1
|
Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta Mol Basis Dis 2016; 1862:576-591. [PMID: 26769361 DOI: 10.1016/j.bbadis.2016.01.003] [Citation(s) in RCA: 516] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022]
Abstract
Osteoarthritis is the most common joint disorder with increasing prevalence due to aging of the population. Its multi-factorial etiology includes oxidative stress and the overproduction of reactive oxygen species, which regulate intracellular signaling processes, chondrocyte senescence and apoptosis, extracellular matrix synthesis and degradation along with synovial inflammation and dysfunction of the subchondral bone. As disease-modifying drugs for osteoarthritis are rare, targeting the complex oxidative stress signaling pathways would offer a valuable perspective for exploration of potential therapeutic strategies in the treatment of this devastating disease.
Collapse
|
Review |
9 |
516 |
2
|
Rigoglou S, Papavassiliou AG. The NF-κB signalling pathway in osteoarthritis. Int J Biochem Cell Biol 2013; 45:2580-4. [PMID: 24004831 DOI: 10.1016/j.biocel.2013.08.018] [Citation(s) in RCA: 390] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 10/26/2022]
Abstract
Nuclear factor-kappaB (NF-κB) proteins constitute a family of transcription factors that are stimulated by pro-inflammatory cytokines, chemokines, stress-related factors and extracellular matrix (ECM) degradation products. Upon stimulation, the activated NF-κB molecules trigger the expression of an array of genes which induce destruction of the articular joint, leading to osteoarthritis (OA) onset and progression. Therefore, targeted strategies that interfere with NF-κB signalling could offer novel potential therapeutic options for OA treatment. In this review, we discuss the involvement of NF-κB in OA pathogenesis and how pharmacological inhibition of the NF-κB signalling pathway affects OA incidence and evolution.
Collapse
|
Review |
12 |
390 |
3
|
Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG. Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat Rev Drug Discov 2007; 6:541-55. [PMID: 17585331 DOI: 10.1038/nrd2221] [Citation(s) in RCA: 353] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The involvement of the RAS superfamily of monomeric GTPases in carcinogenesis is increasingly being appreciated. A complex array of post-translational modifications and a highly sophisticated protein network regulate the spatio-temporal activation of these GTPases. Previous attempts to pharmacologically target this family have focused on the development of farnesyltransferase inhibitors, but the performance of such agents in cancer clinical trials has not been as good as hoped. Here, we review emerging druggable targets and novel therapeutic approaches targeting prenylation and post-prenylation modifications and the functional regulation of GDP/GTP exchange as exciting alternatives for anticancer therapy.
Collapse
|
Review |
18 |
353 |
4
|
Lepetsos P, Papavassiliou KA, Papavassiliou AG. Redox and NF-κB signaling in osteoarthritis. Free Radic Biol Med 2019; 132:90-100. [PMID: 30236789 DOI: 10.1016/j.freeradbiomed.2018.09.025] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 02/07/2023]
Abstract
Human cells have to deal with the constant production of reactive oxygen species (ROS). Although ROS overproduction might be harmful to cell biology, there are plenty of data showing that moderate levels of ROS control gene expression by maintaining redox signaling. Osteoarthritis (OA) is the most common joint disorder with a multi-factorial etiology including overproduction of ROS. ROS overproduction in OA modifies intracellular signaling, chondrocyte life cycle, metabolism of cartilage matrix and contributes to synovial inflammation and dysfunction of the subchondral bone. In arthritic tissues, the NF-κB signaling pathway can be activated by pro-inflammatory cytokines, mechanical stress, and extracellular matrix degradation products. This activation results in regulation of expression of many cytokines, inflammatory mediators, transcription factors, and several matrix-degrading enzymes. Overall, NF-κB signaling affects cartilage matrix remodeling, chondrocyte apoptosis, synovial inflammation, and has indirect stimulatory effects on downstream regulators of terminal chondrocyte differentiation. Interaction between redox signaling and NF-κB transcription factors seems to play a distinctive role in OA pathogenesis.
Collapse
|
Review |
6 |
255 |
5
|
Konstantinopoulos PA, Kominea A, Vandoros G, Sykiotis GP, Andricopoulos P, Varakis I, Sotiropoulou-Bonikou G, Papavassiliou AG. Oestrogen receptor beta (ERbeta) is abundantly expressed in normal colonic mucosa, but declines in colon adenocarcinoma paralleling the tumour's dedifferentiation. Eur J Cancer 2003; 39:1251-8. [PMID: 12763213 DOI: 10.1016/s0959-8049(03)00239-9] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oestrogen Receptor beta (ERbeta) may protect against prostate and mammary cell proliferation and malignant transformation. Epidemiological studies indicate that oestrogens may reduce colon cancer risk. Since ERalpha is minimally expressed in normal and malignant colon, the aim of this study was to investigate the expression of ERbeta in both normal colonic wall and colon cancer. ERbeta expression was evaluated by immunohistochemistry in 90 cases of colon adenocarcinoma and nearby (>30-cm away) normal colonic wall, using a monoclonal antibody. Moderate or strong nuclear immunostaining was detected in superficial and crypt epithelium, endothelial cells, vascular smooth muscle cells, lymphocytes, enteric neurons and smooth muscular cells of the normal colonic wall. Superficial epithelial cells in normal colon demonstrated a significantly higher ERbeta expression than colon adenocarcinoma cells in both genders. The decline in ERbeta expression paralleled the loss of differentiation of malignant colon cells, regardless of the tumour's localisation. These findings suggest a protective role for ERbeta against colon carcinogenesis.
Collapse
|
Comparative Study |
22 |
245 |
6
|
Sarantis P, Koustas E, Papadimitropoulou A, Papavassiliou AG, Karamouzis MV. Pancreatic ductal adenocarcinoma: Treatment hurdles, tumor microenvironment and immunotherapy. World J Gastrointest Oncol 2020; 12:173-181. [PMID: 32104548 PMCID: PMC7031151 DOI: 10.4251/wjgo.v12.i2.173] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 11/28/2019] [Accepted: 12/15/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases, with an average 5-year survival rate of less than 10%. Unfortunately, the majority of patients have unresectable, locally advanced, or metastatic disease at the time of diagnosis. Moreover, traditional treatments such as chemotherapy, surgery, and radiation have not been shown to significantly improve survival. Recently, there has been a swift increase in cancer treatments that incorporate immunotherapy-based strategies to target all the stepwise events required for tumor initiation and progression. The results in melanoma, non-small-cell lung cancer and renal cell carcinoma are very encouraging. Unfortunately, the application of checkpoint inhibitors, including anti-CTLA4, anti-PD-1, and anti-PD-L1 antibodies, in pancreatic cancer has been disappointing. Many studies have revealed that the PDAC microenvironment supports tumor growth, promotes metastasis and consists of a physical barrier to drug delivery. Combination therapies hold great promise for enhancing immune responses to achieve a better therapeutic effect. In this review, we provide an outline of why pancreatic cancer is so lethal and of the treatment hurdles that exist. Particular emphasis is given to the role of the tumor microenvironment, and some of the latest and most promising studies on immunotherapy in PDAC are also presented.
Collapse
|
Minireviews |
5 |
213 |
7
|
Diamanti-Kandarakis E, Papavassiliou AG, Kandarakis SA, Chrousos GP. Pathophysiology and types of dyslipidemia in PCOS. Trends Endocrinol Metab 2007; 18:280-5. [PMID: 17692530 DOI: 10.1016/j.tem.2007.07.004] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Revised: 06/20/2007] [Accepted: 07/31/2007] [Indexed: 11/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrinopathy that affects women of reproductive age. PCOS shares components with the metabolic syndrome and has broad health implications. Lipid abnormalities, including elevated low-density lipoprotein (LDL), triglyceride levels and decreased high-density lipoprotein (HDL), are often found in women with PCOS. It is clear that obesity, insulin resistance and hyperandrogenism coexist in PCOS, and have independent and interactive effects on dyslipidemia, although the mechanisms of these interactions remain elusive. Here, we review the types and pathophysiology of dyslipidemia associated with PCOS and its related conditions.
Collapse
|
Review |
18 |
204 |
8
|
Diamanti-Kandarakis E, Papavassiliou AG. Molecular mechanisms of insulin resistance in polycystic ovary syndrome. Trends Mol Med 2006; 12:324-32. [PMID: 16769248 DOI: 10.1016/j.molmed.2006.05.006] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 04/04/2006] [Accepted: 05/22/2006] [Indexed: 02/09/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy of unknown aetiology that affects women of reproductive age. During the past ten years, defective insulin activity in PCOS has been demonstrated in target tissues and causes insulin resistance and hyperinsulinaemia. Furthermore, presence of insulin receptors in the ovarian tissue and overproduction of androgens by theca cells leads to characteristic hyperandrogenaemia. Recent data suggest a divergence in post-receptor signalling pathways for insulin in its target tissues (muscle, adipocytes and ovarian tissue), where the metabolic pathway of insulin activity is defective, whereas the activation of steroidogenesis is maintained. Investigators are still searching for clues to understand the cause of this enigmatic syndrome, despite great advances in molecular medicine and genetics.
Collapse
|
Review |
19 |
202 |
9
|
Chartoumpekis DV, Habeos IG, Ziros PG, Psyrogiannis AI, Kyriazopoulou VE, Papavassiliou AG. Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol Med 2011; 17:736-40. [PMID: 21373720 DOI: 10.2119/molmed.2011.00075] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 02/25/2011] [Indexed: 12/30/2022] Open
Abstract
Fibroblast growth factor-21 (FGF21) is a pleiotropic protein involved in glucose, lipid metabolism and energy homeostasis, with main tissues of expression being the liver and adipose tissue. Brown adipose tissue (BAT) is responsible for cold-induced thermogenesis in rodents. The role of FGF21 in BAT biology has not been investigated. In the present study, wild-type C57BL/6J mice as well as a brown adipocyte cell line were used to explore the potential role of cold exposure and β3-adrenergic stimulation in the expression of FGF21 in BAT. Our results demonstrate that short-term exposure to cold, as well as β3-adrenergic stimulation, causes a significant induction of FGF21 mRNA levels in BAT, without a concomitant increase in FGF21 plasma levels. This finding opens new routes for the potential use of pharmaceuticals that could induce FGF21 and, hence, activate BAT thermogenesis.
Collapse
|
Journal Article |
14 |
190 |
10
|
Nasiri-Ansari N, Nikolopoulou C, Papoutsi K, Kyrou I, Mantzoros CS, Kyriakopoulos G, Chatzigeorgiou A, Kalotychou V, Randeva MS, Chatha K, Kontzoglou K, Kaltsas G, Papavassiliou AG, Randeva HS, Kassi E. Empagliflozin Attenuates Non-Alcoholic Fatty Liver Disease (NAFLD) in High Fat Diet Fed ApoE (-/-) Mice by Activating Autophagy and Reducing ER Stress and Apoptosis. Int J Mol Sci 2021; 22:E818. [PMID: 33467546 PMCID: PMC7829901 DOI: 10.3390/ijms22020818] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
AIMS/HYPOTHESIS SGLT-2 inhibitors (SGLT-2i) have been studied as potential treatments against NAFLD, showing varying beneficial effects. The molecular mechanisms mediating these effects have not been fully clarified. Herein, we investigated the impact of empagliflozin on NAFLD, focusing particularly on ER stress, autophagy and apoptosis. METHODS Five-week old ApoE(-/-) mice were switched from normal to a high-fat diet (HFD). After five weeks, mice were randomly allocated into a control group (HFD + vehicle) and Empa group (HFD + empagliflozin 10 mg/kg/day) for five weeks. At the end of treatment, histomorphometric analysis was performed in liver, mRNA levels of Fasn, Screbp-1, Scd-1, Ppar-γ, Pck-1, Mcp-1, Tnf-α, Il-6, F4/80, Atf4, Elf2α, Chop, Grp78, Grp94, Χbp1, Ire1α, Atf6, mTor, Lc3b, Beclin-1, P62, Bcl-2 and Bax were measured by qRT-PCR, and protein levels of p-EIF2α, EIF2a, CHOP, LC3II, P62, BECLIN-1 and cleaved CASPASE-8 were assessed by immunoblotting. RESULTS Empagliflozin-treated mice exhibited reduced fasting glucose, total cholesterol and triglyceride serum levels, as well as decreased NAFLD activity score, decreased expression of lipogenic enzymes (Fasn, Screbp-1c and Pck-1) and inflammatory molecules (Mcp-1 and F4/80), compared to the Control group. Empagliflozin significantly decreased the expression of ER stress molecules Grp78, Ire1α, Xbp1, Elf2α, Atf4, Atf6, Chop, P62(Sqstm1) and Grp94; whilst activating autophagy via increased AMPK phosphorylation, decreased mTOR and increased LC3B expression. Finally, empagliflozin increased the Bcl2/Bax ratio and inhibited CASPASE-8 cleavage, reducing liver cell apoptosis. Immunoblotting analysis confirmed the qPCR results. CONCLUSION These novel findings indicate that empagliflozin treatment for five weeks attenuates NAFLD progression in ApoE(-/-) mice by promoting autophagy, reducing ER stress and inhibiting hepatic apoptosis.
Collapse
|
research-article |
4 |
188 |
11
|
Ziros PG, Gil APR, Georgakopoulos T, Habeos I, Kletsas D, Basdra EK, Papavassiliou AG. The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J Biol Chem 2002; 277:23934-41. [PMID: 11960980 DOI: 10.1074/jbc.m109881200] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A primary goal of bone research is to understand the mechanism(s) by which mechanical forces dictate the cellular and metabolic activities of osteoblasts, the bone-forming cells. Several studies indicate that osteblastic cells respond to physical loading by transducing signals that alter gene expression patterns. Accumulated data have documented the fundamental role of the osteoblast-specific transcription factor Cbfa1 (core-binding factor) in osteoblast differentiation and function. Here, we demonstrate that low level mechanical deformation (stretching) of human osteoblastic cells directly up-regulates the expression and DNA binding activity of Cbfa1. This effect seems to be fine tuned by stretch-triggered induction of distinct mitogen-activated protein kinase cascades. Our novel finding that activated extracellular signal-regulated kinase mitogen-activated protein kinase physically interacts and phosphorylates endogenous Cbfa1 in vivo (ultimately potentiating this transcription factor) provides a molecular link between mechanostressing and stimulation of osteoblast differentiation. Elucidation of the specific modifiers and cofactors that operate in this mechanotranscription circuitry will contribute to a better understanding of mechanical load-induced bone formation which may set the basis for nonpharmacological intervention in bone loss pathologies.
Collapse
|
|
23 |
178 |
12
|
Siasos G, Tsigkou V, Kosmopoulos M, Theodosiadis D, Simantiris S, Tagkou NM, Tsimpiktsioglou A, Stampouloglou PK, Oikonomou E, Mourouzis K, Philippou A, Vavuranakis M, Stefanadis C, Tousoulis D, Papavassiliou AG. Mitochondria and cardiovascular diseases-from pathophysiology to treatment. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:256. [PMID: 30069458 DOI: 10.21037/atm.2018.06.21] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria are the source of cellular energy production and are present in different types of cells. However, their function is especially important for the heart due to the high demands in energy which is achieved through oxidative phosphorylation. Mitochondria form large networks which regulate metabolism and the optimal function is achieved through the balance between mitochondrial fusion and mitochondrial fission. Moreover, mitochondrial function is upon quality control via the process of mitophagy which removes the damaged organelles. Mitochondrial dysfunction is associated with the development of numerous cardiac diseases such as atherosclerosis, ischemia-reperfusion (I/R) injury, hypertension, diabetes, cardiac hypertrophy and heart failure (HF), due to the uncontrolled production of reactive oxygen species (ROS). Therefore, early control of mitochondrial dysfunction is a crucial step in the therapy of cardiac diseases. A number of anti-oxidant molecules and medications have been used but the results are inconsistent among the studies. Eventually, the aim of future research is to design molecules which selectively target mitochondrial dysfunction and restore the capacity of cellular anti-oxidant enzymes.
Collapse
|
Review |
7 |
175 |
13
|
Papachroni KK, Karatzas DN, Papavassiliou KA, Basdra EK, Papavassiliou AG. Mechanotransduction in osteoblast regulation and bone disease. Trends Mol Med 2009; 15:208-16. [PMID: 19362057 DOI: 10.1016/j.molmed.2009.03.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/06/2009] [Accepted: 03/06/2009] [Indexed: 01/20/2023]
Abstract
Osteoblasts are key components of the bone multicellular unit and have a seminal role in bone remodeling, which is an essential function for the maintenance of the structural integrity and metabolic capacity of the skeleton. The coordinated function of skeletal cells is regulated by several hormones, growth factors and mechanical cues that act via interconnected signaling networks, resulting in the activation of specific transcription factors and, in turn, their target genes. Bone cells are responsive to mechanical stimuli and this is of pivotal importance in developing biomechanical strategies for the treatment of osteodegenerative diseases. Here, we review the molecular pathways and players activated by mechanical stimulation during osteoblastic growth, differentiation and activity in health, and consider the role of mechanostimulatory approaches in treating various bone pathophysiologies.
Collapse
|
Review |
16 |
174 |
14
|
Vaiopoulos AG, Kostakis ID, Koutsilieris M, Papavassiliou AG. Colorectal cancer stem cells. Stem Cells 2012; 30:363-71. [PMID: 22232074 DOI: 10.1002/stem.1031] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed and lethal cancers worldwide. It is a multistep process that requires the accumulation of genetic/epigenetic aberrations. There are several issues concerning colorectal carcinogenesis that remain unanswered, such as the cell of origin and the type of cells that propagate the tumor after its initiation. There are two models of carcinogenesis: the stochastic and the cancer stem cell (CSC) model. According to the stochastic model, any kind of cell is capable of initiating and promoting cancer development, whereas the CSC model suggests that tumors are hierarchically organized and only CSCs possess cancer-promoting potential. Moreover, various molecular pathways, such as Wingless/Int (Wnt) and Notch, as well as the complex crosstalk network between microenvironment and CSCs, are involved in CRC. Identification of CSCs remains controversial due to the lack of widely accepted specific molecular markers. CSCs are responsible for tumor relapse, because conventional drugs fail to eliminate the CSC reservoir. Therefore, the design of CSC-targeted interventions is a rational target, which will enhance responsiveness to traditional therapeutic strategies and reduce local recurrence and metastasis. This review discusses the implications of the newly introduced CSC model in CRC, the markers used up to now for CSC identification, and its potential implications in the design of novel therapeutic approaches.
Collapse
|
Review |
13 |
168 |
15
|
|
Review |
11 |
165 |
16
|
Liontos M, Koutsami M, Sideridou M, Evangelou K, Kletsas D, Levy B, Kotsinas A, Nahum O, Zoumpourlis V, Kouloukoussa M, Lygerou Z, Taraviras S, Kittas C, Bartkova J, Papavassiliou AG, Bartek J, Halazonetis TD, Gorgoulis VG. Deregulated overexpression of hCdt1 and hCdc6 promotes malignant behavior. Cancer Res 2007; 67:10899-909. [PMID: 18006835 DOI: 10.1158/0008-5472.can-07-2837] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The accurate execution of DNA replication requires a strict control of the replication licensing factors hCdt1 and hCdc6. The role of these key replication molecules in carcinogenesis has not been clarified. To examine how early during cancer development deregulation of these factors occurs, we investigated their status in epithelial lesions covering progressive stages of hyperplasia, dysplasia, and full malignancy, mostly from the same patients. Abnormal accumulation of both proteins occurred early from the stage of dysplasia. A frequent cause of unregulated hCdc6 and hCdt1 expression was gene amplification, suggesting that these components can play a role per se in cancer development. Overexpression of hCdt1 and hCdc6 promoted rereplication and generated a DNA damage response, which activated the antitumor barriers of senescence and apoptosis. Generating an inducible hCdt1 cellular system, we observed that continuous stimulus by deregulated hCdt1 led to abrogation of the antitumor barriers and resulted in the selection of clones with more aggressive properties. In addition, stable expression of hCdc6 and hCdt1 in premalignant papilloma cells led to transformation of the cells that produced tumors upon injection into nude mice depicting the oncogenic potential of their deregulation.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
160 |
17
|
Chartoumpekis DV, Ziros PG, Psyrogiannis AI, Papavassiliou AG, Kyriazopoulou VE, Sykiotis GP, Habeos IG. Nrf2 represses FGF21 during long-term high-fat diet-induced obesity in mice. Diabetes 2011; 60:2465-73. [PMID: 21852674 PMCID: PMC3178292 DOI: 10.2337/db11-0112] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Obesity is characterized by chronic oxidative stress. Fibroblast growth factor 21 (FGF21) has recently been identified as a novel hormone that regulates metabolism. NFE2-related factor 2 (Nrf2) is a transcription factor that orchestrates the expression of a battery of antioxidant and detoxification genes under both basal and stress conditions. The current study investigated the role of Nrf2 in a mouse model of long-term high-fat diet (HFD)-induced obesity and characterized its crosstalk to FGF21 in this process. RESEARCH DESIGN AND METHODS Wild-type (WT) and Nrf2 knockout (Nrf2-KO) mice were fed an HFD for 180 days. During this period, food consumption and body weights were measured. Glucose metabolism was assessed by an intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test. Total RNA was prepared from liver and adipose tissue and was used for quantitative real-time RT-PCR. Fasting plasma was collected and analyzed for blood chemistries. The ST-2 cell line was used for transfection studies. RESULTS Nrf2-KO mice were partially protected from HFD-induced obesity and developed a less insulin-resistant phenotype. Importantly, Nrf2-KO mice had higher plasma FGF21 levels and higher FGF21 mRNA levels in liver and white adipose tissue than WT mice. Thus, the altered metabolic phenotype of Nrf2-KO mice under HFD was associated with higher expression and abundance of FGF21. Consistently, the overexpression of Nrf2 in ST-2 cells resulted in decreased FGF21 mRNA levels as well as in suppressed activity of a FGF21 promoter luciferase reporter. CONCLUSIONS The identification of Nrf2 as a novel regulator of FGF21 expands our understanding of the crosstalk between metabolism and stress defense.
Collapse
|
research-article |
14 |
147 |
18
|
Karakaidos P, Taraviras S, Vassiliou LV, Zacharatos P, Kastrinakis NG, Kougiou D, Kouloukoussa M, Nishitani H, Papavassiliou AG, Lygerou Z, Gorgoulis VG. Overexpression of the replication licensing regulators hCdt1 and hCdc6 characterizes a subset of non-small-cell lung carcinomas: synergistic effect with mutant p53 on tumor growth and chromosomal instability--evidence of E2F-1 transcriptional control over hCdt1. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1351-65. [PMID: 15466399 PMCID: PMC1618634 DOI: 10.1016/s0002-9440(10)63393-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Replication licensing ensures once per cell cycle replication and is essential for genome stability. Overexpression of two key licensing factors, Cdc6 and Cdt1, leads to overreplication and chromosomal instability (CIN) in lower eukaryotes and recently in human cell lines. In this report, we analyzed hCdt1, hCdc6, and hGeminin, the hCdt1 inhibitor expression, in a series of non-small-cell lung carcinomas, and investigated for putative relations with G(1)/S phase regulators, tumor kinetics, and ploidy. This is the first study of these fundamental licensing elements in primary human lung carcinomas. We herein demonstrate elevated levels (more than fourfold) of hCdt1 and hCdc6 in 43% and 50% of neoplasms, respectively, whereas aberrant expression of hGeminin was observed in 49% of cases (underexpression, 12%; overexpression, 37%). hCdt1 expression positively correlated with hCdc6 and E2F-1 levels (P = 0.001 and P = 0.048, respectively). Supportive of the observed link between E2F-1 and hCdt1, we provide evidence that E2F-1 up-regulates the hCdt1 promoter in cultured mammalian cells. Interestingly, hGeminin overexpression was statistically related to increased hCdt1 levels (P = 0.025). Regarding the kinetic and ploidy status of hCdt1- and/or hCdc6-overexpressing tumors, p53-mutant cases exhibited significantly increased tumor growth values (Growth Index; GI) and aneuploidy/CIN compared to those bearing intact p53 (P = 0.008 for GI, P = 0.001 for CIN). The significance of these results was underscored by the fact that the latter parameters were independent of p53 within the hCdt1-hCdc6 normally expressing cases. Cumulatively, the above suggest a synergistic effect between hCdt1-hCdc6 overexpression and mutant-p53 over tumor growth and CIN in non-small-cell lung carcinomas.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
132 |
19
|
Diamanti-Kandarakis E, Katsikis I, Piperi C, Kandaraki E, Piouka A, Papavassiliou AG, Panidis D. Increased serum advanced glycation end-products is a distinct finding in lean women with polycystic ovary syndrome (PCOS). Clin Endocrinol (Oxf) 2008; 69:634-41. [PMID: 18363886 DOI: 10.1111/j.1365-2265.2008.03247.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nonenzymatic advanced glycation and oxidation end-products, advanced glycation end-products (AGEs), impart a potent impact on vessels and other tissues in diabetic state and in euglycaemic conditions with increased oxidative stress. Insulin resistant (IR) polycystic ovary syndrome (PCOS) women, have elevated serum AGEs, increased receptor (RAGE) expression, and increased deposition with differential localization in the polycystic ovarian tissue (theca and granulosa) compared to normal. OBJECTIVE To determine whether the raised AGE levels in noninsulin resistant women with PCOS is a distinct finding compared with those presenting the isolated components of the syndrome and among PCOS subphenotypes. Noninsulin resistant women were selected in order to show that serum AGEs are elevated in PCOS independently of the presence of IR. DESIGN Clinical trial. PATIENTS One hundred and ninety-three age- and BMI-matched young lean noninsulin resistant women were studied. Among them, 100 women were diagnosed with PCOS according to Rotterdam criteria, and divided to subphenotypes (hyperandrogenaemia with or without PCO morphology and with or without anovulation). Sixty-eight women with the isolated components of the PCOS phenotype were also studied along with 25 healthy women. MEASUREMENTS Serum AGE levels, metabolic, hormonal profiles and intravaginal ultrasound were determined in all subjects. RESULTS The studied population did not differ in BMI, fasting insulin concentration, waist : hip and glucose : insulin ratios. PCOS women exhibited statistically higher AGEs levels (7.96 +/- 1.87 U/ml, P < 0.001) compared with those with isolated hyperandrogenaemia (5.61 +/- 0.61 U/ml), anovulation (5.53 +/- 1.06 U/ml), US-PCO morphology (5.26 +/- 0.25 U/ml) and controls (5.86 +/- 0.89 U/ml). CONCLUSIONS In PCOS, serum AGEs are distinctly elevated compared with women having the isolated characteristics of the syndrome. No difference was observed between PCOS subphenotypes. As chronic inflammation and increased oxidant stress have been incriminated in the pathophysiology of PCOS, the role of AGEs as inflammatory and oxidant mediators, may be linked with the metabolic and reproductive abnormalities of the syndrome.
Collapse
|
Multicenter Study |
17 |
124 |
20
|
Gorgoulis VG, Zacharatos P, Mariatos G, Kotsinas A, Bouda M, Kletsas D, Asimacopoulos PJ, Agnantis N, Kittas C, Papavassiliou AG. Transcription factor E2F-1 acts as a growth-promoting factor and is associated with adverse prognosis in non-small cell lung carcinomas. J Pathol 2002; 198:142-56. [PMID: 12237873 DOI: 10.1002/path.1121] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Numerous upstream stimulatory and inhibitory signals converge to the pRb/E2F pathway, which governs cell-cycle progression, but the information concerning alterations of E2F-1 in primary malignancies is very limited. Several in vitro studies report that E2F-1 can act either as an oncoprotein or as a tumour suppressor protein. In view of this dichotomy in its functions and its critical role in cell cycle control, this study examined the following four aspects of E2F-1 in a panel of 87 non-small cell lung carcinomas (NSCLCs), previously analysed for defects in the pRb-p53-MDM2 network: firstly, the status of E2F-1 at the protein, mRNA and DNA levels; secondly, its relationship with the kinetic parameters and genomic instability of the tumours; thirdly, its association with the status of its transcriptional co-activator CBP, downstream target PCNA and main cell cycle regulatory and E2F-1-interacting molecules pRb, p53 and MDM2; and fourthly, its impact on clinical outcome. The protein levels of E2F-1 and its co-activator CBP were significantly higher in the tumour area than in the corresponding normal epithelium (p<0.001). E2F-1 overexpression was associated with increased E2F-1 mRNA levels in 82% of the cases examined. The latter finding, along with the low frequency of E2F-1 gene amplification observed (9%), suggests that the main mechanism of E2F-1 protein overexpression in NSCLCs is deregulation at the transcriptional level. Mutational analysis revealed only one sample with asomatic mutation at codon 371 (Glu-->Asp) and one carrying a polymorphism at codon 393 (Gly-->Ser). Carcinomas with increased E2F-1 positivity demonstrated a significant increase in their growth indexes (r=0.402, p=0.001) and were associated with adverse prognosis (p=0.033 by Cox regression analysis). The main determinant of the positive association with growth was the parallel increase between E2F-1 staining and proliferation (r=0.746, p<0.001), whereas apoptosis was not influenced by the status of E2F-1. Moreover, correlation with the status of the pRb-p53-MDM2 network showed that the cases with aberrant pRb expression displayed significantly higher E2F-1 indexes (p=0.033), while a similar association was noticed in the group of carcinomas with deregulation of the p53-MDM2 feedback loop. In conclusion, the results suggest that E2F-1 overexpression may contribute to the development of NSCLCs by promoting proliferation and provide evidence that this role is further enhanced in a genetic background with deregulated pRb-p53-MDM2 circuitry.
Collapse
|
|
23 |
122 |
21
|
Diamanti-Kandarakis E, Piperi C, Patsouris E, Korkolopoulou P, Panidis D, Pawelczyk L, Papavassiliou AG, Duleba AJ. Immunohistochemical localization of advanced glycation end-products (AGEs) and their receptor (RAGE) in polycystic and normal ovaries. Histochem Cell Biol 2007; 127:581-9. [PMID: 17205306 DOI: 10.1007/s00418-006-0265-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2006] [Indexed: 10/23/2022]
Abstract
The aim of the present study was to investigate the localization/immunohistochemical distribution of AGEs and RAGE, as well as their putative signalling mediator NF-kappaB in ovaries of women with polycystic ovary syndrome (PCOS) compared to normal. Archival ovarian-tissue samples from biopsies of six women with PCOS and from six healthy of similar age women, were examined immunohistochemically with monoclonal anti-AGEs, anti-RAGE and anti-NF-kappaB(p50/p65) specific antibodies. In healthy women, AGE immunoreactivity was observed in follicular cell layers (granulosa and theca) and luteinized cells, but not in endothelial cells. PCOS specimens displayed AGE immunoexpression in theca interna and granulosa cells as well as in endothelial cells, but staining of granulosa cells was stronger than in that of normal ovaries. RAGE was highly expressed in normal and PCOS tissues. Normal tissue exhibited no staining differences between granulosa cell layer and theca interna. However, in PCOS ovaries, granulosa cells displayed stronger RAGE expression compared to theca interna cells in comparison to controls. NF-kappaB(p50/p65) was expressed in the cytoplasm of theca interna and granulosa cells of both normal and PCOS ovaries; whereas the NF-kappaB p65 subunit was only observed in granulosa cells nuclei in PCOS tissue. In conclusion, these findings demonstrate for the first time that RAGE and AGE-modified proteins with activated NF-kappaB are expressed in human ovarian tissue. Furthermore, a differential qualitative distribution of AGE, RAGE and NF-kappaB p65 subunit was observed in women with PCOS compared to healthy controls, where a stronger localization of both AGE and RAGE was observed in the granulosa cell layer of PCOS ovaries.
Collapse
|
|
18 |
121 |
22
|
Piperi C, Adamopoulos C, Dalagiorgou G, Diamanti-Kandarakis E, Papavassiliou AG. Crosstalk between advanced glycation and endoplasmic reticulum stress: emerging therapeutic targeting for metabolic diseases. J Clin Endocrinol Metab 2012; 97:2231-42. [PMID: 22508704 DOI: 10.1210/jc.2011-3408] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CONTEXT Advanced glycation, the major posttranslational modification of proteins, DNA, and lipids, is accelerated under conditions of increased oxidative stress, hyperglycemia, and hypoxia contributing to a variety of metabolic diseases such as diabetes mellitus, obesity, inflammation, polycystic ovarian syndrome, ischemic cardiovascular disease, and neurodegenerative disorders. The potential role of advanced glycation in endoplasmic reticulum (ER) homeostasis is largely unknown. EVIDENCE ACQUISITION Basic and clinical peer-reviewed articles on advanced glycation and ER stress related to metabolic regulation were searched in PubMed from 2000-2011. The resulting articles as well as relevant cited references were reviewed. EVIDENCE SYNTHESIS Recent evidence indicates that hyperglycemia, hypoxia, and oxidative stress, apart of triggering advanced glycation, can also adversely affect ER function, leading to pathogenic ER stress, followed by the unfolded protein response. The concomitant presence of advanced glycation in the same conditions with ER stress suggests their crosstalk in the progression of diseases associated with hypoxic and oxidative stress. CONCLUSION Current data support the direct or indirect induction of ER stress response by advanced glycation end products or advanced glycation end product precursors in the pathogenesis of metabolic diseases. Inhibitors of advanced glycation acting as potent ER stress modulators with beneficial effects in restoring ER homeostasis and adjusting physiological unfolded protein response level present an emerging therapeutic approach with significant applications, especially in the context of metabolic dysfunction.
Collapse
|
Review |
13 |
120 |
23
|
Lampropoulos P, Zizi-Sermpetzoglou A, Rizos S, Kostakis A, Nikiteas N, Papavassiliou AG. TGF-beta signalling in colon carcinogenesis. Cancer Lett 2011; 314:1-7. [PMID: 22018778 DOI: 10.1016/j.canlet.2011.09.041] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 02/08/2023]
Abstract
Colorectal cancer remains the most common cancer and the second leading cause of cancer mortality in Europe. There are a number of pathways that have been implicated in colorectal carcinogenesis, including TGF-beta (TGF-β)/Smad signalling pathway. The TGF-β pathway is involved in several biological processes, including cell proliferation, differentiation, migration and apoptosis. Here we review the role of TGF-β signalling cascade in colorectal carcinogenesis and provide some new molecular insights that may aid efforts towards targeted antitumor therapies.
Collapse
|
Review |
14 |
113 |
24
|
Nasiri-Ansari Ν, Dimitriadis GK, Agrogiannis G, Perrea D, Kostakis ID, Kaltsas G, Papavassiliou AG, Randeva HS, Kassi E. Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice. Cardiovasc Diabetol 2018; 17:106. [PMID: 30049285 PMCID: PMC6063004 DOI: 10.1186/s12933-018-0749-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Background Sodium glucose co-transporter2 inhibitors reduce the incidence of cardiovascular events in patients with type 2 diabetes mellitus based on the results of recent cardiovascular outcome studies. Herein, we investigated the effects of long-term treatment with canagliflozin on biochemical and immunohistochemical markers related to atherosclerosis and atherosclerosis development in the aorta of apolipoprotein E knockout (Apo-E(−/−)) mice. Methods At the age of 5 weeks, mice were switched from normal to a high-fat diet. After 5 weeks, Apo-E(−/−) mice were divided into control-group (6 mice) treated with 0.5% hydroxypropyl methylcellulose and Cana-group (7 mice) treated with canagliflozin (10 mg/kg per day) per os. After 5 weeks of intervention, animals were sacrificed, and heart and aorta were removed. Sections stained with hematoxylin–eosin (H&E) were used for histomorphometry whereas Masson’s stained tissues were used to quantify the collagen content. Immunohistochemistry to assess MCP-1, CD68, a-smooth muscle actin, MMP-2, MMP-9, TIMP-1 and TIMP-2 expression was carried out and q-PCR experiments were performed to quantify mRNA expression. Results Canagliflozin-group mice had lower total-cholesterol, triglycerides and glucose levels (P < 0.01), while heart rate was significantly lower (P < 0.05). Histomorphometry revealed that one in seven Cana-group mice versus four in six control mice developed atheromatosis, while aortic root plaque was significantly less, and collagen was 1.6 times more intense in canagliflozin-group suggesting increased plaque stability. Immunohistochemistry revealed that MCP-1 was significantly less expressed (P < 0.05) in the aortic root of canagliflozin-group while reduced expression of a-actin and CD68 was not reaching significance (P = 0.15). VCAM-1 and MCP-1 mRNA levels were lower (P = 0.02 and P = 0.07, respectively), while TIMP-1/MMP-2 ratio expression was higher in canagliflozin-group approaching statistical significance (P = 0.07). Conclusions Canagliflozin attenuates the progression of atherosclerosis, reducing (1) hyperlipidemia and hyperglycemia, and (2) inflammatory process, by lowering the expression of inflammatory molecules such as MCP-1 and VCAM-1. Moreover, canagliflozin was found to increase the atherosclerotic plaque stability via increasing TIMP-1/MMP-2 ratio expression. Electronic supplementary material The online version of this article (10.1186/s12933-018-0749-1) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
7 |
113 |
25
|
Gaitanaris GA, Papavassiliou AG, Rubock P, Silverstein SJ, Gottesman ME. Renaturation of denatured lambda repressor requires heat shock proteins. Cell 1990; 61:1013-20. [PMID: 2140957 DOI: 10.1016/0092-8674(90)90066-n] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The temperature-sensitive bacteriophage lambda cI857 repressor protein rapidly renatures after thermal inactivation. E. coli mutants in the heat shock protein genes dnaK, dnaJ, and grpE do not efficiently reactivate heat-denatured repressor. Our results suggest that protein refolding is promoted by heat shock proteins and that such a process is the basis of the homeostatic role played by these proteins in the heat shock response.
Collapse
|
Retracted Publication |
35 |
107 |