1
|
Saih A, Baba H, Bouqdayr M, Ghazal H, Hamdi S, Kettani A, Wakrim L. In Silico Analysis of High-Risk Missense Variants in Human ACE2 Gene and Susceptibility to SARS-CoV-2 Infection. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6685840. [PMID: 33884270 PMCID: PMC8040925 DOI: 10.1155/2021/6685840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 11/18/2022]
Abstract
SARS-CoV-2 coronavirus uses for entry to human host cells a SARS-CoV receptor of the angiotensin-converting enzyme (ACE2) that catalyzes the conversion of angiotensin II into angiotensin (1-7). To understand the effect of ACE2 missense variants on protein structure, stability, and function, various bioinformatics tools were used including SIFT, PANTHER, PROVEAN, PolyPhen2.0, I. Mutant Suite, MUpro, SWISS-MODEL, Project HOPE, ModPred, QMEAN, ConSurf, and STRING. All twelve ACE2 nsSNPs were analyzed. Six ACE2 high-risk pathogenic nsSNPs (D427Y, R514G, R708W, R710C, R716C, and R768W) were found to be the most damaging by at least six software tools (cumulative score between 6 and 7) and exert deleterious effect on the ACE2 protein structure and likely function. Additionally, they revealed high conservation, less stability, and having a role in posttranslation modifications such a proteolytic cleavage or ADP-ribosylation. This in silico analysis provides information about functional nucleotide variants that have an impact on the ACE2 protein structure and function and therefore susceptibility to SARS-CoV-2.
Collapse
|
research-article |
4 |
7 |
2
|
Khamlich J, Douiyeh I, Saih A, Moussamih S, Regragui A, Kettani A, Safi A. Molecular docking, pharmacokinetic prediction and molecular dynamics simulations of tankyrase inhibitor compounds with the protein glucokinase, induced in the development of diabetes. J Biomol Struct Dyn 2024; 42:2846-2858. [PMID: 37199320 DOI: 10.1080/07391102.2023.2214217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
GCK is a protein that plays a crucial role in the sensing and regulation of glucose homeostasis, which associates it with disorders of carbohydrate metabolism and the development of several pathologies, including gestational diabetes. This makes GCK an important therapeutic target that has aroused the interest of researchers to discover GKA that are simultaneously effective in the long term and free of side effects. TNKS is a protein that interacts directly with GCK; recent studies have shown that it inhibits GCK action, which affects glucose detection and insulin secretion. This justifies our choice of TNKS inhibitors as ligands to test their effects on the GCK-TNKS complex. For this purpose, we investigated the interaction of the GCK-TNKS complex with 13 compounds (TNKS inhibitors and their analogues) using the molecular docking approach as a first step, after which the compounds that generated the best affinity scores were evaluated for drug similarity and pharmacokinetic properties. Subsequently, we selected the six compounds that generated high affinity and that were in accordance with the parameters of the drug rules as well as pharmacokinetic properties to ensure a molecular dynamics study. The results allowed us to favor the two compounds (XAV939 and IWR-1), knowing that even the tested compounds (TNKS 22, (2215914) and (46824343)) produced good results that can also be exploited. These results are therefore interesting and encouraging, and they can be exploited experimentally to discover a treatment for diabetes, including gestational diabetes.Communicated by Ramaswamy H. Sarma.
Collapse
|
|
1 |
2 |
3
|
Saih A, Bouqdayr M, Baba H, Hamdi S, Moussamih S, Bennani H, Saile R, Wakrim L, Kettani A. Computational Analysis of Missense Variants in the Human Transmembrane Protease Serine 2 ( TMPRSS2) and SARS-CoV-2. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9982729. [PMID: 34692848 PMCID: PMC8531787 DOI: 10.1155/2021/9982729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/06/2021] [Accepted: 09/11/2021] [Indexed: 01/08/2023]
Abstract
The human transmembrane protease serine 2 (TMPRSS2) protein plays an important role in prostate cancer progression. It also facilitates viral entry into target cells by proteolytically cleaving and activating the S protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In the current study, we used different available tools like SIFT, PolyPhen2.0, PROVEAN, SNAP2, PMut, MutPred2, I-Mutant Suite, MUpro, iStable, ConSurf, ModPred, SwissModel, PROCHECK, Verify3D, and TM-align to identify the most deleterious variants and to explore possible effects on the TMPRSS2 stability, structure, and function. The six missense variants tested were evaluated to have deleterious effects on the protein by SIFT, PolyPhen2.0, PROVEAN, SNAP2, and PMut. Additionally, V160M, G181R, R240C, P335L, G432A, and D435Y variants showed a decrease in stability by at least 2 servers; G181R, G432A, and D435Y are highly conserved and identified posttranslational modifications sites (PTMs) for proteolytic cleavage and ADP-ribosylation using ConSurf and ModPred servers. The 3D structure of TMPRSS2 native and mutants was generated using 7 meq as a template from the SwissModeller group, refined by ModRefiner, and validated using the Ramachandran plot. Hence, this paper can be advantageous to understand the association between these missense variants rs12329760, rs781089181, rs762108701, rs1185182900, rs570454392, and rs867186402 and susceptibility to SARS-CoV-2.
Collapse
|
research-article |
4 |
2 |
4
|
Saih A, Baammi S, Charoute H, Ettaki I, Bouqdayr M, Baba H, El Allali A, Saile R, Wakrim L, Kettani A. Repositioning of Furin inhibitors as potential drugs against SARS-CoV-2 through computational approaches. J Biomol Struct Dyn 2025:1-15. [PMID: 39849987 DOI: 10.1080/07391102.2024.2335282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/19/2024] [Indexed: 01/25/2025]
Abstract
The recent spread of SARS-CoV-2 has led to serious concerns about newly emerging infectious coronaviruses. Drug repurposing is a practical method for rapid development of antiviral agents. The viral spike protein of SARS-CoV-2 binds to its major receptor ACE2 to promote membrane fusion. Following the entry process, the spike protein is further activated by cellular proteases such as TMPRSS2 and Furin to promote viral entry into human cells. A crucial factor in preventing SARS-CoV-2 from entering target cells using HIV-1 fusion inhibitors is the similarity between the fusion mechanisms of SARS-CoV-2 and HIV-1. In this investigation, the HIV-1 fusion inhibitors CMK, Luteolin, and Naphthofluorescein were selected to understand the molecular mode of interactions and binding energy of Furin with these experimental inhibitors. The binding affinity of the three inhibitors with Furin was verified by molecular docking studies. The docking scores of CMK, Luteolin and Naphthofluorescein are -7.4 kcal/mol, -9.3 kcal/mol, and -10.7 kcal/mol, respectively. Therefore, these compounds were subjected to MD, drug-likeness, ADMET, and MM-PBSA analysis. According to the results of a 200 ns MD simulation, all tested compounds show stability with the complex and can be employed as promising inhibitors targeting SARS-CoV-2 Furin protease. In addition, pharmacokinetic analysis revealed that these compounds possess favorable drug-likeness properties. Thus, this study of Furin inhibitors helps in the evaluation of these compounds for use as novel drugs against SARS-CoV-2.
Collapse
|
|
1 |
|
5
|
Douiyeh I, Khamlich J, Nabih N, Saih A, Boumendil I, Regragui A, Kettani A, Safi A. Assessing Moroccan physician knowledge and practices regarding maternal obesity's impact on childhood obesity: Implications for prevention and intervention. World J Clin Pediatr 2024; 13:91255. [PMID: 38947991 PMCID: PMC11212762 DOI: 10.5409/wjcp.v13.i2.91255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Childhood obesity is a growing global concern with far-reaching health implications. This study focuses on evaluating the knowledge and practices of physicians in Morocco regarding the link between maternal obesity and childhood obesity. Despite the increasing prevalence of childhood obesity worldwide, this issue remains inadequately addressed in the Moroccan context. AIM To assess the awareness and practices of physicians in Morocco concerning the connection between maternal obesity and childhood obesity. METHODS The research encompasses a comprehensive survey of practicing physicians, revealing significant gaps in awareness and practices related to maternal obesity. RESULTS Notably, a significant portion of doctors do not provide adequate guidance to overweight pregnant women, highlighting the urgency for targeted educational programs. CONCLUSION In conclusion, this research illuminates critical areas for improvement in tackling childhood obesity in Morocco. By addressing these gaps, fostering awareness, and enhancing medical practices, the healthcare system can contribute significantly to preventing childhood obesity and improving the overall health of future generations.
Collapse
|
Observational Study |
1 |
|
6
|
Douiyeh I, Khamlich J, Saih A, Baggar A, Kettani A, Safi A. Computational analysis of missense variants of human MC4R and childhood obesity. Cell Mol Biol (Noisy-le-grand) 2023; 69:30-42. [PMID: 37953587 DOI: 10.14715/cmb/2023.69.10.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 11/14/2023]
Abstract
Industrialized and developing nations face severe public health problems related to childhood obesity. Previous studies revealed that the melanocortin-4 receptor gene (MC4R) is the most prevalent monogenic cause of severe early obesity. Due to its influence on food intake and energy expenditure via neuronal melanocortin-4 receptor pathways, MC4R is recognized as a regulator of energy homeostasis. This study used a variety of computational systems to analyze 273 missense variations of MC4R in silico. Several tools, including PolyPhen, PROVEAN, SIFT, SNAP2, MutPred2, PROVEAN, SNP&GO and Mu-Pro, I-Mutant, PhD-SNP, SAAFEC-SEQ I-Mutant, and ConSurf, were used to make predictions of 13 extremely confident nsSNPs that are harmful and disease-causing (E308k, P299L, D298H, C271F, C271R, P260L, T246N, G243R, C196Y, W174C, Y157S, D126Y, and D90G). The results of our study suggest that these MC4R nsSNPs may disrupt normal protein function, leading to an increased risk of childhood obesity. These results highlight the potential use of these nsSNPs as biomarkers to predict susceptibility to obesity and as targets for personalized interventions.
Collapse
|
|
2 |
|
7
|
Khamlich J, Douiyeh I, Saih A, Moussamih S, Regragui A, Kettani A, Safi A. Identification of small molecule glucokinase activators for the treatment of diabetes based on plants from the traditional Chinese medicine: In silico analysis. Microb Pathog 2024; 195:106851. [PMID: 39197693 DOI: 10.1016/j.micpath.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024]
Abstract
Mutations in glucokinase (GCK) can either enhance or inhibit insulin secretion, leading to different forms of diabetes, including gestational diabetes. While many glucokinase activators (GKAs) have been explored as treatments, their long-term effectiveness has often been unsatisfactory. However, recent interest has surged with the introduction of dorzagliatin and TTP399. This study investigates the efficacy of four previously studied compounds (Swertiamarin, Apigenin, Mangiferin, and Tatanan A) in activating GCK using computational methods. Initial molecular docking revealed binding affinities ranging from -6.7 to -8.6 kcal/mol. The compounds were then evaluated for drug-likeness and pharmacokinetic properties. Re-docking studies were performed for validation. Based on their favorable binding affinities and compliance with Lipinski's rule and ADMET criteria, three compounds (Swertiamarin, Apigenin, and Tatanan A) were selected for molecular dynamics (MD) simulations. MD simulations demonstrated that Swertiamarin showed excellent stability, as indicated by analyses of RMSD, RMSF, radius of gyration (Rg), hydrogen bonding, and principal component analysis (PCA). These results suggest that Swertiamarin holds promise for further investigation in in vivo and clinical settings to evaluate its potential in enhancing GCK activity and treating diabetes. This study assessed the potential of four compounds as GCK activators using molecular docking, pharmacokinetic profiling, and MD simulations. Swertiamarin, in particular, showed significant stability and adherence to drug-likeness criteria, making it a promising candidate for further research in combating diabetes.
Collapse
|
|
1 |
|
8
|
Ettaki I, Haseeb A, Karvande A, Amalou G, Saih A, AitRaise I, Hamdi S, Wakrim L, Barakat A, Fellah H, El Alloussi M, Lefebvre V. Missense variants weakening a SOX9 phosphodegron linked to odontogenesis defects, scoliosis, and other skeletal features. HGG ADVANCES 2025; 6:100404. [PMID: 39797402 PMCID: PMC11834033 DOI: 10.1016/j.xhgg.2025.100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
SOX9 encodes an SRY-related transcription factor critical for chondrogenesis and sex determination among other processes. Loss-of-function variants cause campomelic dysplasia and Pierre Robin sequence, while both gain- and loss-of-function variants cause disorders of sex development. SOX9 has also been linked to scoliosis and cancers, but variants are undetermined. It is highly expressed in tooth progenitor cells, but its odontogenic roles remain elusive, and tooth defects are unreported in SOX9-related conditions. Here, we performed whole-exome sequencing for nine unrelated children with tooth eruption delay and no known syndromes and identified a 7-year-old girl heterozygous for a SOX9 p.Thr239Pro variant and a 10-year-old boy heterozygous for presumably adjacent p.Thr239Pro and p.Thr240Pro variants. These variants were de novo and rare in control populations. Both cases had primary tooth eruption delay. Additionally, the boy had mesiodens blocking permanent central upper incisor eruption, severe scoliosis, and mild craniofacial and appendicular skeleton abnormalities. p.Thr239 and p.Thr240 occupy variable and obligatory positions, respectively, in a cell division control protein 4 (Cdc4)/FBXW7-targeted phosphodegron motif (CPD) fully conserved in SOX9 vertebrate orthologs and SOX8 and SOX10 paralogs, but functionally uncharacterized in vivo. Structural modeling predicted p.Thr240Pro and p.Thr239Pro/p.Thr240Pro but not p.Thr239Pro to strongly reduce SOX9/FBXW7 interaction. Accordingly, p.Thr240Pro and p.Thr239Pro/p.Thr240Pro but not p.Thr239Pro blocked FBXW7-induced SOX9 degradation in cultured cells. All variants increased SOX9-mediated reporter activation independently of protein stabilization, suggesting that CPD may also modulate the transactivation function of SOX9. Altogether, these findings concur that CPD has critical functions, that SOX9 decisively controls odontogenesis, and that gain-of-function variants may markedly perturb both this process and skeletogenesis.
Collapse
|
research-article |
1 |
|
9
|
Maya-Ramírez CE, Saih A, Méndez Tenorio A, Wong Baeza C, Nogueda Torres B, Santiago Hernández JC. Exploring Marine Natural Compounds: Innovative Therapeutic Candidates Against Chagas Disease Through Virtual Screening and Molecular Dynamics. Life (Basel) 2025; 15:192. [PMID: 40003601 PMCID: PMC11856606 DOI: 10.3390/life15020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 02/27/2025] Open
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, represents a significant public health challenge, particularly in Latin America's endemic regions. The limited efficacy and frequent adverse effects of current treatments underscore the need for novel therapeutic options. This research explores marine natural compounds as potential candidates for Chagas disease treatment using virtual screening and in silico evaluation methods. Techniques such as molecular docking, drug-likeness evaluation, and pharmacokinetic analysis were employed to identify promising anti-parasitic compounds. Among the candidates, chandrananimycin A, venezueline A, and dispacamide demonstrated high binding affinities to key targets in T. cruzi alongside favorable docking scores and compliance with essential drug-likeness criteria. Pharmacokinetic profiling further supported their therapeutic potential, revealing desirable properties like effective absorption and minimal toxicity. These findings underscore the promise of marine-derived compounds as a valuable source of new drugs, emphasizing the need for further in vitro and in vivo investigations to elucidate their molecular mechanisms and optimize their development as viable treatments for Chagas disease.
Collapse
|
research-article |
1 |
|
10
|
Bouqdayr M, Abbad A, Baba H, Saih A, Wakrim L, Kettani A. Computational analysis of structural and functional evaluation of the deleterious missense variants in the human CTLA4 gene. J Biomol Struct Dyn 2023; 41:14179-14196. [PMID: 36764830 DOI: 10.1080/07391102.2023.2178509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
CTLA-4 is an immune checkpoint receptor that negatively regulates the T-cell function expressed after T-cell activation to break the immune response. The current study predicted the genomic analysis to explore the functional variations of missense SNPs in the human CTLA4 gene using PolyPhen2, SIFT, PANTHER, PROVEAN, Fathmm, Mutation Assessor, PhD-SNP, SNPs&GO, SNAP2, and MutPred2. Phylogenetic conservation protein was predicted by ConSurf. Protein structural analysis was carried out by I-Mutant3, MUpro, iStable2, PremPS, and ERIS servers. Molecular dynamics trajectory analysis (RMSD, RMSF, Rg, SASA, H-bonds, and PCA) was performed to analyze the dynamic behavior of native and mutant CTLA-4 at the atomic level. Our in-silico analysis suggested that C58S, G118R, P137Q, P137R, P137L, P138T, and G146L variants were predicted to be the most deleterious missense variants and highly conserved residues. Moreover, the molecular dynamics analysis proposed a decrease in the protein stability and compactness with the P137R and P138T highlighting the impact of these variants on the function of the CTLA-4 protein.Communicated by Ramaswamy H. Sarma.
Collapse
|
|
2 |
|
11
|
Baba H, Bouqdayr M, Saih A, Bensghir R, Ouladlahsen A, Sodqi M, Marih L, Zaidane I, Kettani A, Abidi O, Wakrim L. Association between Methylene-Tetrahydrofolate Reductase C677T Polymorphism and Human Immunodeficiency Virus Type 1 Infection in Morocco. Lab Med 2023; 54:23-29. [PMID: 36036632 DOI: 10.1093/labmed/lmac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection varies substantially among individuals. One of the factors influencing viral infection is genetic variability. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism is a genetic factor that has been correlated with different types of pathologies, including HIV-1. The MTHFR gene encodes the MTHFR enzyme, an essential factor in the folate metabolic pathway and in maintaining circulating folate and methionine at constant levels, thus preventing the homocysteine accumulation. Several studies have shown the role of folate on CD4+ T lymphocyte count among HIV-1 subjects. In this case-control study we aimed to determine the association between the MTHFR C677T polymorphism and HIV-1 infection susceptibility, AIDS development, and therapeutic outcome among Moroccans. The C677T polymorphism was genotyped by polymerase chain reaction followed by fragment length polymorphism digestion in 214 participants living with HIV-1 and 318 healthy controls. The results of the study revealed no statistically significant association between MTHFR C677T polymorphism and HIV-1 infection (P > .05). After dividing HIV-1 subjects according to their AIDS status, no significant difference was observed between C677T polymorphism and AIDS development (P > .05). Furthermore, regarding the treatment response outcome, as measured by HIV-1 RNA viral load and CD4+ T cell counts, no statistically significant association was found with MTHFR C677T polymorphism. We conclude that, in the genetic context of the Moroccan population, MTHFR C677T polymorphism does not affect HIV-1 infection susceptibility, AIDS development, or response to treatment. However, more studies should be done to investigate both genetic and nutritional aspects for more conclusive results.
Collapse
|
|
2 |
|