1
|
Heidrich C, Templin MF, Ursinus A, Merdanovic M, Berger J, Schwarz H, de Pedro MA, Höltje JV. Involvement of N-acetylmuramyl-L-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol Microbiol 2001; 41:167-78. [PMID: 11454209 DOI: 10.1046/j.1365-2958.2001.02499.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N-acetylmuramyl-L-alanine amidases are widely distributed among bacteria. However, in Escherichia coli, only one periplasmic amidase has been described until now, which is suggested to play a role in murein recycling. Here, we report that three amidases, named AmiA, B and C, exist in E. coli and that they are involved in splitting of the murein septum during cell division. Moreover, the amidases were shown to act as powerful autolytic enzymes in the presence of antibiotics. Deletion mutants in amiA, B and C were growing in long chains of unseparated cells and displayed a tolerant response to the normally lytic combination of aztreonam and bulgecin. Isolated murein sacculi of these chain-forming mutants showed rings of thickened murein at the site of blocked septation. In vitro, these murein ring structures were digested more slowly by muramidases than the surrounding murein. In contrast, when treated with the amidase AmiC or the endopeptidase MepA, the rings disappeared, and gaps developed at these sites in the murein sacculi. These results are taken as evidence that highly stressed murein cross-bridges are concentrated at the site of blocked cell division, which, when cleaved, result in cracking of the sacculus at this site. As amidase deletion mutants accumulate trimeric and tetrameric cross-links in their murein, it is suggested that these structures mark the division site before cleavage of the septum.
Collapse
|
|
24 |
275 |
2
|
Heidrich C, Ursinus A, Berger J, Schwarz H, Höltje JV. Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitivity to large toxic molecules in Escherichia coli. J Bacteriol 2002; 184:6093-9. [PMID: 12399477 PMCID: PMC151956 DOI: 10.1128/jb.184.22.6093-6099.2002] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multiplicity of murein hydrolases found in most bacteria presents an obstacle to demonstrating the necessity of these potentially autolytic enzymes. Therefore, Escherichia coli mutants with deletions in multiple murein hydrolases, including lytic transglycosylases, amidases, and DD-endopeptidases, were constructed. Even a mutant from which seven different hydrolases were deleted was viable and grew at a normal rate. However, penicillin-induced lysis was retarded. Most of the mutants were affected in septum cleavage, which resulted in the formation of chains of cells. All three enzymes were shown to be capable of splitting the septum. Failure to cleave the septum resulted in an increase in outer membrane permeability, and thus the murein hydrolase mutants did not grow on MacConkey agar plates. In addition, the hydrolase mutants not only could be lysed by lysozyme in the absence of EDTA but also were sensitive to high-molecular-weight antibiotics, such as vancomycin and bacitracin, which are normally ineffective against E. coli.
Collapse
|
research-article |
23 |
211 |
3
|
Templin MF, Ursinus A, Höltje JV. A defect in cell wall recycling triggers autolysis during the stationary growth phase of Escherichia coli. EMBO J 1999; 18:4108-17. [PMID: 10428950 PMCID: PMC1171488 DOI: 10.1093/emboj/18.15.4108] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The first gene of a family of prokaryotic proteases with a specificity for L,D-configured peptide bonds has been identified in Escherichia coli. The gene named ldcA encodes a cytoplasmic L, D-carboxypeptidase, which releases the terminal D-alanine from L-alanyl-D-glutamyl-meso-diaminopimelyl-D-alanine containing turnover products of the cell wall polymer murein. This reaction turned out to be essential for survival, since disruption of the gene results in bacteriolysis during the stationary growth phase. Owing to a defect in muropeptide recycling the unusual murein precursor uridine 5'-pyrophosphoryl N-acetylmuramyl-tetrapeptide accumulates in the mutant. The dramatic decrease observed in overall cross-linkage of the murein is explained by the increased incorporation of tetrapeptide precursors. They can only function as acceptors and not as donors in the crucial cross-linking reaction. It is concluded that murein recycling is a promising target for novel antibacterial agents.
Collapse
|
research-article |
26 |
122 |
4
|
Ursinus A, van den Ent F, Brechtel S, de Pedro M, Höltje JV, Löwe J, Vollmer W. Murein (peptidoglycan) binding property of the essential cell division protein FtsN from Escherichia coli. J Bacteriol 2004; 186:6728-37. [PMID: 15466024 PMCID: PMC522186 DOI: 10.1128/jb.186.20.6728-6737.2004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding of the essential cell division protein FtsN of Escherichia coli to the murein (peptidoglycan) sacculus was studied. Soluble truncated variants of FtsN, including the complete periplasmic part of the protein as well as a variant containing only the C-terminal 77 amino acids, did bind to purified murein sacculi isolated from wild-type cells. FtsN variants lacking this C-terminal region showed reduced or no binding to murein. Binding of FtsN was severely reduced when tested against sacculi isolated either from filamentous cells with blocked cell division or from chain-forming cells of a triple amidase mutant. Binding experiments with radioactively labeled murein digestion products revealed that the longer murein glycan strands (>25 disaccharide units) showed a specific affinity to FtsN, but neither muropeptides, peptides, nor short glycan fragments bound to FtsN. In vivo FtsN could be cross-linked to murein with the soluble disulfide bridge containing cross-linker DTSSP. Less FtsN, but similar amounts of OmpA, was cross-linked to murein of filamentous or of chain-forming cells compared to levels in wild-type cells. Expression of truncated FtsN variants in cells depleted in full-length FtsN revealed that the presence of the C-terminal murein-binding domain was not required for cell division under laboratory conditions. FtsN was present in 3,000 to 6,000 copies per cell in exponentially growing wild-type E. coli MC1061. We discuss the possibilities that the binding of FtsN to murein during cell division might either stabilize the septal region or might have a function unrelated to cell division.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
108 |
5
|
Höltje JV, Kopp U, Ursinus A, Wiedemann B. The negative regulator of beta-lactamase induction AmpD is a N-acetyl-anhydromuramyl-L-alanine amidase. FEMS Microbiol Lett 1994; 122:159-64. [PMID: 7958768 DOI: 10.1111/j.1574-6968.1994.tb07159.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Construction of a malE-ampD gene fusion allowed purification of biologically active fusion protein by affinity chromatography. The cloned malE-ampD gene fusion complemented a chromosomal ampD mutation. Purified MalE-AmpD fusion protein was found to have murein amidase activity with a pronounced specificity for 1,6-anhydromuropeptides, the characteristic murein turnover products in Escherichia coli. Being a N-acetyl-anhydromuranmyl-L-alanine amidase AmpD is likely to be involved in recycling of the turnover products. It is suggested that the negative regulatory effect of AmpD is due to the hydrolysis of anhydro-muropeptides which may function as signals for beta-lactamase induction.
Collapse
|
|
31 |
105 |
6
|
Szczesny P, Linke D, Ursinus A, Bär K, Schwarz H, Riess TM, Kempf VAJ, Lupas AN, Martin J, Zeth K. Structure of the head of the Bartonella adhesin BadA. PLoS Pathog 2008; 4:e1000119. [PMID: 18688279 PMCID: PMC2483945 DOI: 10.1371/journal.ppat.1000119] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 07/10/2008] [Indexed: 11/18/2022] Open
Abstract
Trimeric autotransporter adhesins (TAAs) are a major class of proteins by which pathogenic proteobacteria adhere to their hosts. Prominent examples include Yersinia YadA, Haemophilus Hia and Hsf, Moraxella UspA1 and A2, and Neisseria NadA. TAAs also occur in symbiotic and environmental species and presumably represent a general solution to the problem of adhesion in proteobacteria. The general structure of TAAs follows a head-stalk-anchor architecture, where the heads are the primary mediators of attachment and autoagglutination. In the major adhesin of Bartonella henselae, BadA, the head consists of three domains, the N-terminal of which shows strong sequence similarity to the head of Yersinia YadA. The two other domains were not recognizably similar to any protein of known structure. We therefore determined their crystal structure to a resolution of 1.1 A. Both domains are beta-prisms, the N-terminal one formed by interleaved, five-stranded beta-meanders parallel to the trimer axis and the C-terminal one by five-stranded beta-meanders orthogonal to the axis. Despite the absence of statistically significant sequence similarity, the two domains are structurally similar to domains from Haemophilus Hia, albeit in permuted order. Thus, the BadA head appears to be a chimera of domains seen in two other TAAs, YadA and Hia, highlighting the combinatorial evolutionary strategy taken by pathogens.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
64 |
7
|
von Rechenberg M, Ursinus A, Höltje JV. Affinity chromatography as a means to study multienzyme complexes involved in murein synthesis. Microb Drug Resist 2000; 2:155-7. [PMID: 9158739 DOI: 10.1089/mdr.1996.2.155] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The interaction of murein hydrolases and synthases was studied by affinity chromatography. The lytic transglycosylases Slt70 and MltB of E. coli were purified and covalently linked to CNBr-activated Sepharose. Membrane extracts were analyzed for proteins that interact with the immobilized murein hydrolases. Slt70-Sepharose was found to retain the PBPs 1b, 1c, 2, and 3. Likewise MltB-Sepharose enriched PBP 1b, 1c, and 3. Thus both lytic transglycosylases have an affinity for a transpeptidase, PBP2 and/or 3, as well as for the bifunctional transpeptidase/transglycosylase 1b. Interestingly, in addition, the poorly characterized PBP 1c interacts strongly with both Slt70 and MltB. It is speculated that the lytic transglycosylases assemble a multienzyme complex consisting of hydrolases and synthases, which is involved in growth of the stress-bearing murein sacculus.
Collapse
|
|
25 |
60 |
8
|
Kraft AR, Prabhu J, Ursinus A, Höltje JV. Interference with murein turnover has no effect on growth but reduces beta-lactamase induction in Escherichia coli. J Bacteriol 1999; 181:7192-8. [PMID: 10572120 PMCID: PMC103679 DOI: 10.1128/jb.181.23.7192-7198.1999] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Physiological studies of a mutant of Escherichia coli lacking the three lytic transglycosylases Slt70, MltA, and MltB revealed that interference with murein turnover can prevent AmpC beta-lactamase induction. The triple mutant, although growing normally, shows a dramatically reduced rate of murein turnover. Despite the reduction in the formation of low-molecular-weight murein turnover products, neither the rate of murein synthesis nor the amount of murein per cell was increased. This might be explained by assuming that during growth in the absence of the major lytic transglycosylases native murein strands are excised by the action of endopeptidases and directly reused without further breakdown to muropeptides. The reduced rate of murein turnover could be correlated with lowered cefoxitin-induced expression of beta-lactamase, present on a plasmid carrying the ampC and ampR genes from Enterobacter cloacae. Overproduction of MltB stimulated beta-lactamase induction, whereas specific inhibition of Slt70 by bulgecin repressed ampC expression. Thus, specific inhibitors of lytic transglycosylases can increase the potency of penicillins and cephalosporins against bacteria inducing AmpC-like beta-lactamases.
Collapse
|
research-article |
26 |
48 |
9
|
Ursinus A, Höltje JV. Purification and properties of a membrane-bound lytic transglycosylase from Escherichia coli. J Bacteriol 1994; 176:338-43. [PMID: 8288527 PMCID: PMC205055 DOI: 10.1128/jb.176.2.338-343.1994] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A membrane-bound lytic transglycosylase (Mlt) has been solubilized in the presence of 2% Triton X-100 containing 0.5 M NaCl from membranes of an Escherichia coli mutant that carries a deletion in the slt gene coding for a 70-kDa soluble lytic transglycosylase (Slt70). The enzyme was purified by a four-step procedure including anion-exchange (HiLoad SP-Sepharose and MonoS), heparin-Sepharose, and poly(U)-Sepharose 4B column chromatography. The purified protein that migrated during denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a single band corresponding to an apparent molecular mass of about 38 kDa is referred to as Mlt38. Optimal activity was found in buffers with a pH between 4.0 and 4.5. The enzyme is stimulated by a factor of 2.5 in the presence of Mg2+ at a concentration of 10 mM and loses its activity rapidly at temperatures above 30 degrees C. Besides insoluble murein sacculi, the enzyme was able to degrade glycan strands isolated from murein by amidase treatment. The enzymatic reaction occurred with a maximal velocity of about 2.2 mg/liter/min with murein sacculi as a substrate. The amino acid sequences of four proteolytic peptides showed no identity with known sequences in the data bank. With Mlt38, the number of proteins in E. coli showing lytic transglycosylase activity rises to three.
Collapse
|
research-article |
31 |
40 |
10
|
Alvarez BH, Gruber M, Ursinus A, Dunin-Horkawicz S, Lupas AN, Zeth K. A transition from strong right-handed to canonical left-handed supercoiling in a conserved coiled-coil segment of trimeric autotransporter adhesins. J Struct Biol 2010; 170:236-45. [PMID: 20178846 DOI: 10.1016/j.jsb.2010.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/16/2010] [Accepted: 02/16/2010] [Indexed: 11/30/2022]
Abstract
Trimeric autotransporter adhesins (TAAs) represent an important class of pathogenicity factors in proteobacteria. Their defining feature is a conserved membrane anchor, which forms a 12-stranded beta-barrel through the outer membrane. The proteins are translocated through the pore of this barrel and, once export is complete, the pore is occluded by a three-stranded coiled coil with canonical heptad (7/2) sequence periodicity. In many TAAs this coiled coil is extended by a segment of varying length, which has pentadecad (15/4) periodicity. We used X-ray crystallography and biochemical methods to analyze the transition between these two periodicities in the coiled-coil stalk of the Yersinia adhesin YadA. Our results show how the strong right-handed supercoil of the 15/4-periodic part locally undergoes further over-winding to 19/5, before switching at a fairly constant rate over 14 residues to the canonical left-handed supercoil of the 7/2-periodic part. The transition region contains two YxD motifs, which are characteristic for right-handed coiled-coil segments of TAAs. This novel coiled-coil motif forms a defined network of inter- and intrahelical hydrogen bonds, thus serving as a structural determinant. Supercoil fluctuations have hitherto been described in coiled coils whose main sequence periodicity is disrupted locally by discontinuities. Here we present the first detailed analysis of two fundamentally different coiled-coil periodicities being accommodated in the same structure.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
35 |
11
|
Jennings GT, Savino S, Marchetti E, Aricò B, Kast T, Baldi L, Ursinus A, Höltje JV, Nicholas RA, Rappuoli R, Grandi G. GNA33 from Neisseria meningitidis serogroup B encodes a membrane-bound lytic transglycosylase (MltA). EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3722-31. [PMID: 12153569 DOI: 10.1046/j.1432-1033.2002.03064.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In a previous study, we used the genome of serogroup B Meningococcus to identify novel vaccine candidates. One of these molecules, GNA33, is well conserved among Meningococcus B strains, other Meningococcus serogroups and Gonococcus and induces bactericidal antibodies as a result of being a mimetic antigen of the PorA epitope P1.2. GNA33 encodes a 48-kDa lipoprotein that is 34.5% identical with membrane-bound lytic transglycosylase A (MltA) from Escherichia coli. In this study, we expressed GNA33, i.e. Meningococcus MltA, as a lipoprotein in E. coli. The lipoprotein nature of recombinant MltA was demonstrated by incorporation of [3H]palmitate. MltA lipoprotein was purified to homogeneity from E. coli membranes by cation-exchange chromatography. Muramidase activity was confirmed when MltA was shown to degrade insoluble murein sacculi and unsubstituted glycan strands. HPLC analysis demonstrated the formation of 1,6-anhydrodisaccharide tripeptide and tetrapeptide reaction products, confirming that the protein is a lytic transglycosylase. Optimal muramidase activity was observed at pH 5.5 and 37 degrees C and enhanced by Mg2+, Mn2+ and Ca2+. The addition of Ni2+ and EDTA had no significant effect on activity, whereas Zn2+ inhibited activity. Triton X-100 stimulated activity 5.1-fold. Affinity chromatography indicated that MltA interacts with penicillin-binding protein 2 from Meningococcus B, and, like MltA from E. coli, may form part of a multienzyme complex.
Collapse
|
|
23 |
34 |
12
|
Nostadt R, Hilbert M, Nizam S, Rovenich H, Wawra S, Martin J, Küpper H, Mijovilovich A, Ursinus A, Langen G, Hartmann MD, Lupas AN, Zuccaro A. A secreted fungal histidine- and alanine-rich protein regulates metal ion homeostasis and oxidative stress. THE NEW PHYTOLOGIST 2020; 227:1174-1188. [PMID: 32285459 DOI: 10.1111/nph.16606] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/01/2020] [Indexed: 05/22/2023]
Abstract
Like pathogens, beneficial endophytic fungi secrete effector proteins to promote plant colonization, for example, through perturbation of host immunity. The genome of the root endophyte Serendipita indica encodes a novel family of highly similar, small alanine- and histidine-rich proteins, whose functions remain unknown. Members of this protein family carry an N-terminal signal peptide and a conserved C-terminal DELD motif. Here we report on the functional characterization of the plant-responsive DELD family protein Dld1 using a combination of structural, biochemical, biophysical and cytological analyses. The crystal structure of Dld1 shows an unusual, monomeric histidine zipper consisting of two antiparallel coiled-coil helices. Similar to other histidine-rich proteins, Dld1 displays varying affinity to different transition metal ions and undergoes metal ion- and pH-dependent unfolding. Transient expression of mCherry-tagged Dld1 in barley leaf and root tissue suggests that Dld1 localizes to the plant cell wall and accumulates at cell wall appositions during fungal penetration. Moreover, recombinant Dld1 enhances barley root colonization by S. indica, and inhibits H2 O2 -mediated radical polymerization of 3,3'-diaminobenzidine. Our data suggest that Dld1 has the potential to enhance micronutrient accessibility for the fungus and to interfere with oxidative stress and reactive oxygen species homeostasis to facilitate host colonization.
Collapse
|
|
5 |
34 |
13
|
Zhu H, Sepulveda E, Hartmann MD, Kogenaru M, Ursinus A, Sulz E, Albrecht R, Coles M, Martin J, Lupas AN. Origin of a folded repeat protein from an intrinsically disordered ancestor. eLife 2016; 5:e16761. [PMID: 27623012 PMCID: PMC5074805 DOI: 10.7554/elife.16761] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/09/2016] [Indexed: 01/03/2023] Open
Abstract
Repetitive proteins are thought to have arisen through the amplification of subdomain-sized peptides. Many of these originated in a non-repetitive context as cofactors of RNA-based replication and catalysis, and required the RNA to assume their active conformation. In search of the origins of one of the most widespread repeat protein families, the tetratricopeptide repeat (TPR), we identified several potential homologs of its repeated helical hairpin in non-repetitive proteins, including the putatively ancient ribosomal protein S20 (RPS20), which only becomes structured in the context of the ribosome. We evaluated the ability of the RPS20 hairpin to form a TPR fold by amplification and obtained structures identical to natural TPRs for variants with 2-5 point mutations per repeat. The mutations were neutral in the parent organism, suggesting that they could have been sampled in the course of evolution. TPRs could thus have plausibly arisen by amplification from an ancestral helical hairpin.
Collapse
|
research-article |
9 |
31 |
14
|
Ursinus A, Steinhaus H, Höltje JV. Purification of a nocardicin A-sensitive LD-carboxypeptidase from Escherichia coli by affinity chromatography. J Bacteriol 1992; 174:441-6. [PMID: 1729236 PMCID: PMC205735 DOI: 10.1128/jb.174.2.441-446.1992] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An LD-carboxypeptidase releasing the terminal D-Ala from UDP-MurNAc-L-Ala-D-Glu-m-A2pm-D-Ala (UDP-MurNAc-tetrapeptide) was purified from Escherichia coli to biochemical homogeneity and characterized biochemically. Final purification was achieved by nocardicin A-Sepharose affinity chromatography. An apparent molecular weight of 32,000 was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the enzyme, which seems to be a monomeric protein as indicated by gel filtration. The optimum pH of the enzyme was 8.4, and the pI was 5.5. The Km for UDP-MurNAc-tetrapeptide was 1.5 x 10(-4) M, and the Vmax was 0.4 nmol/min. Nocardicin A inhibited the enzyme competitively, with a Ki of 5 x 10(-5) M. Benzylpenicillin, cephalosporin C, thienamycin, and D-alanyl-D-alanine did not affect the enzyme activity. Possible functions of the enzyme for growth and division of the murein sacculus are discussed.
Collapse
|
research-article |
33 |
25 |
15
|
Afanasieva E, Chaudhuri I, Martin J, Hertle E, Ursinus A, Alva V, Hartmann MD, Lupas AN. Structural diversity of oligomeric β-propellers with different numbers of identical blades. eLife 2019; 8:49853. [PMID: 31613220 PMCID: PMC6805158 DOI: 10.7554/elife.49853] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022] Open
Abstract
β-Propellers arise through the amplification of a supersecondary structure element called a blade. This process produces toroids of between four and twelve repeats, which are almost always arranged sequentially in a single polypeptide chain. We found that new propellers evolve continuously by amplification from single blades. We therefore investigated whether such nascent propellers can fold as homo-oligomers before they have been fully amplified within a single chain. One- to six-bladed building blocks derived from two seven-bladed WD40 propellers yielded stable homo-oligomers with six to nine blades, depending on the size of the building block. High-resolution structures for tetramers of two blades, trimers of three blades, and dimers of four and five blades, respectively, show structurally diverse propellers and include a novel fold, highlighting the inherent flexibility of the WD40 blade. Our data support the hypothesis that subdomain-sized fragments can provide structural versatility in the evolution of new proteins.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
16 |
16
|
Ishidate K, Ursinus A, Höltje JV, Rothfield L. Analysis of the length distribution of murein glycan strands in ftsZ and ftsI mutants of E. coli. FEMS Microbiol Lett 1998; 168:71-5. [PMID: 9812365 DOI: 10.1111/j.1574-6968.1998.tb13257.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The chain length distribution of murein glycan strands was analyzed in wild-type cells and in cells in which preseptal and/or septal murein synthesis was prevented in ftsZ84 and ftsI36 mutants of E. coli. This revealed a significant change in glycan chain lengths in newly synthesized murein associated with inactivation of the ftsZ gene product but not with inactivation of the ftsI gene product. This is the first reported abnormality in murein biosynthesis associated with mutation of an essential cell division gene.
Collapse
|
|
27 |
15 |
17
|
Korycinski M, Albrecht R, Ursinus A, Hartmann MD, Coles M, Martin J, Dunin-Horkawicz S, Lupas AN. STAC--A New Domain Associated with Transmembrane Solute Transport and Two-Component Signal Transduction Systems. J Mol Biol 2015; 427:3327-3339. [PMID: 26321252 DOI: 10.1016/j.jmb.2015.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/07/2015] [Accepted: 08/19/2015] [Indexed: 01/17/2023]
Abstract
Transmembrane receptors are integral components of sensory pathways in prokaryotes. These receptors share a common dimeric architecture, consisting in its basic form of an N-terminal extracellular sensor, transmembrane helices, and an intracellular effector. As an exception, we have identified an archaeal receptor family--exemplified by Af1503 from Archaeoglobus fulgidus--that is C-terminally shortened, lacking a recognizable effector module. Instead, a HAMP domain forms the sole extension for signal transduction in the cytosol. Here, we examine the gene environment of Af1503-like receptors and find a frequent association with transmembrane transport proteins. Furthermore, we identify and define a closely associated new protein domain family, which we characterize structurally using Af1502 from A. fulgidus. Members of this family are found both as stand-alone proteins and as domains within extant receptors. In general, the latter appear as connectors between the solute carrier 5 (SLC5)-like transmembrane domains and two-component signal transduction (TCST) domains. This is seen, for example, in the histidine kinase CbrA, which is a global regulator of metabolism, virulence, and antibiotic resistance in Pseudomonads. We propose that this newly identified domain family mediates signal transduction in systems regulating transport processes and name it STAC, for SLC and TCST-Associated Component.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
14 |
18
|
Varnay I, Truffault V, Djuranovic S, Ursinus A, Coles M, Kessler H. Optimized measurement temperature gives access to the solution structure of a 49 kDa homohexameric β-propeller. J Am Chem Soc 2011; 132:15692-8. [PMID: 20961124 DOI: 10.1021/ja1064608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ph1500 is a homohexameric, two-domain protein of unknown function from the hyperthermophilic archaeon Pyrococcus horikoshii. The C-terminal hexamerization domain (Ph1500C) is of particular interest, as it lacks sequence homology to proteins of known structure. However, it resisted crystallization for X-ray analysis, and proteins of this size (49 kDa) present a considerable challenge to NMR structure determination in solution. We solved the high-resolution structure of Ph1500C, exploiting the hyperthermophilic nature of the protein to minimize unfavorable relaxation properties by high-temperature measurement. Thus, the side chain assignment (97%) and structure determination became possible at full proton density. To our knowledge, Ph1500C is the largest protein for which this has been achieved. To minimize detrimental fast water exchange of amide protons at increased temperature, we employed a strategy where the temperature was optimized separately for backbone and side chain experiments.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
4 |
19
|
Hertle E, Ursinus A, Martin J. Low-temperature features of the psychrophilic chaperonin from Pseudoalteromonas haloplanktis. Arch Microbiol 2024; 206:299. [PMID: 38861015 PMCID: PMC11166852 DOI: 10.1007/s00203-024-04019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Chaperonins from psychrophilic bacteria have been shown to exist as single-ring complexes. This deviation from the standard double-ring structure has been thought to be a beneficial adaptation to the cold environment. Here we show that Cpn60 from the psychrophile Pseudoalteromonas haloplanktis (Ph) maintains its double-ring structure also in the cold. A strongly reduced ATPase activity keeps the chaperonin in an energy-saving dormant state, until binding of client protein activates it. Ph Cpn60 in complex with co-chaperonin Ph Cpn10 efficiently assists in protein folding up to 55 °C. Moreover, we show that recombinant expression of Ph Cpn60 can provide its host Escherichia coli with improved viability under low temperature growth conditions. These properties of the Ph chaperonin may make it a valuable tool in the folding and stabilization of psychrophilic proteins.
Collapse
|
research-article |
1 |
|