1
|
Kamerer AM, AuBuchon A, Fultz SE, Kopun JG, Neely ST, Rasetshwane DM. The Role of Cognition in Common Measures of Peripheral Synaptopathy and Hidden Hearing Loss. Am J Audiol 2019; 28:843-856. [PMID: 31647880 DOI: 10.1044/2019_aja-19-0063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose The aim of this study was to quantify the portion of variance in several measures suggested to be indicative of peripheral noise-induced cochlear synaptopathy and hidden hearing disorder that can be attributed to individual cognitive capacity. Method Regression and relative importance analysis was used to model several behavioral and physiological measures of hearing in 32 adults ranging in age from 20 to 74 years. Predictors for the model were hearing sensitivity and performance on a number of cognitive tasks. Results There was a significant influence of cognitive capacity on several measures of cochlear synaptopathy and hidden hearing disorder. These measures include frequency modulation detection threshold, time-compressed word recognition in quiet and reverberation, and the strength of the frequency-following response of the speech-evoked auditory brainstem response. Conclusions Measures of hearing that involve temporal processing are significantly influenced by cognitive abilities, specifically, short-term and working memory capacity, executive function, and attention. Research using measures of temporal processing to diagnose peripheral disorders, such as noise-induced synaptopathy, need to consider cognitive influence even in a young, healthy population.
Collapse
|
Journal Article |
6 |
16 |
2
|
Kamerer AM, Kopun JG, Fultz SE, Neely ST, Rasetshwane DM. Reliability of Measures Intended to Assess Threshold-Independent Hearing Disorders. Ear Hear 2020; 40:1267-1279. [PMID: 30882533 PMCID: PMC6745005 DOI: 10.1097/aud.0000000000000711] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Recent animal studies have shown that noise exposure can cause cochlear synaptopathy without permanent threshold shift. Because the noise exposure preferentially damaged auditory nerve fibers that processed suprathreshold sounds (low-spontaneous rate fibers), it has been suggested that synaptopathy may underlie suprathreshold hearing deficits in humans. Recently, several researchers have suggested measures to identify the pathology or pathologies underlying suprathreshold hearing deficits in humans based on results from animal studies; however, the reliability of some of these measures have not been assessed. The purpose of this study was to assess the test-retest reliability of measures that may have the potential to relate suprathreshold hearing deficits to site(s)-of-lesion along the peripheral auditory system in humans. DESIGN Adults with audiometric normal hearing were tested on a battery of behavioral and physiologic measures that included (1) thresholds in quiet (TIQ), (2) thresholds in noise (TIN), (3) frequency-modulation detection threshold (FMDT), (4) word recognition in four listening conditions, (5) distortion-product otoacoustic emissions (DPOAE), (6) middle ear muscle reflex (MEMR), (7) tone burst-elicited auditory brainstem response (tbABR), and (8) speech-evoked ABR (sABR). Data collection for each measure was repeated over two visits separated by at least one week. The residuals of the correlation between the suprathreshold measures and TIQ serve as functional and quantitative proxies for threshold-independent hearing disorders because they represent the portion of the raw measures that is not dependent on TIQ. Reliability of the residual measures was assessed using intraclass correlation (ICC). RESULTS Reliability for the residual measures was good (ICC ≥ 0.75) for FMDT, DPOAEs, and MEMR. Residual measures showing moderate reliability (0.5 ≤ ICC < 0.75) were tbABR wave I amplitude, TIN, and word recognition in quiet, noise, and time-compressed speech with reverberation. Wave V of the tbABR, waves of the sABR, and recognition of time-compressed words had poor test-retest reliability (ICC < 0.5). CONCLUSIONS Reliability of residual measures was mixed, suggesting that care should be taken when selecting measures for diagnostic tests of threshold-independent hearing disorders. Quantifying hidden hearing loss as the variance in suprathreshold measures of auditory function that is not due to TIQ may provide a reliable estimate of threshold-independent hearing disorders in humans.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
16 |
3
|
Kamerer AM, Harris SE, Kopun JG, Neely ST, Rasetshwane DM. Understanding Self-reported Hearing Disability in Adults With Normal Hearing. Ear Hear 2022; 43:773-784. [PMID: 34759207 PMCID: PMC9010339 DOI: 10.1097/aud.0000000000001161] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Despite a diagnosis of normal hearing, many people experience hearing disability (HD) in their everyday lives. This study assessed the ability of a number of demographic and auditory variables to explain and predict self-reported HD in people regarded as audiologically healthy via audiometric thresholds. DESIGN One-hundred eleven adults (ages 19 to 74) with clinically normal hearing (i.e., audiometric thresholds ≤25 dB HL at all octave and interoctave frequencies between 0.25 and 8 kHz and bilaterally symmetric hearing) were asked to complete the 12-item version of the Speech, Spatial, and Qualities of Hearing Scale (SSQ12) as a measure of self-reported HD. Patient history and a number of standard and expanded measures of hearing were assessed in a multivariate regression analysis to predict SSQ12 score. Patient history included age, sex, history of noise exposure, and tinnitus. Hearing-related measures included audiometry at standard and extended high frequencies, word recognition, otoacoustic emissions, auditory brainstem response, the Montreal Cognitive Assessment, and FM detection threshold. RESULTS History of impulse noise exposure, speech-intelligibility index, and FM detection threshold accurately predicted SSQ12 and were able to account for 40% of the SSQ12 score. These three measures were also able to predict whether participants self-reported HD with a sensitivity of 89% and specificity of 86%. CONCLUSIONS Although participant audiometric thresholds were within normal limits, higher thresholds, history of impulse noise exposure, and FM detection predicted self-reported HD.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
13 |
4
|
Chertoff ME, Kamerer AM, Peppi M, Lichtenhan JT. An analysis of cochlear response harmonics: Contribution of neural excitation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:2957-63. [PMID: 26627769 PMCID: PMC4644149 DOI: 10.1121/1.4934556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/30/2015] [Accepted: 10/12/2015] [Indexed: 05/29/2023]
Abstract
In this report an analysis of cochlear response harmonics is developed to derive a mathematical function to estimate the gross mechanics involved in the in vivo transfer of acoustic sound into neural excitation (f(Tr)). In a simulation it is shown that the harmonic distortion from a nonlinear system can be used to estimate the nonlinearity, supporting the next phase of the experiment: Applying the harmonic analysis to physiologic measurements to derive estimates of the unknown, in vivo f(Tr). From gerbil ears, estimates of f(Tr) were derived from cochlear response measurements made with an electrode at the round window niche from 85 Hz tone bursts. Estimates of f(Tr) before and after inducing auditory neuropathy-loss of auditory nerve responses with preserved hair cell responses from neurotoxic treatment with ouabain-showed that the neural excitation from low-frequency tones contributes to the magnitude of f(Tr) but not the sigmoidal, saturating, nonlinear morphology.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
12 |
5
|
Kamerer AM, Kopun JG, Fultz SE, Allen C, Neely ST, Rasetshwane DM. Examining physiological and perceptual consequences of noise exposure. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3947. [PMID: 31795718 PMCID: PMC6881192 DOI: 10.1121/1.5132291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 05/08/2023]
Abstract
The consequences of noise exposure on the auditory system are not entirely understood. In animals, noise exposure causes selective synaptopathy-an uncoupling of auditory nerve fibers from sensory cells-mostly in fibers that respond to high sound levels. Synaptopathy can be measured physiologically in animals, but a direct relationship between noise exposure and synaptopathy in humans has yet to be proven. Sources of variability, such as age, indirect measures of noise exposure, and comorbid auditory disorders, obfuscate attempts to find concrete relationships between noise exposure, synaptopathy, and perceptual consequences. This study adds to the ongoing effort by examining relationships between noise exposure, auditory brainstem response (ABR) amplitudes, and speech perception in adults of various ages and audiometric thresholds and a subset of younger adults with clinically normal hearing. Regression models including noise exposure, age, hearing thresholds, and sex as covariates were compared to find a best-fitting model of toneburst ABR wave I amplitude at two frequencies and word recognition performance in three listening conditions: background noise, time compression, and time compression with reverberation. The data suggest the possibility of detecting synaptopathy in younger adults using physiological measures, but that age and comorbid hearing disorders may hinder attempts to assess noise-induced synaptopathy.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
12 |
6
|
Kamerer AM, Neely ST, Rasetshwane DM. A model of auditory brainstem response wave I morphology. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:25. [PMID: 32006985 PMCID: PMC7043862 DOI: 10.1121/10.0000493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 05/23/2023]
Abstract
Use of the auditory brainstem response (ABR) in research has increased in the search for physiological correlates of noise-induced damage to the cochlea. The extraction of data from the ABR has traditionally relied on visual determination of peaks and troughs to calculate metrics such as wave amplitude. Visual determination can be reliable when evaluated by trained, experienced personnel, but noisy waveforms and overlapping waves produce uncertain data. The present study proposes and validates a method of fitting summed Gaussian functions to the summating potential and wave I of the ABR. This method could be useful to the research community studying these potentials by providing more accurate measures of wave amplitude than by visual determination.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
11 |
7
|
Chertoff ME, Earl BR, Diaz FJ, Sorensen JL, Thomas MLA, Kamerer AM, Peppi M. Predicting the location of missing outer hair cells using the electrical signal recorded at the round window. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:1212. [PMID: 25190395 PMCID: PMC4165229 DOI: 10.1121/1.4890641] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/27/2014] [Accepted: 07/07/2014] [Indexed: 06/01/2023]
Abstract
The electrical signal recorded at the round window was used to estimate the location of missing outer hair cells. The cochlear response was recorded to a low frequency tone embedded in high-pass filtered noise conditions. Cochlear damage was created by either overexposure to frequency-specific tones or laser light. In animals with continuous damage along the partition, the amplitude of the cochlear response increased as the high-pass cutoff frequency increased, eventually reaching a plateau. The cochlear distance at the onset of the plateau correlated with the anatomical onset of outer hair cell loss. A mathematical model replicated the physiologic data but was limited to cases with continuous hair cell loss in the middle and basal turns. The neural contribution to the cochlear response was determined by recording the response before and after application of Ouabain. Application of Ouabain eliminated or reduced auditory neural activity from approximately two turns of the cochlea. The amplitude of the cochlear response was reduced for moderate signal levels with a limited effect at higher levels, indicating that the cochlear response was dominated by outer hair cell currents at high signal levels and neural potentials at low to moderate signal levels.
Collapse
MESH Headings
- Animals
- Audiometry, Pure-Tone
- Auditory Threshold
- Cochlear Microphonic Potentials/drug effects
- Disease Models, Animal
- Female
- Gerbillinae
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/pathology
- Hearing Loss, Noise-Induced/etiology
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Lasers
- Models, Biological
- Ouabain/pharmacology
- Round Window, Ear/injuries
- Round Window, Ear/innervation
Collapse
|
Research Support, N.I.H., Extramural |
11 |
8 |
8
|
Kamerer AM, Diaz FJ, Peppi M, Chertoff ME. The potential use of low-frequency tones to locate regions of outer hair cell loss. Hear Res 2016; 342:39-47. [PMID: 27677389 DOI: 10.1016/j.heares.2016.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 11/17/2022]
Abstract
Current methods used to diagnose cochlear hearing loss are limited in their ability to determine the location and extent of anatomical damage to various cochlear structures. In previous experiments, we have used the electrical potential recorded at the round window -the cochlear response (CR) -to predict the location of damage to outer hair cells in the gerbil. In a follow-up experiment, we applied 10 mM ouabain to the round window niche to reduce neural activity in order to quantify the neural contribution to the CR. We concluded that a significant proportion of the CR to a 762 Hz tone originated from phase-locking activity of basal auditory nerve fibers, which could have contaminated our conclusions regarding outer hair cell health. However, at such high concentrations, ouabain may have also affected the responses from outer hair cells, exaggerating the effect we attributed to the auditory nerve. In this study, we lowered the concentration of ouabain to 1 mM and determined the physiologic effects on outer hair cells using distortion-product otoacoustic emissions. As well as quantifying the effects of 1 mM ouabain on the auditory nerve and outer hair cells, we attempted to reduce the neural contribution to the CR by using near-infrasonic stimulus frequencies of 45 and 85 Hz, and hypothesized that these low-frequency stimuli would generate a cumulative amplitude function (CAF) that could reflect damage to hair cells in the apex more accurately than the 762 stimuli. One hour after application of 1 mM ouabain, CR amplitudes significantly increased, but remained unchanged in the presence of high-pass filtered noise conditions, suggesting that basal auditory nerve fibers have a limited contribution to the CR at such low frequencies.
Collapse
MESH Headings
- Acoustic Stimulation
- Animals
- Cochlea/pathology
- Cochlea/physiopathology
- Cochlear Microphonic Potentials/drug effects
- Cochlear Microphonic Potentials/physiology
- Cochlear Nerve/drug effects
- Cochlear Nerve/physiopathology
- Gerbillinae
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/pathology
- Hair Cells, Auditory, Outer/physiology
- Hearing Loss, Sensorineural/diagnosis
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/physiopathology
- Otoacoustic Emissions, Spontaneous/drug effects
- Otoacoustic Emissions, Spontaneous/physiology
- Ouabain/administration & dosage
- Round Window, Ear/drug effects
- Round Window, Ear/physiology
- Round Window, Ear/physiopathology
Collapse
|
Research Support, N.I.H., Extramural |
9 |
4 |
9
|
Kamerer AM, Chertoff ME. An analytic approach to identifying the sources of the low-frequency round window cochlear response. Hear Res 2019; 375:53-65. [PMID: 30808536 DOI: 10.1016/j.heares.2019.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/18/2019] [Accepted: 02/06/2019] [Indexed: 01/19/2023]
Abstract
The cochlear microphonic, traditionally thought of as an indication of electrical current flow through hair cells, in conjunction with suppressing high-pass noise or tones, is a promising method of assessing the health of outer hair cells at specific locations along the cochlear partition. We propose that the electrical potential recorded from the round window in gerbils in response to low-frequency tones, which we call cochlear response (CR), contains significant responses from multiple cellular sources, which may expand its diagnostic purview. In this study, CR is measured in the gerbil and modeled to identify its contributing sources. CR was recorded via an electrode placed in the round window niche of sixteen Mongolian gerbils and elicited with a 45 Hz tone burst embedded in 18 high-pass filtered noise conditions to target responses from increasing regions along the cochlear partition. Possible sources were modeled using previously-published hair cell and auditory nerve response data, and then weighted and combined using linear regression to produce a model response that fits closely to the mean CR waveform. The significant contributing sources identified by the model are outer hair cells, inner hair cells, and the auditory nerve. We conclude that the low-frequency CR contains contributions from several cellular sources.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
2 |
10
|
Kopun JG, Turner M, Harris SE, Kamerer AM, Neely ST, Rasetshwane DM. Evaluation of Remote Categorical Loudness Scaling. Am J Audiol 2022; 31:45-56. [PMID: 34890217 DOI: 10.1044/2021_aja-21-00099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The aims of this study were to (a) demonstrate the feasibility of administering categorical loudness scaling (CLS) tests in a remote setting, (b) assess the reliability of remote compared with laboratory CLS results, and (c) provide preliminary evidence of the validity of remote CLS testing. METHOD CLS data from 21 adult participants collected in a home setting were compared to CLS data collected in a laboratory setting from previous studies. Five participants took part in studies in both settings. Precalibrated equipment was delivered to participants who performed headphone output level checks and measured ambient noise levels. After a practice run, CLS measurements were collected for two runs at 1 and 4 kHz. RESULTS Mean headphone output levels were within 1.5 dB of the target calibration level. Mean ambient noise levels were below the target level. Within-run variability was similar between the two settings, but across-run bias was smaller for data collected in the laboratory setting compared with the remote setting. Systematic differences in CLS functions were not observed for the five individuals who participated in both settings. CONCLUSIONS This study demonstrated that precise stimulus levels can be delivered and background noise levels can be controlled in a home environment. Across-run bias for remote CLS was larger than for in-laboratory CLS, indicating that further work is needed to improve the reliability of CLS data collected in remote settings. Supplemental Material https://doi.org/10.23641/asha.17131856.
Collapse
|
|
3 |
1 |
11
|
Kamerer AM. A Time-Saving Alternative to "Peak-Picking" Algorithms: A Gaussian Mixture Model Feature Extraction Technique for the Neurodiagnostic Auditory Brainstem Response. Ear Hear 2024; 45:1115-1124. [PMID: 38419164 PMCID: PMC11325956 DOI: 10.1097/aud.0000000000001498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVES The accurate and efficient analysis of neurodiagnostic auditory brainstem responses (ABR) plays a critical role in assessing auditory pathway function in human and animal research and in clinical diagnosis. Traditional analysis of the neurodiagnostic ABR analysis involves visual inspection of the waveform and manually marking peaks and troughs. Visual inspection is a tedious and time-consuming task, especially in research where there may be hundreds or thousands of waveforms to analyze. "Peak-picking" algorithms have made this task faster; however, they are prone to the same errors as visual inspection. A Gaussian mixture model-based feature extraction technique (GMM-FET) is a descriptive model of ABR morphology and an alternative to peak-picking algorithms. The GMM-FET is capable of modeling multiple waves and accounting for wave interactions, compared with other template-matching approaches that fit single waves. DESIGN The present study is a secondary analysis applying the GMM-FET to 321 ABRs from adult humans from 2 datasets using different stimuli and recording parameters. Goodness-of-fit of the GMM-FET to waves I and V and surrounding waves, that is, the summating potential and waves IV and VI, was assessed, and latency and amplitude estimations by the GMM-FET were compared with estimations from visual inspection. RESULTS The GMM-FET had a similar success rate to visual inspection in extracting peak latency and amplitude, and there was low RMS error and high intraclass correlation between the model and response waveform. Mean peak latency differences between the GMM-FET and visual inspection were small, suggesting the two methods chose the same peak in the majority of waveforms. The GMM-FET estimated wave I amplitudes within 0.12 µV of visual inspection, but estimated larger wave V amplitudes than visual inspection. CONCLUSIONS The results suggest the GMM-FET is an appropriate method for extracting peak latencies and amplitudes for neurodiagnostic analysis of ABR waves I and V.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
|
12
|
Kamerer AM, Harris SE, Wichman CS, Rasetshwane DM, Neely ST. The relationship and interdependence of auditory thresholds, proposed behavioural measures of hidden hearing loss, and physiological measures of auditory function. Int J Audiol 2025; 64:11-24. [PMID: 39180321 PMCID: PMC11779596 DOI: 10.1080/14992027.2024.2391986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
OBJECTIVES Standard diagnostic measures focus on threshold elevation but hearing concerns may occur independently of threshold elevation - referred to as "hidden hearing loss" (HHL). A deeper understanding of HHL requires measurements that locate dysfunction along the auditory pathway. This study aimed to describe the relationship and interdependence between certain behavioural and physiological measures of auditory function that are thought to be indicative of HHL. DESIGN Data were collected on a battery of behavioural and physiological measures of hearing. Threshold-dependent variance was removed from each measure prior to generating a multiple regression model of the behavioural measures using the physiological measures. STUDY SAMPLE 224 adults in the United States with audiometric thresholds ≤65 dB HL. RESULTS Thresholds accounted for between 21 and 60% of the variance in our behavioural measures and 5-51% in our physiological measures of hearing. There was no evidence that the behavioural measures of hearing could be predicted by the selected physiological measures. CONCLUSIONS Several proposed behavioural measures for HHL: thresholds-in-noise, frequency-modulation detection, and speech recognition in difficult listening conditions, are influenced by hearing sensitivity and are not predicted by outer hair cell or auditory nerve physiology. Therefore, these measures may not be able to assess threshold-independent hearing disorders.
Collapse
|
research-article |
1 |
|