscillator model reveals the fundamental resonances in the filter which interfere to produce the electromagnetically induced transparency (EIT) like effect. Multipole expansion of the currents in the structure validates the fundamental resonances predicted by the two-oscillator model. The presented CDMM filter is robust to artifacts in device fabrication and has performances comparable to a conventional Fabry-Pérot filter. However, it is easier to be integrated in image sensors as the transmittance peak can be tuned by only changing the periodicity resulting in a planar structure with a fixed height.
Collapse
|
|
5 |
8 |
22
|
Abstract
β-galactosidase is used as a reporter for the quantitative analysis of gene expression. It is also used as a histochemical marker. This introduction briefly reviews the enzymatic reactions catalyzed by β-galactosidase and methods for assaying β-galactosidase activity.
Collapse
|
Journal Article |
8 |
7 |
23
|
Nagarajan A, Meltsner BR, Delia TJ. Fused pyrimidines.7. Nucleosides of pyrimidopyrimidinediones and pteridinediones as potential chemotherapeutic agents. J Heterocycl Chem 1997. [DOI: 10.1002/jhet.5570340532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
28 |
7 |
24
|
Kumar P, Nagarajan A, Uchil PD. Calcium Phosphate-Mediated Transfection of Adherent Cells or Cells Growing in Suspension: Variations on the Basic Method. Cold Spring Harb Protoc 2019; 2019:2019/10/pdb.prot095455. [PMID: 31575795 DOI: 10.1101/pdb.prot095455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This protocol describes two variations of the calcium phosphate-mediated transfection method. The first can be used with all types of adherent cells, but is particularly useful for polarized epithelial cells, which do not efficiently take up material by endocytosis through the apical plasma membrane. To improve transfection efficiency, adherent cells are trypsinized and collected by centrifugation. The cells are resuspended in the calcium phosphate-DNA coprecipitate and then plated again on tissue culture dishes. Most lines of cells grown in suspension are resistant to calcium phosphate-mediated transfection methods; however, a few cell lines grown as suspension cultures (e.g., HeLa cells) can be transfected using the second modified calcium phosphate procedure described here.
Collapse
|
Journal Article |
6 |
6 |
25
|
Kumar P, Nagarajan A, Uchil PD. Calcium Phosphate-Mediated Transfection of Cells with High-Molecular-Weight Genomic DNA. Cold Spring Harb Protoc 2019; 2019:2019/10/pdb.prot095448. [PMID: 31575794 DOI: 10.1101/pdb.prot095448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This protocol describes a calcium phosphate-mediated transfection method for use with high-molecular-weight genomic DNAs.
Collapse
|
|
6 |
5 |