1
|
Ebadollahi A, Ziaee M, Palla F. Essential Oils Extracted from Different Species of the Lamiaceae Plant Family as Prospective Bioagents against Several Detrimental Pests. Molecules 2020; 25:molecules25071556. [PMID: 32231104 PMCID: PMC7180760 DOI: 10.3390/molecules25071556] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
On the basis of the side effects of detrimental synthetic chemicals, introducing healthy, available, and effective bioagents for pest management is critical. Due to this circumstance, several studies have been conducted that evaluate the pesticidal potency of plant-derived essential oils. This review presents the pesticidal efficiency of essential oils isolated from different genera of the Lamiaceae family including Agastache Gronovius, Hyptis Jacquin, Lavandula L., Lepechinia Willdenow, Mentha L., Melissa L., Ocimum L., Origanum L., Perilla L., Perovskia Kar., Phlomis L., Rosmarinus L., Salvia L., Satureja L., Teucrium L., Thymus L., Zataria Boissier, and Zhumeria Rech. Along with acute toxicity, the sublethal effects were illustrated such as repellency, antifeedant activity, and adverse effects on the protein, lipid, and carbohydrate contents, and on the esterase and glutathione S-transferase enzymes. Chemical profiles of the introduced essential oils and the pesticidal effects of their main components have also been documented including terpenes (hydrocarbon monoterpene, monoterpenoid, hydrocarbon sesquiterpene, and sesquiterpenoid) and aliphatic phenylpropanoid. Consequently, the essential oils of the Lamiaceae plant family and their main components, especially monoterpenoid ones with several bioeffects and multiple modes of action against different groups of damaging insects and mites, are considered to be safe, available, and efficient alternatives to the harmful synthetic pesticides.
Collapse
|
Review |
5 |
52 |
2
|
Ebadollahi A, Jalali Sendi J. A review on recent research results on bio-effects of plant essential oils against major Coleopteran insect pests. TOXIN REV 2015. [DOI: 10.3109/15569543.2015.1023956] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
|
10 |
36 |
3
|
Ebadollahi A. Iranian Plant Essential Oils as Sources of Natural Insecticide Agents. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ijbc.2011.266.290] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
|
14 |
26 |
4
|
Ebadollahi A, Sendi JJ, Aliakbar A. Efficacy of Nanoencapsulated Thymus eriocalyx and Thymus kotschyanus Essential Oils by a Mesoporous Material MCM-41 Against Tetranychus urticae (Acari: Tetranychidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2413-2420. [PMID: 29029248 DOI: 10.1093/jee/tox234] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Indexed: 06/07/2023]
Abstract
Inspite of well-established potentiality of plant essential oils as biopesticides, their environmentally low persistence is considered as a hindering obstacle for its commercialization. In the present study, chemical composition and toxicity of essential oils isolated from leaves of Thymus eriocalyx and Thymus kotschyanus were evaluated against two-spotted spider mite, Tetranychus urticae. The chemicals present in the crude oil were found to be thymol (28.83%), oleic acid (11.51%), palmitic acid (8.60%), borneol (5.72%), ρ-cymene (3.60%), and 1,8-cineole (3.57%) in the essential oil of T. eriocalyx, and camphene (35.59%), linalyl acetate (20.47%), linalool (14.75%), α-terpineol (13.87%), and geranyl acetate (3.07%) in the essential oil of T. kotschyanus. The essential oils had strong fumigant toxicity on the adult females of Te. urticae and their fumigation persistence was prolonged until 6 and 5 d, respectively, for T. eriocalyx and T. kotschyanus. Loading of essential oils in MCM-41 increased their stability and persistence was extended up to 20 and 18 d for T. eriocalyx and T. kotschyanus. Further, mite mortality increased from 80 to 203 mites by T. eriocalyx and from 58 to 186 mites by T. kotschyanus nanoencapsulated essential oils. Based on these results, nanoencapsulation of T. eriocalyx and T. kotschyanus essential oils in MCM-41 may be a useful method for their application in the management of Te. urticae.
Collapse
|
|
8 |
18 |
5
|
Oftadeh M, Sendi JJ, Ebadollahi A. Toxicity and deleterious effects of Artemisia annua essential oil extracts on mulberry pyralid (Glyphodes pyloalis). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104702. [PMID: 32980062 DOI: 10.1016/j.pestbp.2020.104702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/09/2020] [Accepted: 09/05/2020] [Indexed: 05/25/2023]
Abstract
Botanical extracts are an important source of bio-pesticides and are generally considered safe to the environment. Artemisia annua L, a medicinal plant, well known for its antimalarial potential, was evaluated as a source of a type of essential oil collected during vegetative growth stage against Glyphodes pyloalis Walker. The main chemical components of the essential oil at vegetative stage of Artemisia annua was analyzed by GC- MS and contained 1,8-cineole (18.68%), Camphor (11.4%), α-Pinene (9.3%) and 3-Carene (6.3%). The LC50 of this plant oil was estimated to be 0.652% W/V and 2.585 μL/L air incorporated orally and fumigation, respectively. The digestive enzymes such as α-amylases, Proteases, Lipases and α- and β-glucosidases were considereably inhibited in treated larvae compared with controls. Similarly, the amount of protein, glucose, and triglyceride were decreased in the treated larvae by methods used. The lower hemocyte numbers, nodule formation and activity of phenoloxidases after injection of Beauveria bassiana and latex beads showed its EO effect on immunity. The anatomy of the larval midgut after treatment showed degeneration in digestive cells. Emerging adult's ovaries showed significant changes in the ovarian sheath and lack of yolk spheres. The present investigation in accordance with our previous studies may ultimately lead to a formulation in controlling this notorious pest especially in mulberry orchards where the use of conventional chemicals is restricted.
Collapse
|
|
5 |
17 |
6
|
Ebadollahi A, Setzer WN. Evaluation of the Toxicity of Satureja intermedia C. A. Mey Essential Oil to Storage and Greenhouse Insect Pests and a Predator Ladybird. Foods 2020; 9:E712. [PMID: 32498219 PMCID: PMC7353542 DOI: 10.3390/foods9060712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
The use of chemical insecticides has had several side-effects, such as environmental contamination, foodborne residues, and human health threats. The utilization of plant-derived essential oils as efficient bio-rational agents has been acknowledged in pest management strategies. In the present study, the fumigant toxicity of essential oil isolated from Satureja intermedia was assessed against cosmopolitan stored-product insect pests: Trogoderma granarium Everts (khapra beetle), Rhyzopertha dominica (Fabricius) (lesser grain borer), Tribolium castaneum (Herbst) (red flour beetle), and Oryzaephilus surinamensis (L.) (saw-toothed grain beetle). The essential oil had significant fumigant toxicity against tested insects, which positively depended on essential oil concentrations and the exposure times. Comparative contact toxicity of S. intermedia essential oil was measured against Aphis nerii Boyer de Fonscolombe (oleander aphid) and its predator Coccinella septempunctata L. (seven-spot ladybird). Adult females of A. nerii were more susceptible to the contact toxicity than the C. septempunctata adults. The dominant compounds in the essential oil of S. intermedia were thymol (48.1%), carvacrol (11.8%), p-cymene (8.1%), and γ-terpinene (8.1%). The high fumigant toxicity against four major stored-product insect pests, the significant aphidicidal effect on A. nerii, and relative safety to the general predator C. septempunctata make terpene-rich S. intermedia essential oil a potential candidate for use as a plant-based alternative to the detrimental synthetic insecticides.
Collapse
|
research-article |
5 |
14 |
7
|
Ebadollahi A, Jalali-Sendi J, Razmjou J. Toxicity and phytochemical profile of essential oil from IranianAchillea mellifoliumL. againstTetranychus urticaeKoch (Acari: Tetranychidae). TOXIN REV 2016. [DOI: 10.3109/15569543.2016.1143511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
|
9 |
12 |
8
|
Oftadeh M, Sendi JJ, Ebadollahi A, Setzer WN, Krutmuang P. Mulberry Protection through Flowering-Stage Essential Oil of Artemisia annua against the Lesser Mulberry Pyralid, Glyphodes pyloalis Walker. Foods 2021; 10:foods10020210. [PMID: 33498594 PMCID: PMC7909524 DOI: 10.3390/foods10020210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/30/2022] Open
Abstract
In the present study, the toxicity and physiological disorders of the essential oil isolated from Artemisia annua flowers were assessed against one of the main insect pests of mulberry, Glyphodes pyloalis Walker, announcing one of the safe and effective alternatives to synthetic pesticides. The LC50 (lethal concentration to kill 50% of tested insects) values of the oral and fumigant bioassays of A. annua essential oil were 1.204 % W/V and 3.343 μL/L air, respectively. The A. annua essential oil, rich in camphor, artemisia ketone, β-selinene, pinocarvone, 1,8-cineole, and α-pinene, caused a significant reduction in digestive and detoxifying enzyme activity of G. pyloalis larvae. The contents of protein, glucose, and triglyceride were also reduced in the treated larvae by oral and fumigant treatments. The immune system in treated larvae was weakened after both oral and fumigation applications compared to the control groups. Histological studies on the midgut and ovaries showed that A. annua essential oil caused an obvious change in the distribution of the principal cells of tissues and reduction in yolk spheres in oocytes. Therefore, it is suggested that the essential oil from A. annua flowers, with wide-range bio-effects on G. pyloalis, be used as an available, safe, effective insecticide in the protection of mulberry.
Collapse
|
Journal Article |
4 |
11 |
9
|
Ziaee M, Ebadollahi A, Wakil W. Integrating inert dusts with other technologies in stored products protection. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1633673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
|
6 |
11 |
10
|
Ebadollahi A, Sendi JJ, Maroufpoor M, Rahimi-Nasrabadi M. Acaricidal Potentials of the Terpene-rich Essential Oils of Two Iranian Eucalyptus Species against Tetranychus urticae Koch. J Oleo Sci 2017; 66:307-314. [PMID: 28190801 DOI: 10.5650/jos.ess15258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is a rapid growth in the screening of plant materials for finding new bio-pesticides. In the present study, the essential oils of E. oleosa and E. torquata leaves were extracted using a Clevenger apparatus and their chemical profiles were investigated by Gas Chromatography-Mass Spectrometry (GC-MS). Among identified compounds, the terpenes had highest amount for both essential oils; 93.59% for E. oleosa and 97.69% for E. torquata. 1,8-Cineole (31.96%), α-pinene (15.25%) and trans-anethole (7.32%) in the essential oil of E. oleosa and 1,8-cineole (28.57%), α-pinene (15.74%) and globulol (13.11%) in the E. torquata essential oil were identified as the main components. The acaricidal activity of the essential oils of E. oleosa and E. torquata were examined using fumigation methods against the adult females of Tetranychus urticae Koch. The essential oils have potential acaricidal effects on T. urticae. The essential oil of E. oleosa with LC50 value of 2.42 µL/L air was stronger than E. torquata. A correlation between log concentration and mite mortality has been observed. Based on the results of present study, it can be stated that the essential oils of E. oleosa and E. torquata have a worthy potential in the management of T. urticae.
Collapse
|
|
8 |
8 |
11
|
Ebadollahi A, Davari M, Razmjou J, Naseri B. Separate and Combined Effects of Mentha piperata and Mentha pulegium Essential Oils and a Pathogenic Fungus Lecanicillium muscarium Against Aphis gossypii (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1025-1030. [PMID: 28334238 DOI: 10.1093/jee/tox065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 06/06/2023]
Abstract
In the present study, the toxicity of essential oils of Mentha piperata L. and Mentha pulegium L. and pathogenicity of Lecanicillium muscarium (Zare & Gams) were studied in the melon aphid, Aphis gossypii Glover. Analyses of the essential oils by GC-MS indicated limonene (27.28%), menthol (24.71%), menthone (14.01%), and carvol (8.46%) in the M. piperata essential oil and pulegone (73.44%), piperitenone (5.49%), decane (4.99%), and limonene (3.07%) in the essential oil of M. pulegium as the main components. Both essential oils and the pathogenic fungus had useful toxicity against A. gossypii. Probit analysis indicated LC50 values (lethal concentrations to kill 50% of population; 95% confidence limits in parentheses) of M. piperata and M. pulegium essential oils as 15.25 (12.25-19.56) and 23.13 (19.27-28.42) µl/liter air, respectively. Susceptibility to the pathogenic fungus increased with exposure time. Aphid mortality also increased when the essential oils were combined with L. muscarium, although the phenomena was additive rather than synergistic. Mycelial growth inhibition of L. muscarium exposed to the essential oils was also very low. Based on our results, M. piperata and M. pulegium essential oils and the pathogenic fungus L. muscarium have some potential for management of A. gossypii.
Collapse
|
|
8 |
7 |
12
|
Ebadollahi A, Naseri B, Abedi Z, Setzer WN. Chemical Profiles and Insecticidal Potential of Essential Oils Isolated from Four Thymus Species against Rhyzopertha dominica (F.). PLANTS (BASEL, SWITZERLAND) 2022; 11:1567. [PMID: 35736718 PMCID: PMC9227810 DOI: 10.3390/plants11121567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Although chemical pesticides have been efficiently used to manage insect pest, their overuse has led to environmental contamination and threats to human health, enticing researchers to introduce eco-friendly and effective agents. In this study, the insecticidal effectiveness of essential oils isolated from Thymus species, including T. eriocalyx, T. kotschyanus, T. fallax, and T. vulgaris, was evaluated against the adults of Rhyzopertha dominica. The terpenes p-cymene, 1,8-cineole, linalool, α-terpineol, and carvacrol were the prominent compounds in the hydrodistilled essential oils. All essential oils produced significant fumigant at 24, 48, and 72-exposure times. The energy reserves protein by all essential oils, glycogen by T. kotschyanus and T. vulgaris, and lipid by T. fallax and T. vulgaris were significantly decreased compared to control. All essential oils except T. vulgaris affected the amylolytic and proteolytic activity of the pest. The pest increased the α- and β-esterase enzyme activity in response to the essential oils. Nutritional indices of adults were also affected by essential oils, in which feeding deterrence index was calculated from 20.41% to 61.11%. Accordingly, based on lethal and extensive sub-lethal insecticidal activities, T. eriocalyx, T. kotschyanus, T. fallax, and T. vulgaris essential oils can be considered as efficient agents for R. dominica management.
Collapse
|
research-article |
3 |
5 |
13
|
Ebadollahi A, Jalali Sendi J, Setzer WN, Changbunjong T. Encapsulation of Eucalyptus largiflorens Essential Oil by Mesoporous Silicates for Effective Control of the Cowpea Weevil, Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113531. [PMID: 35684469 PMCID: PMC9182336 DOI: 10.3390/molecules27113531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022]
Abstract
Although the use of synthetic chemicals is the principal method for insect pest management, their widespread application has led to numerous side effects, including environmental pollution and threats to human and animal health. Plant essential oils have been introduced as promising natural substitutes for synthetic insecticides. However, high volatility and/or low durability are the main limiting factors for essential oil application for control of insect pests. Accordingly, along with an evaluation of the fumigant toxicity of Eucalyptus largiflorens essential oil against the cowpea weevil, Callosobruchus maculatus, essential oil was nanoencapsulated by two mesoporous silicates, MCM-41 and zeolite 3A, to enhance fumigant persistence and toxicity. The chemical profile of essential oil was also analyzed through gas chromatographic-mass spectrometry. E. largiflorens essential oil showed significant concentration-dependent toxicity against insect pests; a concentration of 5.16 μL/L resulted in 100% mortality after 48 h. The toxicity of essential oil could be attributed to the presence of various insecticidal terpenes, such as spathulenol (15.6%), cryptone (7.0%), and 1,8-cineole (5.8%). Fumigant persistence was increased from 6 days to 19 and 17 days for pure and capsulated essential oil with MCM-41 and Zeolite 3A, respectively. The insect mortality also increased from 99 insects in pure essential oil to 178 and 180 insects in MCM-41 and Zeolite 3A encapsulated formulations, respectively. Therefore, the encapsulation of E. largiflorens essential oil by MCM- 41 and Zeolite 3A is a beneficial method for enhancing its persistence and toxicity against C. maculatus.
Collapse
|
|
3 |
5 |
14
|
Ebadollahi A, Ashrafi Parchin R, Farjaminezhad M. Phytochemistry, toxicity and feeding inhibitory activity ofMelissa officinalisL. essential oil against a cosmopolitan insect pest;Tribolium castaneumHerbst. TOXIN REV 2016. [DOI: 10.1080/15569543.2016.1199572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
|
9 |
5 |
15
|
Ebadollahi A. Chemical composition, acaricidal and insecticidal effects of essential oil fromAchillea filipendulinaagainst two arthropod pests;Oryzaephilus surinamensisandTetranychus urticae. TOXIN REV 2016. [DOI: 10.1080/15569543.2016.1250101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
|
9 |
4 |
16
|
Ebadollahi A, Setzer WN. Analysis of the Essential Oils of Eucalyptus camaldulensis Dehnh. and E. viminalis Labill. as a Contribution to Fortify Their Insecticidal Application. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20946248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of synthetic chemicals, with harmful effects on the environment and human health, is the principal strategy in the management of stored-product insect pests such as Oryzaephilus surinamensis and Sitophilus oryzae. Various studies in recent years have highlighted the possibility of using plant essential oils as available and low-risk factors in insect pest management. Therefore, in the present study, the possibility of controlling O. surinamensis and S. oryzae was investigated using Eucalyptus camaldulensis and Eucalyptus viminalis leaf essential oils. The essential oils were obtained by hydrodistillation of the leaves of the 2 Eucalyptus species, and the chemical compositions were determined by gas chromatographic-mass spectral analysis. The essential oil of E. camaldulensis was dominated by p-cymene (24.8%), cryptone (18.9%), and spathulenol (12.4%), while the major components in E. viminalis essential oil were 1,8-cineole (51.6%) and α-pinene (15.8%). The essential oils displayed promising fumigant toxicity against insect pests, which was positively dependent on utilized concentrations and exposure times. Oryzaephilus surinamensis, with low median lethal concentrations, was more susceptible than S. oryzae to the essential oils after 24, 48, and 72 hours. Also, E. viminalis essential oil, with a high level of insecticidal monoterpenes such as 1,8-cineole and α-pinene, was more toxic to insect pests than E. camaldulensis oil. According to the results of the current study, E. camaldulensis and E. viminalis essential oils, rich in insecticidal terpenes, can be alternative candidates to synthetic chemicals in the management of O. surinamensis and S. oryzae.
Collapse
|
|
5 |
4 |
17
|
Akhtari A, Davari M, Habibi-Yangjeh A, Ebadollahi A, Feizpour S. Antifungal Activities of Pure and ZnO-Encapsulated Essential Oil of Zataria multiflora on Alternaria solani as the Pathogenic Agent of Tomato Early Blight Disease. FRONTIERS IN PLANT SCIENCE 2022; 13:932475. [PMID: 35865290 PMCID: PMC9294508 DOI: 10.3389/fpls.2022.932475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The utilization of plant essential oils (EOs) and nanomaterials due to their safety compared with synthetic chemicals has been considered in the management of plant diseases. In this study, the inhibitory effects of Zataria multiflora, Nepeta haussknechtii, Artemisia sieberi, and Citrus aurantifolia EOs in pure and Zinc Oxide (ZnO) nanocapsulated formulations were evaluated on the mycelial growth of Alternaria solani to find a suitable alternative for synthetic chemicals. The crystal structure and morphological properties of the fabricated nanomaterials were assessed via X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses. The textural features of the prepared nanoparticles were investigated with Brunauer-Emmett-Teller (BET) analysis, and the presence of elements in the samples was studied with energy-dispersive X-ray (EDX) technique. The mycelial growth inhibitory (MGI) was performed in the laboratory by mixing with potato dextrose agar (PDA) medium at concentrations of 100, 300, 600, 1,000, 1,500, and 2,000 ppm. Based on the results, major differences were monitored between different concentrations. At the highest studied concentration, the inhibition of Z. multiflora EO was 100%, which was 43.20, 42.37, and 21.19% for N. haussknechtii, A. sieberi, and C. aurantifolia, respectively, and the inhibition of their nanocapsules was 100, 51.32, 55.23, and 26.58%, respectively. In the greenhouse study, Z. multiflora EO and its nanocapsule (ZnO-ZmEO) were compared with the ZnO and chlorothalonil fungicide based on the highest inhibitory of Z. multiflora in vitro. The highest antifungal effect was related to the ZnO-ZmEO by 53.33%. Therefore, the ZnO-ZmEO formulation can be recommended as a biofungicide for managing and controlling tomato early blight disease after further research.
Collapse
|
methods-article |
3 |
4 |
18
|
Habibi‐Yangjeh A, Davari M, Manafi‐Yeldagermani R, Alikhah Asl S, Enaiati S, Ebadollahi A, Feizpoor S. Antifungal activity of TiO 2/AgBr nanocomposites on some phytopathogenic fungi. Food Sci Nutr 2021; 9:3815-3823. [PMID: 34262739 PMCID: PMC8269648 DOI: 10.1002/fsn3.2357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 11/06/2022] Open
Abstract
TiO2/AgBr composites were synthesized by a simple ultrasonic strategy. Various instruments such as SEM, EDX, XRD, and FT-IR were exploited to investigate their characteristics. Antifungal activities of the as-obtained samples were assessed through the inactivation of Fusarium graminearum in the spore suspension method and mycelial growth inhibition of F. graminearum, Botrytis cinerea, and Sclerotinia sclerotiorum in the microdilution method. The results represented that the TiO2/AgBr samples possess higher antifungal activities on F. graminearum spores than the pure TiO2. The sample with 20 wt% silver bromide represented the highest inhibitory effect on the growth of F. graminearum so that all fungal spores were degraded in the initial times of the treatment process. The inactivation of fungal spores after 60 min was 35.2%, 97.8%, 98.9%, and 98.7%, in respect, for 5, 10, 20, and 30 weight percent of AgBr in the binary nanocomposites, while the inhibition rate was 13.4% for the pure TiO2. With increasing ultrasound irradiation time for more than 30 min, the inactivation rate constant decreased. It was also found that the antifungal activity of the nanocomposites without calcination was higher than those of the calcined materials. Considering the antifungal potential against phytopathogenic fungi and advantages such as simple synthesis and eco-friendly nature, it seems that TiO2/AgBr nanocomposites can be used instead of synthetic chemicals after additional field investigations and mass production.
Collapse
|
research-article |
4 |
4 |
19
|
Ebadollahi A, Naseri B, Abedi Z, Setzer WN, Changbunjong T. Promising Insecticidal Efficiency of Essential Oils Isolated from Four Cultivated Eucalyptus Species in Iran against the Lesser Grain Borer, Rhyzopertha dominica (F.). INSECTS 2022; 13:insects13060517. [PMID: 35735854 PMCID: PMC9224839 DOI: 10.3390/insects13060517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Eucalyptus essential oils have shown promising insecticidal effects on several insect pests. The lesser grain borer, Rhyzopertha dominica (F.), causes economically significant damage to stored grains as an internal primary insect pest. In this study, the chemical compositions of essential oils isolated from four Eucalyptus species. E. microtheca, E. procera, E. spatulata, and E. torquata were detected and identified using a gas chromatography-mass spectrometer, and their lethal and sublethal insecticidal effects were evaluated against the adults of R. dominica. Although all essential oils have significant fumigant toxicity, due to the high relative potency, R. dominica was more susceptible to the E. procera essential oil than the others. The total protein, glycogen, and lipid contents and digestive amylase and protease enzyme activities of the treated insects were reduced. The nutritional indices consumption index, relative consumption rate, and relative growth rate were also reduced in the treated adults. The findings of this study reveal that E. microtheca, E. procera, E. spatulata, and E. torquata essential oils can be potentially used for the development of eco-friendly natural agents for the management of R. dominica. Abstract The lesser grain borer, Rhyzopertha dominica (F.), causes damage to stored grains resulting in both quantitative and qualitative losses. The use of synthetic fumigants in the management of stored-product pests resulted in undesirable side effects such as environmental contamination and threat to human and animal health. In this study, the lethal and sublethal effects of essential oils from four Eucalyptus species, E. microtheca, E. procera, E. spatulata, and E. torquata were studied against R. dominica adults. Gas chromatographic–mass spectral analysis of the essential oils was carried out, in which terpenes such as 1,8-cineole and globulol were abundant in essential oils. The pest was susceptible to the fumigation of the essential oils and, considering concentrations and exposure times (24, 48, and 72 h), had significant effects on the pest mortality. The total protein, glycogen, and lipid contents and digestive amylolytic and proteolytic activities of the adults treated with tested essential oils were reduced. The consumption index, relative consumption rate, and relative growth rate were also reduced in the treated adults. According to the insecticidal effects on the adults of R. dominica, the essential oils of E. microtheca, E. procera, E. spatulata, and E. torquata can be candidates for further investigations as grain protectant agents.
Collapse
|
|
3 |
3 |
20
|
Khoobdel M, Rahimi V, Ebadollahi A, Krutmuang P. Evaluation of the Potential of a Lectin Extracted from Polygonum persicaria L. as a Biorational Agent against Sitophilus oryzae L. Molecules 2022; 27:molecules27030793. [PMID: 35164055 PMCID: PMC8838870 DOI: 10.3390/molecules27030793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Rice weevil, Sitophilus oryzae L. (Coleoptera: Curculionidae), is one of the most destructive stored-product pests that is resistant to a wide range of chemical insecticides. In the present study, we investigated whether a lectin extracted from Polygonum persicaria L. (PPA) can be used as a biorational agent to control such insect pests. Along with the lethal digestive assay, the sub-lethal insecticidal activities of PPA, including the effects on digestive, detoxifying, and antioxidant enzyme activities, were evaluated against S. oryzae adults. The effect of feeding a diet containing PPA and carob extract as a food attractant on the mortality of S. oryzae adults was also investigated. Feeding on the diet containing PPA resulted in a significant mortality of S. oryzae adults with a LC50 (Lethal Concentration to kill 50% of insects) of 3.68% (w/w). The activity of digestive enzymes, including α-amylase, α-glucosidase, TAG-lipase, trypsin, chymotrypsin, elastase, and carboxy- and aminopeptidase, were decreased by the sub-lethal concentration of PPA. Detoxifying and antioxidant enzymes, including esterase, superoxide dismutase, catalase, glutathione-S-transferase, ascorbate peroxidase, glucose 6-phosphate dehydrogenase, and malondialdehyde, were activated in adults affected by PPA. These findings indicated that PPA, in addition to causing digestive disorders, leads to oxidative stress in S. oryzae. The presence of carob extract had no effect on the PPA-induced mortality of the insect. According to the results of the present study, PPA has promising insecticidal efficiency against S. oryzae. In addition, the usage of PPA with a food attractant carob extract in bait traps can be recommended as a new biorational formulation in S. oryzae management.
Collapse
|
|
3 |
3 |
21
|
Oftadeh M, Jalali Sendi J, Ebadollahi A. Biologically active toxin identified from Artemisia annua against lesser mulberry pyralid, Glyphodes pyloalis. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1811345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
|
5 |
2 |
22
|
Ebadollahi A, Jalali Sendi J, Ziaee M, Krutmuang P. Acaricidal, Insecticidal, and Nematicidal Efficiency of Essential Oils Isolated from the Satureja Genus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116050. [PMID: 34199797 PMCID: PMC8200103 DOI: 10.3390/ijerph18116050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
The overuse of synthetic pesticides in plant protection strategies has resulted in numerous side effects, including environmental contamination, food staff residues, and a threat to non-target organisms. Several studies have been performed to assess the pesticidal effects of plant-derived essential oils and their components, as partially safe and effective agents, on economically important pests. The essential oils isolated from Satureja species are being used in medicinal, cosmetic, and food industries. Their great potential in pest management is promising, which is related to high amounts of terpenes presented in this genus. This review is focused on the acute and chronic acaricidal, insecticidal, and nematicidal effects of Satureja essential oil and their main components. The effects of eighteen Satureja species are documented, considering lethality, repellency, developmental inhibitory, and adverse effects on the feeding, life cycle, oviposition, and egg hatching. Further, the biochemical impairment, including impairments in esterases, acetylcholinesterase, and cytochrome P450 monooxygenases functions, are also considered. Finally, encapsulation and emulsification methods, based on controlled-release techniques, are suggested to overcome the low persistence and water solubility restrictions of these biopesticides. The present review offers Satureja essential oils and their major components as valuable alternatives to synthetic pesticides in the future of pest management.
Collapse
|
Review |
4 |
2 |
23
|
Shaltoki S, Rafiee Dastjerdi H, Golizadeh A, Hassanpour M, Ebadollahi A, Mahdavi V. Lethality and effects on biological and population growth parameters of ladybird predator Hippodamia variegata (Goeze) treated by some plant essential oils. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2018612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
|
3 |
1 |
24
|
Ebadollahi A, Valizadeh B, Panahandeh S, Mirhosseini H, Zolfaghari M, Changbunjong T. Nanoencapsulation of Acetamiprid by Sodium Alginate and Polyethylene Glycol Enhanced Its Insecticidal Efficiency. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172971. [PMID: 36080008 PMCID: PMC9457968 DOI: 10.3390/nano12172971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 06/01/2023]
Abstract
Nanoformulation has been considered one of the newly applied methods in integrated pest management strategies. In this research, a conventional neonicotinoid insecticide acetamiprid was nanoencapsulated via AL (Sodium Alginate) and PEG (Polyethylene Glycol) and tested against the elm leaf beetle Xanthogaleruca luteola. The synthesized particles had spherical-like morphology and nanoscale based on TEM (Transmission Electron Microscopy) and DLS (Dynamic Light Scattering). The encapsulation efficiency and loading percentages of acetamiprid in AL and PEG were 92.58% and 90.15%, and 88.46% and 86.79%, respectively. Leaf discs treated with different formulations by the leaf-dipping method were used for oral toxicity assays. The LC50 values (Lethal Concentration to kill 50% of insect population) of acetamiprid and Al- and PEG-nanoencapsulated formulations on third-instar larvae were 0.68, 0.04, and 0.08 ppm, respectively. Based on the highest relative potency, AL-encapsulated acetamiprid had the most toxicity. The content of energy reserve protein, glucose, and triglyceride and the activity of detoxifying enzymes esterase and glutathione S-transferase of the larvae treated by LC50 values of nanoformulations were also decreased. According to the current findings, the nanoencapsulation of acetamiprid by Al and PEG can increase its insecticidal performance in terms of lethal and sublethal toxicity.
Collapse
|
research-article |
3 |
1 |
25
|
Zahedi A, Razmjou J, Rafiee-Dastjerdi H, Leppla NC, Golizadeh A, Hassanpour M, Ebadollahi A. Tritrophic Interactions of Cucumber Cultivar, Aphis gossypii (Hemiptera: Aphididae), and Its Predator Hippodamia variegata (Coleoptera: Coccinellidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1774-1779. [PMID: 31220304 DOI: 10.1093/jee/toz072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Indexed: 06/09/2023]
Abstract
The melon aphid, Aphis gossypii Glover, is a cosmopolitan pest that infests and damages a wide range of crop plants, especially cucurbits. It is a host of the coccinellid predator, Hippodamia variegata (Goeze), that has the potential to suppress the pest on leaves of cucumber plants grown in greenhouses. Melon aphids were reared on either Storm or Khasib cucumber cultivars to determine whether there would be a difference in their development and reproduction. The aphids from each cultivar were fed to H. variegata adults to assess their effects on the life history of the predator. The aphid population reared on Khasib leaves increased faster than the population on Storm leaves; however, the predators fed aphids from Storm leaves had a higher rate of population growth. Thus, the intrinsic rate of increase and net reproductive rate were greater for aphids reared on Khasib leaves but lower for H. variegata fed those aphids compared with aphids reared on the Storm cultivar. Additionally, clean and aphid-infested leaves from both cultivars were analyzed for total flavonoids, phenol, and chlorophyll, and the density of leaf trichomes was measured. The Storm leaves contained higher amounts of flavonoids and phenol, less chlorophyll, and a greater density of trichomes. Regardless of cucurbit cultivar, aphid feeding increased the flavonoids and phenol content and decreased the amount of chlorophyll.
Collapse
|
|
6 |
1 |