1
|
Maurya MR, Gupta S, Li X, Fahy E, Dinasarapu AR, Sud M, Brown HA, Glass CK, Murphy RC, Russell DW, Dennis EA, Subramaniam S. Analysis of inflammatory and lipid metabolic networks across RAW264.7 and thioglycolate-elicited macrophages. J Lipid Res 2013; 54:2525-42. [PMID: 23776196 DOI: 10.1194/jlr.m040212] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of macrophage biology have been significantly advanced by the availability of cell lines such as RAW264.7 cells. However, it is unclear how these cell lines differ from primary macrophages such as thioglycolate-elicited peritoneal macrophages (TGEMs). We used the inflammatory stimulus Kdo2-lipid A (KLA) to stimulate RAW264.7 and TGEM cells. Temporal changes of lipid and gene expression levels were concomitantly measured and a systems-level analysis was performed on the fold-change data. Here we present a comprehensive comparison between the two cell types. Upon KLA treatment, both RAW264.7 and TGEM cells show a strong inflammatory response. TGEM (primary) cells show a more rapid and intense inflammatory response relative to RAW264.7 cells. DNA levels (fold-change relative to control) are reduced in RAW264.7 cells, correlating with greater downregulation of cell cycle genes. The transcriptional response suggests that the cholesterol de novo synthesis increases considerably in RAW264.7 cells, but 25-hydroxycholesterol increases considerably in TGEM cells. Overall, while RAW264.7 cells behave similarly to TGEM cells in some ways and can be used as a good model for inflammation- and immune function-related kinetic studies, they behave differently than TGEM cells in other aspects of lipid metabolism and phenotypes used as models for various disorders such as atherosclerosis.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
32 |
2
|
Verma A, Schmidt BA, Elizaldi SR, Nguyen NK, Walter KA, Beck Z, Trinh HV, Dinasarapu AR, Lakshmanappa YS, Rane NN, Matyas GR, Rao M, Shen X, Tomaras GD, LaBranche CC, Reimann KA, Foehl DH, Gach JS, Forthal DN, Kozlowski PA, Amara RR, Iyer SS. Impact of T h1 CD4 Follicular Helper T Cell Skewing on Antibody Responses to an HIV-1 Vaccine in Rhesus Macaques. J Virol 2020; 94:e01737-19. [PMID: 31827000 PMCID: PMC7158739 DOI: 10.1128/jvi.01737-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Generating durable humoral immunity through vaccination depends upon effective interactions of follicular helper T (Tfh) cells with germinal center (GC) B cells. Th1 polarization of Tfh cells is an important process shaping the success of Tfh-GC B cell interactions by influencing costimulatory and cytokine-dependent Tfh help to B cells. However, the question remains as to whether adjuvant-dependent modulation of Tfh cells enhances HIV-1 vaccine-induced antienvelope (anti-Env) antibody responses. We investigated whether an HIV-1 vaccine platform designed to increase the number of Th1-polarized Tfh cells enhances the magnitude and quality of anti-Env antibodies. Utilizing a novel interferon-induced protein 10 (IP-10)-adjuvanted HIV-1 DNA prime followed by a monophosphoryl lipid A and QS-21 (MPLA+QS-21)-adjuvanted Env protein boost (DIP-10 PALFQ) in macaques, we observed higher anti-Env serum IgG titers with greater cross-clade reactivity, specificity for V1V2, and effector functions than in macaques primed with DNA lacking IP-10 and boosted with MPLA-plus-alum-adjuvanted Env protein (DPALFA) The DIP-10 PALFQ vaccine regimen elicited higher anti-Env IgG1 and lower IgG4 antibody levels in serum, showing for the first time that adjuvants can dramatically impact the IgG subclass profile in macaques. The DIP-10 PALFQ regimen also increased vaginal and rectal IgA antibodies to a greater extent. Within lymph nodes, we observed augmented GC B cell responses and the promotion of Th1 gene expression profiles in GC Tfh cells. The frequency of GC Tfh cells correlated with both the magnitude and avidity of anti-Env serum IgG. Together, these data suggest that adjuvant-induced stimulation of Th1-Tfh cells is an effective strategy for enhancing the magnitude and quality of anti-Env antibody responses.IMPORTANCE The results of the RV144 trial demonstrated that vaccination could prevent HIV transmission in humans and that longevity of anti-Env antibodies may be key to this protection. Efforts to improve upon the prime-boost vaccine regimen used in RV144 have indicated that booster immunizations can increase serum anti-Env antibody titers but only transiently. Poor antibody durability hampers efforts to develop an effective HIV-1 vaccine. This study was designed to identify the specific elements involved in the immunological mechanism necessary to produce robust HIV-1-specific antibodies in rhesus macaques. By clearly defining immune-mediated pathways that improve the magnitude and functionality of the anti-HIV-1 antibody response, we will have the foundation necessary for the rational development of an HIV-1 vaccine.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
28 |
3
|
Seifar F, Dinasarapu AR, Jinnah HA. Uric Acid in Parkinson's Disease: What Is the Connection? Mov Disord 2022; 37:2173-2183. [PMID: 36056888 PMCID: PMC9669180 DOI: 10.1002/mds.29209] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/10/2022] Open
Abstract
Numerous studies have linked Parkinson's disease (PD) with low levels of uric acid (UA). Low UA has been associated with the risk of developing PD, and its progression and severity. The biological mechanisms underlying these relationships have never been firmly established. The most frequently proposed mechanism is that UA is an antioxidant. Low UA is thought to predispose to oxidative stress, which contributes to dopamine neuron degeneration, and leads to initial appearance of symptoms of PD and its worsening over time. Several recent studies have questioned this explanation. In this review, we describe the biology of UA, its many links with PD, evidence regarding UA as an antioxidant, and we question whether UA causes PD or contributes to its progression. We also address the possibility that something about PD causes low UA (reverse causation) or that low UA is a biomarker of some other more relevant mechanism in PD. We hope the evidence provided here will stimulate additional studies to better understand the links between UA and PD. Elucidating these mechanisms remains important, because they may provide new insights into the pathogenesis of PD or novel approaches to treatments. © 2022 International Parkinson and Movement Disorder Society.
Collapse
|
Review |
3 |
26 |
4
|
Yang K, Dinasarapu AR, Reis ES, Deangelis RA, Ricklin D, Subramaniam S, Lambris JD. CMAP: Complement Map Database. ACTA ACUST UNITED AC 2013; 29:1832-3. [PMID: 23661693 DOI: 10.1093/bioinformatics/btt269] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SUMMARY The human complement system is increasingly perceived as an intricate protein network of effectors, inhibitors and regulators that drives critical processes in health and disease and extensively communicates with associated physiological pathways ranging from immunity and inflammation to homeostasis and development. A steady stream of experimental data reveals new fascinating connections at a rapid pace; although opening unique opportunities for research discoveries, the comprehensiveness and large diversity of experimental methods, nomenclatures and publication sources renders it highly challenging to keep up with the essential findings. With the Complement Map Database (CMAP), we have created a novel and easily accessible research tool to assist the complement community and scientists from related disciplines in exploring the complement network and discovering new connections. AVAILABILITY http://www.complement.us/cmap. CONTACT lambris@upenn.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
16 |
5
|
Sutcliffe DJ, Dinasarapu AR, Visser JE, Hoed JD, Seifar F, Joshi P, Ceballos-Picot I, Sardar T, Hess EJ, Sun YV, Wen Z, Zwick ME, Jinnah HA. Induced pluripotent stem cells from subjects with Lesch-Nyhan disease. Sci Rep 2021; 11:8523. [PMID: 33875724 PMCID: PMC8055678 DOI: 10.1038/s41598-021-87955-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Lesch-Nyhan disease (LND) is an inherited disorder caused by pathogenic variants in the HPRT1 gene, which encodes the purine recycling enzyme hypoxanthine-guanine phosphoribosyltransferase (HGprt). We generated 6 induced pluripotent stem cell (iPSC) lines from 3 individuals with LND, along with 6 control lines from 3 normal individuals. All 12 lines had the characteristics of pluripotent stem cells, as assessed by immunostaining for pluripotency markers, expression of pluripotency genes, and differentiation into the 3 primary germ cell layers. Gene expression profiling with RNAseq demonstrated significant heterogeneity among the lines. Despite this heterogeneity, several anticipated abnormalities were readily detectable across all LND lines, including reduced HPRT1 mRNA. Several unexpected abnormalities were also consistently detectable across the LND lines, including decreases in FAR2P1 and increases in RNF39. Shotgun proteomics also demonstrated several expected abnormalities in the LND lines, such as absence of HGprt protein. The proteomics study also revealed several unexpected abnormalities across the LND lines, including increases in GNAO1 decreases in NSE4A. There was a good but partial correlation between abnormalities revealed by the RNAseq and proteomics methods. Finally, functional studies demonstrated LND lines had no HGprt enzyme activity and resistance to the toxic pro-drug 6-thioguanine. Intracellular purines in the LND lines were normal, but they did not recycle hypoxanthine. These cells provide a novel resource to reveal insights into the relevance of heterogeneity among iPSC lines and applications for modeling LND.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
10 |
6
|
Briscione MA, Dinasarapu AR, Bagchi P, Donsante Y, Roman KM, Downs AM, Fan X, Hoehner J, Jinnah HA, Hess EJ. Differential expression of striatal proteins in a mouse model of DOPA-responsive dystonia reveals shared mechanisms among dystonic disorders. Mol Genet Metab 2021; 133:352-361. [PMID: 34092491 PMCID: PMC8292208 DOI: 10.1016/j.ymgme.2021.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022]
Abstract
Dystonia is characterized by involuntary muscle contractions that cause debilitating twisting movements and postures. Although dysfunction of the basal ganglia, a brain region that mediates movement, is implicated in many forms of dystonia, the underlying mechanisms are unclear. The inherited metabolic disorder DOPA-responsive dystonia is considered a prototype for understanding basal ganglia dysfunction in dystonia because it is caused by mutations in genes necessary for the synthesis of the neurotransmitter dopamine, which mediates the activity of the basal ganglia. Therefore, to reveal abnormal striatal cellular processes and pathways implicated in dystonia, we used an unbiased proteomic approach in a knockin mouse model of DOPA-responsive dystonia, a model in which the striatum is known to play a central role in the expression of dystonia. Fifty-seven of the 1805 proteins identified were differentially regulated in DOPA-responsive dystonia mice compared to control mice. Most differentially regulated proteins were associated with gene ontology terms that implicated either mitochondrial or synaptic dysfunction whereby proteins associated with mitochondrial function were generally over-represented and proteins associated with synaptic function were largely under-represented. Remarkably, nearly 20% of the differentially regulated striatal proteins identified in our screen are associated with pathogenic variants that cause inherited disorders with dystonia as a sign in humans suggesting shared mechanisms across many different forms of dystonia.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
7 |
7
|
Yin L, Dinasarapu AR, Borkar SA, Chang KF, De Paris K, Kim-Chang JJ, Sleasman JW, Goodenow MM. Anti-inflammatory effects of recreational marijuana in virally suppressed youth with HIV-1 are reversed by use of tobacco products in combination with marijuana. Retrovirology 2022; 19:10. [PMID: 35642061 PMCID: PMC9151353 DOI: 10.1186/s12977-022-00594-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marijuana's putative anti-inflammatory properties may benefit HIV-associated comorbidities. How recreational marijuana use affects gene expression in peripheral blood cells (PBC) among youth with HIV-1 (YWH) is unknown. APPROACH YWH with defined substance use (n = 54) receiving similar antiretroviral therapy (ART) were assigned to one of four analysis groups: YWH with detectable plasma HIV-1 (> 50 RNA copies/ml) who did not use substances (H+V+S-), and YWH with undetectable plasma HIV-1 who did not use substances (H+V-S-), or used marijuana alone (H+V-S+[M]), or marijuana in combination with tobacco (H+V-S+[M/T]). Non-substance using youth without HIV infection (H-S-, n = 25) provided a reference group. PBC mRNA was profiled by Affymetrix GeneChip Human Genome U133 Plus 2.0 Array. Differentially expressed genes (DEG) within outcome groups were identified by Significance Analysis of Microarrays and used for Hierarchical Clustering, Principal Component Analysis, and Ingenuity Pathways Analysis. RESULTS HIV-1 replication resulted in > 3000 DEG involving 27 perturbed pathways. Viral suppression reduced DEG to 313, normalized all 27 pathways, and down-regulated two additional pathways, while marijuana use among virally suppressed YWH resulted in 434 DEG and no perturbed pathways. Relative to H+V-S-, multiple DEG normalized in H+V-S+[M]. In contrast, H+V-S+[M/T] had 1140 DEG and 10 dysregulated pathways, including multiple proinflammatory genes and six pathways shared by H+V+S-. CONCLUSIONS YWH receiving ART display unique transcriptome bioprofiles based on viral replication and substance use. In the context of HIV suppression, marijuana use, alone or combined with tobacco, has opposing effects on inflammatory gene expression.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
6 |
8
|
Saba NF, Dinasarapu AR, Magliocca KR, Dwivedi B, Seby S, Qin ZS, Patel M, Griffith CC, Wang X, El-Deiry M, Steuer CE, Kowalski J, Shin DM, Zwick ME, Chen ZG. Signatures of somatic mutations and gene expression from p16INK4A positive head and neck squamous cell carcinomas (HNSCC). PLoS One 2020; 15:e0238497. [PMID: 32986729 PMCID: PMC7521680 DOI: 10.1371/journal.pone.0238497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/18/2020] [Indexed: 12/28/2022] Open
Abstract
Human papilloma virus (HPV) causes a subset of head and neck squamous cell carcinomas (HNSCC) of the oropharynx. We combined targeted DNA- and genome-wide RNA-sequencing to identify genetic variants and gene expression signatures respectively from patients with HNSCC including oropharyngeal squamous cell carcinomas (OPSCC). DNA and RNA were purified from 35- formalin fixed and paraffin embedded (FFPE) HNSCC tumor samples. Immuno-histochemical evaluation of tumors was performed to determine the expression levels of p16INK4A and classified tumor samples either p16+ or p16-. Using ClearSeq Comprehensive Cancer panel, we examined the distribution of somatic mutations. Somatic single-nucleotide variants (SNV) were called using GATK-Mutect2 ("tumor-only" mode) approach. Using RNA-seq, we identified a catalog of 1,044 and 8 genes as significantly expressed between p16+ and p16-, respectively at FDR 0.05 (5%) and 0.1 (10%). The clinicopathological characteristics of the patients including anatomical site, smoking and survival were analyzed when comparing p16+ and p16- tumors. The majority of tumors (65%) were p16+. Population sequence variant databases, including gnomAD, ExAC, COSMIC and dbSNP, were used to identify the mutational landscape of somatic sequence variants within sequenced genes. Hierarchical clustering of The Cancer Genome Atlas (TCGA) samples based on HPV-status was observed using differentially expressed genes. Using RNA-seq in parallel with targeted DNA-seq, we identified mutational and gene expression signatures characteristic of p16+ and p16- HNSCC. Our gene signatures are consistent with previously published data including TCGA and support the need to further explore the biologic relevance of these alterations in HNSCC.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
5 |
9
|
Hawes CE, Elizaldi SR, Beckman D, Diniz GB, Shaan Lakshmanappa Y, Ott S, Durbin-Johnson BP, Dinasarapu AR, Gompers A, Morrison JH, Iyer SS. Neuroinflammatory transcriptional programs induced in rhesus pre-frontal cortex white matter during acute SHIV infection. J Neuroinflammation 2022; 19:250. [PMID: 36203187 PMCID: PMC9535930 DOI: 10.1186/s12974-022-02610-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Immunosurveillance of the central nervous system (CNS) is vital to resolve infection and injury. However, immune activation within the CNS in the setting of chronic viral infections, such as HIV-1, is strongly linked to progressive neurodegeneration and cognitive decline. Establishment of HIV-1 in the CNS early following infection underscores the need to delineate features of acute CNS immune activation, as these early inflammatory events may mediate neurodegenerative processes. Here, we focused on elucidating molecular programs of neuroinflammation in brain regions based on vulnerability to neuroAIDS and/or neurocognitive decline. To this end, we assessed transcriptional profiles within the subcortical white matter of the pre-frontal cortex (PFCw), as well as synapse dense regions from hippocampus, superior temporal cortex, and caudate nucleus, in rhesus macaques following infection with Simian/Human Immunodeficiency Virus (SHIV.C.CH505). Methods We performed RNA extraction and sequenced RNA isolated from 3 mm brain punches. Viral RNA was quantified in the brain and cerebrospinal fluid by RT-qPCR assays targeting SIV Gag. Neuroinflammation was assessed by flow cytometry and multiplex ELISA assays. Results RNA sequencing and flow cytometry data demonstrated immune surveillance of the rhesus CNS by innate and adaptive immune cells during homeostasis. Following SHIV infection, viral entry and integration within multiple brain regions demonstrated vulnerabilities of key cognitive and motor function brain regions to HIV-1 during the acute phase of infection. SHIV-induced transcriptional alterations were concentrated to the PFCw and STS with upregulation of gene expression pathways controlling innate and T-cell inflammatory responses. Within the PFCw, gene modules regulating microglial activation and T cell differentiation were induced at 28 days post-SHIV infection, with evidence for stimulation of immune effector programs characteristic of neuroinflammation. Furthermore, enrichment of pathways regulating mitochondrial respiratory capacity, synapse assembly, and oxidative and endoplasmic reticulum stress were observed. These acute neuroinflammatory features were substantiated by increased influx of activated T cells into the CNS. Conclusions Our data show pervasive immune surveillance of the rhesus CNS at homeostasis and reveal perturbations of important immune, neuronal, and synaptic pathways within key anatomic regions controlling cognition and motor function during acute HIV infection. These findings provide a valuable framework to understand early molecular features of HIV associated neurodegeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02610-y.
Collapse
|
|
3 |
5 |
10
|
Dinasarapu AR, Sutcliffe DJ, Seifar F, Visser JE, Jinnah HA. Abnormalities of neural stem cells in Lesch-Nyhan disease. J Neurogenet 2022; 36:81-87. [PMID: 36226509 PMCID: PMC9847586 DOI: 10.1080/01677063.2022.2129632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/23/2022] [Indexed: 01/21/2023]
Abstract
Lesch-Nyhan disease (LND) is a neurodevelopmental disorder caused by variants in the HPRT1 gene, which encodes the enzyme hypoxanthine-guanine phosphoribosyl transferase (HGprt). HGprt deficiency provokes numerous metabolic changes which vary among different cell types, making it unclear which changes are most relevant for abnormal neural development. To begin to elucidate the consequences of HGprt deficiency for developing human neurons, neural stem cells (NSCs) were prepared from 6 induced pluripotent stem cell (iPSC) lines from individuals with LND and compared to 6 normal healthy controls. For all 12 lines, gene expression profiles were determined by RNA-seq and protein expression profiles were determined by shotgun proteomics. The LND lines revealed significant changes in expression of multiple genes and proteins. There was little overlap in findings between iPSCs and NSCs, confirming the impact of HGprt deficiency depends on cell type. For NSCs, gene expression studies pointed towards abnormalities in WNT signaling, which is known to play a role in neural development. Protein expression studies pointed to abnormalities in the mitochondrial F0F1 ATPase, which plays a role in maintaining cellular energy. These studies point to some mechanisms that may be responsible for abnormal neural development in LND.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
5 |
11
|
Scorr LM, Kilic-Berkmen G, Sutcliffe DJ, Dinasarapu AR, McKay JL, Bagchi P, Powell MD, Boss JM, Cereb N, Little M, Gragert L, Hanfelt J, McKeon A, Tyor W, Jinnah HA. Exploration of potential immune mechanisms in cervical dystonia. Parkinsonism Relat Disord 2024; 122:106036. [PMID: 38462403 PMCID: PMC11162750 DOI: 10.1016/j.parkreldis.2024.106036] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Although there are many possible causes for cervical dystonia (CD), a specific etiology cannot be identified in most cases. Prior studies have suggested a relationship between autoimmune disease and some cases of CD, pointing to possible immunological mechanisms. OBJECTIVE The goal was to explore the potential role of multiple different immunological mechanisms in CD. METHODS First, a broad screening test compared neuronal antibodies in controls and CD. Second, unbiased blood plasma proteomics provided a broad screen for potential biologic differences between controls and CD. Third, a multiplex immunoassay compared 37 markers associated with immunological processes in controls and CD. Fourth, relative immune cell frequencies were investigated in blood samples of controls and CD. Finally, sequencing studies investigated the association of HLA DQB1 and DRB1 alleles in controls versus CD. RESULTS Screens for anti-neuronal antibodies did not reveal any obvious abnormalities. Plasma proteomics pointed towards certain abnormalities of immune mechanisms, and the multiplex assay pointed more specifically towards abnormalities in T lymphocytes. Abnormal immune cell frequencies were identified for some CD cases, and these cases clustered together as a potential subgroup. Studies of HLA alleles indicated a possible association between CD and DRB1*15:03, which is reported to mediate the penetrance of autoimmune disorders. CONCLUSIONS Altogether, the association of CD with multiple different blood-based immune measures point to abnormalities in cell-mediated immunity that may play a pathogenic role for a subgroup of individuals with CD.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
4 |
12
|
Lakshmanappa YS, Roh JW, Rane NN, Dinasarapu AR, Tran DD, Velu V, Sheth AN, Ofotokun I, Amara RR, Kelley CF, Waetjen E, Iyer SS. Circulating integrin α 4 β 7 + CD4 T cells are enriched for proliferative transcriptional programs in HIV infection. FEBS Lett 2021; 595:2257-2270. [PMID: 34278574 DOI: 10.1002/1873-3468.14163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/13/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
HIV preferentially infects α4 β7 + CD4 T cells, forming latent reservoirs that contribute to HIV persistence during antiretroviral therapy. However, the properties of α4 β7 + CD4 T cells in blood and mucosal compartments remain understudied. Employing two distinct models of HIV infection, HIV-infected humans and simian-human immunodeficiency virus (SHIV)-infected rhesus macaques, we show that α4 β7 + CD4 T cells in blood are enriched for genes regulating cell cycle progression and cellular metabolism. Unlike their circulating counterparts, rectal α4 β7 + CD4 T cells exhibited a core tissue-residency gene expression program. These features were conserved across primate species, indicating that the environment influences memory T-cell transcriptional networks. Our findings provide an important molecular foundation for understanding the role of α4 β7 in HIV infection.
Collapse
|
Journal Article |
4 |
2 |
13
|
Roman KM, Dinasarapu AR, VanSchoiack A, Ross PM, Kroeppler D, Jinnah HA, Hess EJ. Spiny projection neurons exhibit transcriptional signatures within subregions of the dorsal striatum. Cell Rep 2023; 42:113435. [PMID: 37952158 PMCID: PMC10841649 DOI: 10.1016/j.celrep.2023.113435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/11/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023] Open
Abstract
The dorsal striatum is organized into functional territories defined by corticostriatal inputs onto both direct and indirect spiny projection neurons (SPNs), the major cell types within the striatum. In addition to circuit connectivity, striatal domains are likely defined by the spatially determined transcriptomes of SPNs themselves. To identify cell-type-specific spatiomolecular signatures of direct and indirect SPNs within dorsomedial, dorsolateral, and ventrolateral dorsal striatum, we used RNA profiling in situ hybridization with probes to >98% of protein coding genes. We demonstrate that the molecular identity of SPNs is mediated by hundreds of differentially expressed genes across territories of the striatum, revealing extraordinary heterogeneity in the expression of genes that mediate synaptic function in both direct and indirect SPNs. This deep insight into the complex spatiomolecular organization of the striatum provides a foundation for understanding both normal striatal function and for dissecting region-specific dysfunction in disorders of the striatum.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
1 |
14
|
Saba NF, Dinasarapu AR, Magliocca KR, Dwivedi B, Seby S, Qin ZS, Patel M, Griffith CC, Wang X, El-Deiry M, Steuer CE, Kowalski J, Shin DM, Zwick ME, Chen ZG. Correction: Signatures of somatic mutations and gene expression from p16INK4A positive head and neck squamous cell carcinomas (HNSCC). PLoS One 2024; 19:e0308819. [PMID: 39116078 PMCID: PMC11309430 DOI: 10.1371/journal.pone.0308819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0238497.].
Collapse
|
Published Erratum |
1 |
|
15
|
Elizaldi SR, Hawes CE, Verma A, Dinasarapu AR, Lakshmanappa YS, Schlegel BT, Rajasundaram D, Li J, Durbin-Johnson BP, Ma ZM, Beckman D, Ott S, Lifson J, Morrison JH, Iyer SS. CCR7+ CD4 T Cell Immunosurveillance Disrupted in Chronic SIV-Induced Neuroinflammation in Rhesus Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555037. [PMID: 37693567 PMCID: PMC10491118 DOI: 10.1101/2023.08.28.555037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
CD4 T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4 T cells resembling lymph node central memory (T CM ) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of T CM . Brain CCR7+ CD4 T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside other CNS border tissues. Sequestering T CM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4 T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL57 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4 T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4 T cells in CNS immune surveillance and their decline during chronic SIV-induced neuroinflammation highlights their responsiveness to neuroinflammatory processes. GRAPHICAL ABSTRACT In Brief Utilizing single-cell and spatial transcriptomics on adult rhesus brain, we uncover a unique CCR7+ CD4 T cell subset resembling central memory T cells (T CM ) within brain and border tissues, including skull bone marrow. Our findings show decreased frequencies of this subset during SIV- induced chronic neuroinflammation, emphasizing responsiveness of CCR7+ CD4 T cells to CNS disruptions. Highlights CCR7+ CD4 T cells survey border and parenchymal CNS compartments during homeostasis; reduced presence of CCR7+ CD4 T cells in cerebrospinal fluid leads to immune activation, implying a role in neuroimmune homeostasis. CNS CCR7+ CD4 T cells exhibit phenotypic and functional features of central memory T cells (T CM ) including production of interleukin 2 and the capacity for rapid recall proliferation. Furthermore, CCR7+ CD4 T cells reside in the skull bone marrow. CCR7+ CD4 T cells are markedly decreased within the brain parenchyma during chronic viral neuroinflammation.
Collapse
|
Preprint |
2 |
|
16
|
Roman KM, Dinasarapu AR, Cherian S, Fan X, Donsante Y, Aravind N, Chan CS, Jinnah H, Hess EJ. Striatal cell-type-specific molecular signatures reveal therapeutic targets in a model of dystonia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617010. [PMID: 39415987 PMCID: PMC11482807 DOI: 10.1101/2024.10.07.617010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Striatal dysfunction is implicated in many forms of dystonia, including idiopathic, inherited and iatrogenic dystonias. The striatum is comprised largely of GABAergic spiny projection neurons (SPNs) that are defined by their long-range efferents. Direct SPNs (dSPNs) project to the internal globus pallidus/substantia nigra reticulata whereas indirect pathway SPNs (iSPNs) project to the external pallidum; the concerted activity of both SPN subtypes modulates movement. Convergent results from genetic, imaging and physiological studies in patients suggest that abnormalities of both dSPNs and iSPNs contribute to the expression of dystonia, but the molecular adaptations underlying these abnormalities are not known. Here we provide a comprehensive analysis of SPN cell-type-specific molecular signatures in a model of DOPA-responsive dystonia (DRD mice), which is caused by gene defects that reduce dopamine neurotransmission, resulting in dystonia that is specifically associated with striatal dysfunction. Individually profiling the translatome of dSPNs and iSPNs using translating ribosome affinity purification with RNA-seq revealed hundreds of differentially translating mRNAs in each SPN subtype in DRD mice, yet there was little overlap between the dysregulated genes in dSPNs and iSPNs. Despite the paucity of shared adaptations, a disruption in glutamatergic signaling was predicted for both dSPNs and iSPNs. Indeed, we found that both AMPA and NMDA receptor-mediated currents were enhanced in dSPNs but diminished in iSPNs in DRD mice. The pattern of mRNA dysregulation was specific to dystonia as the adaptations in DRD mice were distinct from those in parkinsonian mice where the dopamine deficit occurs in adults, suggesting that the phenotypic outcome is dependent on both the timing of the dopaminergic deficit and the SPN-specific adaptions. We leveraged the unique molecular signatures of dSPNs and iSPNs in DRD mice to identify biochemical mechanisms that may be targets for therapeutics, including LRRK2 inhibition. Administration of the LRRK2 inhibitor MLi-2 ameliorated the dystonia in DRD mice suggesting a novel target for therapeutics and demonstrating that the delineation of cell-type-specific molecular signatures provides a powerful approach to revealing both CNS dysfunction and therapeutic targets in dystonia.
Collapse
|
Preprint |
1 |
|
17
|
Kilic-Berkmen G, Kim H, Chen D, Yeo CI, Dinasarapu AR, Scorr LM, Yeo WH, Peterson DA, Williams H, Ruby A, Mills R, Jinnah HA. An Exploratory, Randomized, Double-Blind Clinical Trial of Dipraglurant for Blepharospasm. Mov Disord 2024; 39:738-745. [PMID: 38310362 PMCID: PMC11045316 DOI: 10.1002/mds.29734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Blepharospasm is treated with botulinum toxin, but obtaining satisfactory results is sometimes challenging. OBJECTIVE The aim is to conduct an exploratory trial of oral dipraglurant for blepharospasm. METHODS This study was an exploratory, phase 2a, randomized, double-blind, placebo-controlled trial of 15 participants who were assigned to receive a placebo or dipraglurant (50 or 100 mg) and assessed over 2 days, 1 and 2 hours following dosing. Outcome measures included multiple scales rated by clinicians or participants, digital video, and a wearable sensor. RESULTS Dipraglurant was well tolerated, with no obvious impact on any of the measurement outcomes. Power analyses suggested fewer subjects would be required for studies using a within-subject versus independent group design, especially for certain measures. Some outcome measures appeared more suitable than others. CONCLUSION Although dipraglurant appeared well tolerated, it did not produce a trend for clinical benefit. The results provide valuable information for planning further trials in blepharospasm. © 2024 International Parkinson and Movement Disorder Society.
Collapse
|
Randomized Controlled Trial |
1 |
|
18
|
Elizaldi SR, Hawes CE, Verma A, Shaan Lakshmanappa Y, Dinasarapu AR, Schlegel BT, Rajasundaram D, Li J, Durbin-Johnson BP, Ma ZM, Pal PB, Beckman D, Ott S, Raeman R, Lifson J, Morrison JH, Iyer SS. Chronic SIV-Induced neuroinflammation disrupts CCR7+ CD4+ T cell immunosurveillance in the rhesus macaque brain. J Clin Invest 2024; 134:e175332. [PMID: 38470479 PMCID: PMC11060742 DOI: 10.1172/jci175332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024] Open
Abstract
CD4+ T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-Seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4+ T cells resembling lymph node central memory (TCM) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of TCM. Brain CCR7+ CD4+ T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside CNS border tissues. Sequestering TCM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4+ T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL757 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4+ T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4+ T cells in CNS immune surveillance, and their decline during chronic SIV highlights their responsiveness to neuroinflammation.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
|