1
|
Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Pérez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz S, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, Ternent T, Brazma A, Vizcaíno JA. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 2020; 47:D442-D450. [PMID: 30395289 PMCID: PMC6323896 DOI: 10.1093/nar/gky1106] [Citation(s) in RCA: 5314] [Impact Index Per Article: 1062.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
The PRoteomics IDEntifications (PRIDE) database (https://www.ebi.ac.uk/pride/) is the world’s largest data repository of mass spectrometry-based proteomics data, and is one of the founding members of the global ProteomeXchange (PX) consortium. In this manuscript, we summarize the developments in PRIDE resources and related tools since the previous update manuscript was published in Nucleic Acids Research in 2016. In the last 3 years, public data sharing through PRIDE (as part of PX) has definitely become the norm in the field. In parallel, data re-use of public proteomics data has increased enormously, with multiple applications. We first describe the new architecture of PRIDE Archive, the archival component of PRIDE. PRIDE Archive and the related data submission framework have been further developed to support the increase in submitted data volumes and additional data types. A new scalable and fault tolerant storage backend, Application Programming Interface and web interface have been implemented, as a part of an ongoing process. Additionally, we emphasize the improved support for quantitative proteomics data through the mzTab format. At last, we outline key statistics on the current data contents and volume of downloads, and how PRIDE data are starting to be disseminated to added-value resources including Ensembl, UniProt and Expression Atlas.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
5314 |
2
|
Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 2016; 44:D447-56. [PMID: 26527722 PMCID: PMC4702828 DOI: 10.1093/nar/gkv1145] [Citation(s) in RCA: 2569] [Impact Index Per Article: 285.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 11/18/2022] Open
Abstract
The PRoteomics IDEntifications (PRIDE) database is one of the world-leading data repositories of mass spectrometry (MS)-based proteomics data. Since the beginning of 2014, PRIDE Archive (http://www.ebi.ac.uk/pride/archive/) is the new PRIDE archival system, replacing the original PRIDE database. Here we summarize the developments in PRIDE resources and related tools since the previous update manuscript in the Database Issue in 2013. PRIDE Archive constitutes a complete redevelopment of the original PRIDE, comprising a new storage backend, data submission system and web interface, among other components. PRIDE Archive supports the most-widely used PSI (Proteomics Standards Initiative) data standard formats (mzML and mzIdentML) and implements the data requirements and guidelines of the ProteomeXchange Consortium. The wide adoption of ProteomeXchange within the community has triggered an unprecedented increase in the number of submitted data sets (around 150 data sets per month). We outline some statistics on the current PRIDE Archive data contents. We also report on the status of the PRIDE related stand-alone tools: PRIDE Inspector, PRIDE Converter 2 and the ProteomeXchange submission tool. Finally, we will give a brief update on the resources under development 'PRIDE Cluster' and 'PRIDE Proteomes', which provide a complementary view and quality-scored information of the peptide and protein identification data available in PRIDE Archive.
Collapse
|
research-article |
9 |
2569 |
3
|
Vizcaíno JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Ríos D, Dianes JA, Sun Z, Farrah T, Bandeira N, Binz PA, Xenarios I, Eisenacher M, Mayer G, Gatto L, Campos A, Chalkley RJ, Kraus HJ, Albar JP, Martinez-Bartolomé S, Apweiler R, Omenn GS, Martens L, Jones AR, Hermjakob H. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 2014; 32:223-6. [PMID: 24727771 PMCID: PMC3986813 DOI: 10.1038/nbt.2839] [Citation(s) in RCA: 2261] [Impact Index Per Article: 205.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
Letter |
11 |
2261 |
4
|
Vizcaíno JA, Côté RG, Csordas A, Dianes JA, Fabregat A, Foster JM, Griss J, Alpi E, Birim M, Contell J, O'Kelly G, Schoenegger A, Ovelleiro D, Pérez-Riverol Y, Reisinger F, Ríos D, Wang R, Hermjakob H. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 2012. [PMID: 23203882 PMCID: PMC3531176 DOI: 10.1093/nar/gks1262] [Citation(s) in RCA: 1621] [Impact Index Per Article: 124.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The PRoteomics IDEntifications (PRIDE, http://www.ebi.ac.uk/pride) database at the European Bioinformatics Institute is one of the most prominent data repositories of mass spectrometry (MS)-based proteomics data. Here, we summarize recent developments in the PRIDE database and related tools. First, we provide up-to-date statistics in data content, splitting the figures by groups of organisms and species, including peptide and protein identifications, and post-translational modifications. We then describe the tools that are part of the PRIDE submission pipeline, especially the recently developed PRIDE Converter 2 (new submission tool) and PRIDE Inspector (visualization and analysis tool). We also give an update about the integration of PRIDE with other MS proteomics resources in the context of the ProteomeXchange consortium. Finally, we briefly review the quality control efforts that are ongoing at present and outline our future plans.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
1621 |
5
|
Deutsch EW, Csordas A, Sun Z, Jarnuczak A, Perez-Riverol Y, Ternent T, Campbell DS, Bernal-Llinares M, Okuda S, Kawano S, Moritz RL, Carver JJ, Wang M, Ishihama Y, Bandeira N, Hermjakob H, Vizcaíno JA. The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res 2016; 45:D1100-D1106. [PMID: 27924013 PMCID: PMC5210636 DOI: 10.1093/nar/gkw936] [Citation(s) in RCA: 692] [Impact Index Per Article: 76.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
The ProteomeXchange (PX) Consortium of proteomics resources (http://www.proteomexchange.org) was formally started in 2011 to standardize data submission and dissemination of mass spectrometry proteomics data worldwide. We give an overview of the current consortium activities and describe the advances of the past few years. Augmenting the PX founding members (PRIDE and PeptideAtlas, including the PASSEL resource), two new members have joined the consortium: MassIVE and jPOST. ProteomeCentral remains as the common data access portal, providing the ability to search for data sets in all participating PX resources, now with enhanced data visualization components. We describe the updated submission guidelines, now expanded to include four members instead of two. As demonstrated by data submission statistics, PX is supporting a change in culture of the proteomics field: public data sharing is now an accepted standard, supported by requirements for journal submissions resulting in public data release becoming the norm. More than 4500 data sets have been submitted to the various PX resources since 2012. Human is the most represented species with approximately half of the data sets, followed by some of the main model organisms and a growing list of more than 900 diverse species. Data reprocessing activities are becoming more prominent, with both MassIVE and PeptideAtlas releasing the results of reprocessed data sets. Finally, we outline the upcoming advances for ProteomeXchange.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
692 |
6
|
Vizcaíno JA, Csordas A, Del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 2016; 44:11033. [PMID: 27683222 PMCID: PMC5159556 DOI: 10.1093/nar/gkw880] [Citation(s) in RCA: 611] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
Published Erratum |
9 |
611 |
7
|
Zaborszky L, Csordas A, Mosca K, Kim J, Gielow MR, Vadasz C, Nadasdy Z. Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. ACTA ACUST UNITED AC 2013; 25:118-37. [PMID: 23964066 DOI: 10.1093/cercor/bht210] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The most prominent feature of the Basal Forebrain (BF) is the collection of large cortically projecting neurons (basal nucleus of Meynert) that serve as the primary source of cholinergic input to the entire cortical mantle. Despite its broad involvement in cortical activation, attention, and memory, the functional details of the BF are not well understood due to the anatomical complexity of the region. This study tested the hypothesis that basalocortical connections reflect cortical connectivity patterns. Distinct retrograde tracers were deposited into various frontal and posterior cortical areas, and retrogradely labeled cholinergic and noncholinergic neurons were mapped in the BF. Concurrently, we mapped retrogradely labeled cells in posterior cortical areas that project to various frontal areas, and all cell populations were combined in the same coordinate system. Our studies suggest that the cholinergic and noncholinergic projections to the neocortex are not diffuse, but instead, are organized into segregated or overlapping pools of projection neurons. The extent of overlap between BF populations projecting to the cortex depends on the degree of connectivity between the cortical targets of these projection populations. We suggest that the organization of projections from the BF may enable parallel modulation of multiple groupings of interconnected yet nonadjacent cortical areas.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
214 |
8
|
Görg A, Obermaier C, Boguth G, Csordas A, Diaz JJ, Madjar JJ. Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins. Electrophoresis 1997; 18:328-37. [PMID: 9150910 DOI: 10.1002/elps.1150180306] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Basic proteins normally lost by the cathodic drift of carrier ampholyte focusing, or separated by NEPHGE with limited reproducibility, could be well separated by two-dimensional (2-D) electrophoresis under equilibrium conditions using immobilized pH gradients (IPGs) 4-10 and 6-10 using a previously published protocol (Görg et al., Electrophoresis 1988, 9, 531-546). In the present study we have extended the pH gradient to pH 12 with IPGs 8-12, 9-12 and 10-12 for the analysis of very basic proteins. Different optimization steps with respect to pH engineering, gel composition and running conditions, such as substitution of acrylamide by dimethylacrylamide and addition of isopropanol with and without methylcellulose to the IPG rehydration solution (in order to suppress the reverse electroosmotic flow) were necessary to obtain highly reproducible 2-D patterns of ribosomal proteins from HeLa cells and mouse liver. Histones from chicken erythrocyte nuclei as well as total cell extracts of erythrocytes were also successfully separated under steady-state conditions. Due to the selectivity of isoelectric focusing in IPG 9-12, where the more acidic proteins abandon the gel, the tedious procedure of nuclei preparation prior to histone extraction can be omitted.
Collapse
|
|
28 |
177 |
9
|
Perez-Riverol Y, Xu QW, Wang R, Uszkoreit J, Griss J, Sanchez A, Reisinger F, Csordas A, Ternent T, Del-Toro N, Dianes JA, Eisenacher M, Hermjakob H, Vizcaíno JA. PRIDE Inspector Toolsuite: Moving Toward a Universal Visualization Tool for Proteomics Data Standard Formats and Quality Assessment of ProteomeXchange Datasets. Mol Cell Proteomics 2015; 15:305-17. [PMID: 26545397 PMCID: PMC4762524 DOI: 10.1074/mcp.o115.050229] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 12/25/2022] Open
Abstract
The original PRIDE Inspector tool was developed as an open source standalone tool to enable the visualization and validation of mass-spectrometry (MS)-based proteomics data before data submission or already publicly available in the Proteomics Identifications (PRIDE) database. The initial implementation of the tool focused on visualizing PRIDE data by supporting the PRIDE XML format and a direct access to private (password protected) and public experiments in PRIDE. The ProteomeXchange (PX) Consortium has been set up to enable a better integration of existing public proteomics repositories, maximizing its benefit to the scientific community through the implementation of standard submission and dissemination pipelines. Within the Consortium, PRIDE is focused on supporting submissions of tandem MS data. The increasing use and popularity of the new Proteomics Standards Initiative (PSI) data standards such as mzIdentML and mzTab, and the diversity of workflows supported by the PX resources, prompted us to design and implement a new suite of algorithms and libraries that would build upon the success of the original PRIDE Inspector and would enable users to visualize and validate PX “complete” submissions. The PRIDE Inspector Toolsuite supports the handling and visualization of different experimental output files, ranging from spectra (mzML, mzXML, and the most popular peak lists formats) and peptide and protein identification results (mzIdentML, PRIDE XML, mzTab) to quantification data (mzTab, PRIDE XML), using a modular and extensible set of open-source, cross-platform libraries. We believe that the PRIDE Inspector Toolsuite represents a milestone in the visualization and quality assessment of proteomics data. It is freely available at http://github.com/PRIDE-Toolsuite/.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
144 |
10
|
Bernhard D, Tinhofer I, Tonko M, Hübl H, Ausserlechner MJ, Greil R, Kofler R, Csordas A. Resveratrol causes arrest in the S-phase prior to Fas-independent apoptosis in CEM-C7H2 acute leukemia cells. Cell Death Differ 2000; 7:834-42. [PMID: 11042678 DOI: 10.1038/sj.cdd.4400719] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene), in the concentration range of 20 microM and above, induced arrest in the S-phase and apoptosis in the T cell-derived T-ALL lymphocytic leukemia cell line CEM-C7H2 which is deficient in functional p53 and p16. Expression of transgenic p16/INK4A, which causes arrest in G0/G1, markedly reduced the percentage of apoptotic cells. Antagonist antibodies to Fas or FasL, or constitutive expression of crmA did not diminish the extent of resveratrol-induced apoptosis. Furthermore, a caspase-8-negative, Fas-resistant Jurkat cell line was sensitive to resveratrol-induced apoptosis which could be strongly inhibited in the Jurkat as well as in the CEM cell line by z-VAD-fmk and z-IETD-fmk. The almost complete inhibition by z-IETD-fmk and the lack of inhibition by crmA suggested caspase-6 to be the essential initiator caspase. Western blots revealed the massive conversion of procaspase-6 to its active form, while caspase-3 and caspase-2 were proteolytically activated to a much lesser extent.
Collapse
|
|
25 |
129 |
11
|
Tinhofer I, Bernhard D, Senfter M, Anether G, Loeffler M, Kroemer G, Kofler R, Csordas A, Greil R. Resveratrol, a tumor-suppressive compound from grapes, induces apoptosis via a novel mitochondrial pathway controlled by Bcl-2. FASEB J 2001; 15:1613-5. [PMID: 11427503 DOI: 10.1096/fj.00-0675fje] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
|
24 |
127 |
12
|
Wang R, Fabregat A, Ríos D, Ovelleiro D, Foster JM, Côté RG, Griss J, Csordas A, Perez-Riverol Y, Reisinger F, Hermjakob H, Martens L, Vizcaíno JA. PRIDE Inspector: a tool to visualize and validate MS proteomics data. Nat Biotechnol 2012; 30:135-7. [PMID: 22318026 PMCID: PMC3277942 DOI: 10.1038/nbt.2112] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
Letter |
13 |
104 |
13
|
Côté RG, Griss J, Dianes JA, Wang R, Wright JC, van den Toorn HWP, van Breukelen B, Heck AJR, Hulstaert N, Martens L, Reisinger F, Csordas A, Ovelleiro D, Perez-Rivevol Y, Barsnes H, Hermjakob H, Vizcaíno JA. The PRoteomics IDEntification (PRIDE) Converter 2 framework: an improved suite of tools to facilitate data submission to the PRIDE database and the ProteomeXchange consortium. Mol Cell Proteomics 2012; 11:1682-9. [PMID: 22949509 PMCID: PMC3518121 DOI: 10.1074/mcp.o112.021543] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The original PRIDE Converter tool greatly simplified the process of submitting mass spectrometry (MS)-based proteomics data to the PRIDE database. However, after much user feedback, it was noted that the tool had some limitations and could not handle several user requirements that were now becoming commonplace. This prompted us to design and implement a whole new suite of tools that would build on the successes of the original PRIDE Converter and allow users to generate submission-ready, well-annotated PRIDE XML files. The PRIDE Converter 2 tool suite allows users to convert search result files into PRIDE XML (the format needed for performing submissions to the PRIDE database), generate mzTab skeleton files that can be used as a basis to submit quantitative and gel-based MS data, and post-process PRIDE XML files by filtering out contaminants and empty spectra, or by merging several PRIDE XML files together. All the tools have both a graphical user interface that provides a dialog-based, user-friendly way to convert and prepare files for submission, as well as a command-line interface that can be used to integrate the tools into existing or novel pipelines, for batch processing and power users. The PRIDE Converter 2 tool suite will thus become a cornerstone in the submission process to PRIDE and, by extension, to the ProteomeXchange consortium of MS-proteomics data repositories.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
99 |
14
|
Bernhard D, Ausserlechner MJ, Tonko M, Löffler M, Hartmann BL, Csordas A, Kofler R. Apoptosis induced by the histone deacetylase inhibitor sodium butyrate in human leukemic lymphoblasts. FASEB J 1999; 13:1991-2001. [PMID: 10544182 DOI: 10.1096/fasebj.13.14.1991] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The histone deacetylase inhibitor and potential anti-cancer drug sodium butyrate is a general inducer of growth arrest, differentiation, and in certain cell types, apoptosis. In human CCRF-CEM, acute T lymphoblastic leukemia cells, butyrate, and other histone deacetylase inhibitors caused G2/M cell cycle arrest as well as apoptotic cell death. Forced G0/G1 arrest by tetracycline-regulated expression of transgenic p16/INK4A protected the cells from butyrate-induced cell death without affecting the extent of histone hyperacetylation, suggesting that the latter may be necessary, but not sufficient, for cell death induction. Nuclear apoptosis, but not G2/M arrest, was delayed but not prevented by the tripeptide broad-range caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp.fluoromethylketone (zVAD) and, to a lesser extent, by the tetrapeptide 'effector caspase' inhibitors benzyloxycarbonyl-Asp-Glu-Val-Asp.fluoromethylketone (DEVD) and benzyloxycarbonyl-Val-Glu-Ile-Asp.fluoromethyl-ketone (VEID); however, the viral protein inhibitor of 'inducer caspases', crmA, had no effect. Bcl-2 overexpression partially protected stably transfected CCRF-CEM sublines from butyrate-induced apoptosis, but showed no effect on butyrate-induced growth inhibition, further distinguishing these two butyrate effects. c-myc, constitutively expressed in CCRF-CEM cells, was down-regulated by butyrate, but this was not causative for cell death. On the contrary, tetracycline-induced transgenic c-myc sensitized stably transfected CCRF-CEM derivatives to butyrate-induced cell death.
Collapse
|
|
26 |
96 |
15
|
Abstract
In vitro, for animal cells generally, butyrate at millimolar concentrations is an inhibitor of growth. In vivo, however, colonocytes are able to grow in the environment of about 20 mM butyrate produced by bacterial fermentation on the luminal side of the colonic epithelium. An in vivo increase of the butyrate supply results in growth stimulation of cells in the colonic crypts. This discrepancy, namely, that in cell cultures butyrate is an inhibitor of growth, whereas in vivo it has a trophic effect, is the so called in vivo paradox of butyrate. In the present review it is pointed out that butyrate is an inhibitor of histone deacetylases and there is sufficient evidence for hyperacetylation being the mechanism of the in vitro growth-inhibiting effect of butyrate. As within animal cells hyperacetylation has to occur at a certain butyrate concentration (1-10 mM), it is postulated that the in vivo lack of inhibition and 'paradoxical' stimulation of growth is a result of a low intracellular steady state concentration of butyrate in the lower layers of the crypt in spite of the much higher butyrate concentration on the luminal side. As butyrate is the preferential source of energy for colonocytes, the in vivo trophic effect is not paradoxical, when in spite of an increase of the butyrate concentration in stool, the intracellular butyrate concentration of intestinal epithelial cells still remains below the inhibiting level. For mature non-dividing colonocytes which are programmed for apoptosis, there is no difference between the observations made in vitro or in vivo. Furthermore, recent developments are discussed which suggest that cyclo-oxygenase-2 may play an essential role in colonic carcinogenesis. Cyclo-oxygenase-2 is found to be expressed in most colorectal carcinomas, but not in normal non-transformed intestinal epithelial cells (DeWitt and Smith, 1995). Cyclo-oxygenase-2 overexpression makes intestinal epithelial cells resistant to butyrate-induced apoptosis (Tsujii and DuBois, 1995). This escape from butyrate-induced apoptosis appears to be an essential prerequisite for the development of colorectal cancer and suggests a functional role of butyrate in growth, differentiation and programmed cell death of colonic epithelial cells.
Collapse
|
Review |
29 |
54 |
16
|
Vaudel M, Verheggen K, Csordas A, Raeder H, Berven FS, Martens L, Vizcaíno JA, Barsnes H. Exploring the potential of public proteomics data. Proteomics 2016; 16:214-25. [PMID: 26449181 PMCID: PMC4738454 DOI: 10.1002/pmic.201500295] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/25/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022]
Abstract
In a global effort for scientific transparency, it has become feasible and good practice to share experimental data supporting novel findings. Consequently, the amount of publicly available MS-based proteomics data has grown substantially in recent years. With some notable exceptions, this extensive material has however largely been left untouched. The time has now come for the proteomics community to utilize this potential gold mine for new discoveries, and uncover its untapped potential. In this review, we provide a brief history of the sharing of proteomics data, showing ways in which publicly available proteomics data are already being (re-)used, and outline potential future opportunities based on four different usage types: use, reuse, reprocess, and repurpose. We thus aim to assist the proteomics community in stepping up to the challenge, and to make the most of the rapidly increasing amount of public proteomics data.
Collapse
|
Review |
9 |
53 |
17
|
Bernhard D, Skvortsov S, Tinhofer I, Hübl H, Greil R, Csordas A, Kofler R. Inhibition of histone deacetylase activity enhances Fas receptor-mediated apoptosis in leukemic lymphoblasts. Cell Death Differ 2001; 8:1014-21. [PMID: 11598799 DOI: 10.1038/sj.cdd.4400914] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2001] [Revised: 05/17/2001] [Accepted: 05/29/2001] [Indexed: 11/09/2022] Open
Abstract
We recently reported that butyrate, an inhibitor of histone deacetylases, is capable of inducing Fas-independent apoptosis in the acute lymphoblastic leukemia cell line CCRF-CEM. Here we demonstrate that butyrate enhances Fas-induced apoptosis in this cell line. The application of different histone deacetylase inhibitors revealed that tetra-acetylated histone H4 is associated with the amplifying effect of butyrate on Fas-induced cell death. FasL, Fas, FADD, RIP, caspase-8, caspase-3, Bid, FLIP(S+L), FLASH and FAP-1, proteins known to act within the Fas-apoptosis cascade, showed no changes in their expression levels in cells treated with butyrate compared with untreated cells. Analyses of Fas-oligomerization and Western blotting as well as enzyme activity assays of caspase-2, caspase-3 and caspase-8 suggest that butyrate enhances Fas-induced apoptosis downstream of Fas but upstream of caspase-8 activation. In immunoprecipitation experiments a 37 kD butyrate-regulated protein was detected which specifically interacts with caspase-8.
Collapse
|
|
24 |
52 |
18
|
Ternent T, Csordas A, Qi D, Gómez‐Baena G, Beynon RJ, Jones AR, Hermjakob H, Vizcaíno JA. How to submit MS proteomics data to ProteomeXchange via the PRIDE database. Proteomics 2014; 14:2233-41. [DOI: 10.1002/pmic.201400120] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/11/2014] [Accepted: 07/17/2014] [Indexed: 11/10/2022]
|
|
11 |
46 |
19
|
Budovsky A, Craig T, Wang J, Tacutu R, Csordas A, Lourenço J, Fraifeld VE, de Magalhães JP. LongevityMap: a database of human genetic variants associated with longevity. Trends Genet 2013; 29:559-60. [DOI: 10.1016/j.tig.2013.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 08/08/2013] [Indexed: 12/18/2022]
|
|
12 |
45 |
20
|
Trägner D, Csordas A. Biphasic interaction of Triton detergents with the erythrocyte membrane. Biochem J 1987; 244:605-9. [PMID: 3446180 PMCID: PMC1148039 DOI: 10.1042/bj2440605] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Octylphenoxy polyoxyethylene ethers (Triton detergents) interact with the erythrocyte membrane in a biphasic manner, i.e. they stabilize erythrocytes against hypo-osmotic haemolysis at low concentrations (0.0001-0.01%, v/v), but become haemolytic at higher concentrations. This biphasic behaviour was demonstrated with Triton X-114, Triton X-100 and Triton X-102. However, a critical chain length is a prerequisite for the haemolytic effect, because Triton X-45, which differs from the other Tritons only by the shorter chain of the polyoxyethylene residue, does not exhibit this biphasic behaviour, but goes on protecting against osmotic rupture up to saturating concentrations. Even a 1% solution of Triton X-45 does not cause haemolysis. This structural specificity of Triton X-45, namely the lack of haemolysis and efficient stabilization against osmolysis even at higher concentrations of the detergent, is exhibited at 0 degree and 37 degrees C as well as at room temperature. Three conclusions are reached: (i) a critical chain length of the octylphenoxy polyoxyethylene ethers is required for the haemolytic effect; (ii) the different structural requirements would suggest that different mechanisms are responsible for the haemolytic and the stabilizing effect of amphiphilic substances; (iii) the results suggest that haemolysis is not caused simply by dissolution of the membrane by the detergent but is a rather more specific process.
Collapse
|
research-article |
38 |
43 |
21
|
Lewis S, Csordas A, Killcoyne S, Hermjakob H, Hoopmann MR, Moritz RL, Deutsch EW, Boyle J. Hydra: a scalable proteomic search engine which utilizes the Hadoop distributed computing framework. BMC Bioinformatics 2012; 13:324. [PMID: 23216909 PMCID: PMC3538679 DOI: 10.1186/1471-2105-13-324] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 11/26/2012] [Indexed: 11/15/2022] Open
Abstract
Background For shotgun mass spectrometry based proteomics the most computationally expensive step is in matching the spectra against an increasingly large database of sequences and their post-translational modifications with known masses. Each mass spectrometer can generate data at an astonishingly high rate, and the scope of what is searched for is continually increasing. Therefore solutions for improving our ability to perform these searches are needed. Results We present a sequence database search engine that is specifically designed to run efficiently on the Hadoop MapReduce distributed computing framework. The search engine implements the K-score algorithm, generating comparable output for the same input files as the original implementation. The scalability of the system is shown, and the architecture required for the development of such distributed processing is discussed. Conclusion The software is scalable in its ability to handle a large peptide database, numerous modifications and large numbers of spectra. Performance scales with the number of processors in the cluster, allowing throughput to expand with the available resources.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
42 |
22
|
Csordas A, Ovelleiro D, Wang R, Foster JM, Ríos D, Vizcaíno JA, Hermjakob H. PRIDE: quality control in a proteomics data repository. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2012; 2012:bas004. [PMID: 22434838 PMCID: PMC3308160 DOI: 10.1093/database/bas004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The PRoteomics IDEntifications (PRIDE) database is a large public proteomics data repository, containing over 270 million mass spectra (by November 2011). PRIDE is an archival database, providing the proteomics data supporting specific scientific publications in a computationally accessible manner. While PRIDE faces rapid increases in data deposition size as well as number of depositions, the major challenge is to ensure a high quality of data depositions in the context of highly diverse proteomics work flows and data representations. Here, we describe the PRIDE curation pipeline and its practical application in quality control of complex data depositions. Database URL:http://www.ebi.ac.uk/pride/.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
31 |
23
|
Csordas A, Schauenstein K. Structure- and configuration-dependent effects of C18 unsaturated fatty acids on the chicken and sheep erythrocyte membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 769:571-7. [PMID: 6696899 DOI: 10.1016/0005-2736(84)90055-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
High concentrations of unsaturated fatty acids are known to cause hemolysis. At low concentrations, however, unsaturated cis fatty acids have been found to protect erythrocytes against hypotonic hemolysis. In the present experiments we examined the effect of oleic (18:1), linoleic (18:2), linolenic (18:3), and elaidic (18:1) acid on the osmotic fragility of chicken and sheep erythrocytes, which markedly differ in their resistance to osmotic rupture. The results are summarized as follows: (A) The phenomenon of stabilization was observed in both species alike. (B) Interaction of cells with the fatty acids under isotonic conditions led to a persistent stabilization, i.e., the cells remained more resistant against osmolysis even after several washings. (C) Oleic and elaidic acid protected against osmotic rupture with a high degree of specificity. Linoleic and linolenic acid were much less protective. Thus, this effect appears to be specific for one double bond. (D) Contrary to the unsaturated fatty acids with cis configuration, elaidic acid with the trans configuration showed no biphasic behaviour, and even at the highest concentrations applied no hemolysis was observed.
Collapse
|
|
41 |
19 |
24
|
Oberhauser H, Csordas A, Puschendorf B, Grunicke H. Increase in initiation sites for chromatin directed RNA synthesis by acetylation of chromosomal proteins. Biochem Biophys Res Commun 1978; 84:110-6. [PMID: 365177 DOI: 10.1016/0006-291x(78)90270-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
|
47 |
16 |
25
|
Bernhard D, Löffler M, Hartmann BL, Yoshida M, Kofler R, Csordas A. Interaction between dexamethasone and butyrate in apoptosis induction: non-additive in thymocytes and synergistic in a T cell-derived leukemia cell line. Cell Death Differ 1999; 6:609-17. [PMID: 10453071 DOI: 10.1038/sj.cdd.4400531] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In thymocytes butyrate and trichostatin A are unable to augment dexamethasone-induced apoptosis. In cultured rat thymocytes the extent of apoptosis induced by dexamethasone alone did not increase by addition of 0.1 - 10 mM butyrate. Even more pronounced was the non-additive interrelationship between dexamethasone and trichostatin A, as trichostatin A-induced apoptosis was not only blocked by the presence of dexamethasone but dexamethasone-induced apoptosis was also partially inhibited in the presence of 0.1 - 0.5 microM trichostatin A. The fact that the non-additive relationship with dexamethasone for apoptosis induction was observed with both histone deacetylase inhibitors suggests that in thymocytes this phenomenon is related to histone acetylation. In contrast to this, in the human T cell-derived leukemia cell line CEM-C7H2, dexamethasone did not block butyrate- or trichostatin A-induced apoptosis; moreover, butyrate, in the concentration range of 0.1 - 1 mM, had a marked synergistic effect on dexamethasone-induced apoptosis. This synergism, however, was not mimicked by trichostatin A, indicating that the effect is not related to histone acetylation but rather due to a pleiotropic effect of butyrate. Furthermore, in CEM-C7H2 cells, at higher concentrations of butyrate (5 - 10 mM) or trichostatin A (0.4 - 0.8 microM), there was a minor but reproducible antagonistic effect of dexamethasone on apoptosis induced by each of the two histone deacetylase inhibitors, suggesting that this antagonistic effect too, is related to histone hyperacetylation.
Collapse
|
|
26 |
14 |