1
|
Dikšaitytė A, Viršilė A, Žaltauskaitė J, Januškaitienė I, Juozapaitienė G. Growth and photosynthetic responses in Brassica napus differ during stress and recovery periods when exposed to combined heat, drought and elevated CO 2. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:59-72. [PMID: 31272036 DOI: 10.1016/j.plaphy.2019.06.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 05/23/2023]
Abstract
This study was intended to investigate how an agronomically important crop Brassica napus will be able to cope with the combined impact of a heatwave (21/14 °C vs. 33/26 °C day/night) and drought under ambient or elevated CO2 (800 vs. 400 μmol mol-1) and to what degree their recovery will be ensured after the stress, when additional CO2 is also removed. The obtained results revealed that, in the presence of an adequate water supply, B. napus performed well under heatwave conditions. However, drought fully negated all the advantages gained from hotter climate and led to a slower and incomplete recovery of gas exchange and retarded growth after the stress, regardless mitigating the effect of elevated CO2 during the stress. The mechanism by which the elevated CO2 diminished the adverse effect of a combined heat and drought stress on photosynthetic rate at saturating light (Asat) was attributed to the improved plant water relations. However, it had little effect on the recovery of Asat. In contrast, the mechanism by which photosynthesis was more impaired under the combination of heatwave and drought, compared to single drought treatment, was attributed mainly to the faster soil drying as well as faster and sharper decrease in stomatal conductance and subsequent in Ci/Ca. Keeping in mind that photosynthesis can acclimatize by downregulation to higher CO2, the results of this study, showing a weak memory of mitigating the effect of elevated CO2, highlight a potential risk of more intense and frequent heatwaves and droughts on B. napus.
Collapse
|
|
6 |
19 |
2
|
Kniuipytė I, Dikšaitytė A, Praspaliauskas M, Pedišius N, Žaltauskaitė J. Oilseed rape (Brassica napus L.) potential to remediate Cd contaminated soil under different soil water content. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116627. [PMID: 36419294 DOI: 10.1016/j.jenvman.2022.116627] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Changes in soil moisture content accompanying ongoing climate change are expected to affect plant growth and contaminants behaviour in the soil. The study was aimed at investigating soil water content impact on the energy crop oilseed rape (Brassica napus L.) efficiency to remediate Cd contaminated soil (1-250 mg kg-1). B. napus growth, Cd accumulation and removal efficiency were evaluated under optimal, reduced and elevated soil water content (SWC). B. napus showed good tolerance to Cd contamination and ability to phytoextract Cd from the soil. Cd accumulation in oilseed rape increased with Cd soil concentration, whereas removal efficiency was regulated by rape growth and Cd soil concentrations. B. napus has demonstrated good efficiency to cope with low and moderate Cd pollution (with tolerance index TI > 0.69), while high Cd soil pollution had a highly significant adverse impact on plant growth (growth was reduced up to 90%) resulting in low Cd removal efficiency. SWC governed plant growth, Cd accumulation and removal from the soil. Oilseed rapes grown under elevated SWC were of higher biomass (18%) compared to those grown under reduced SWC though the detrimental effect of Cd was more severe at elevated SWC. Reduced SWC led to decreased Cd uptake, conversely elevated SWC promoted Cd uptake. The optimal SWC ensures the highest Cd removal efficiency, whereas soil water deficit or excess restricts B. napus potential to remove Cd from the soil and prolongs remediation.
Collapse
|
|
2 |
9 |
3
|
Dikšaitytė A, Kniuipytė I, Žaltauskaitė J. Drought-free future climate conditions enhance cadmium phytoremediation capacity by Brassica napus through improved physiological status. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131181. [PMID: 36948123 DOI: 10.1016/j.jhazmat.2023.131181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/13/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
This study aimed to assess Cd phytoextraction efficiency in well-watered and drought-stressed B. napus plants under current climate (CC, 21/14 °C, 400 ppm CO2) and future climate (FC, 25/18 °C, 800 ppm CO2) conditions. The underlying physiological mechanisms underpinning the obtained results were investigated by studying Cd (1, 10, 50, and 100 mg kg-1) effect on B. napus photosynthetic performance and nutritional status. Only the Cd-50 and Cd-100 treatments caused visible leaf lesions, growth retardation, reductions in both gas exchange and chlorophyll fluorescence-related parameters, and disturbed mineral nutrient balance. Under CC conditions, well-watered plants were affected more than under FC conditions. The most important pathway by which Cd affected B. napus photosynthetic efficiency in well-watered plants was the damage to both photosystems, lowering photosynthetic electron transport. Meanwhile, non-stomatal and stomatal limitations were responsible for the higher reduction in the photosynthetic rate (Pr) of drought-stressed compared to well-watered plants. The significantly higher shoot dry weight, which had a strong positive relationship with Pr, was the main factor determining significantly higher shoot Cd accumulation in high Cd treatments in well-watered plants under FC conditions, resulting in a 65% (p < 0.05) higher soil Cd removal rate in the Cd-50 treatment.
Collapse
|
|
2 |
8 |
4
|
Dikšaitytė A, Kniuipytė I, Žaltauskaitė J, Abdel-Maksoud MA, Asard H, AbdElgawad H. Enhanced Cd phytoextraction by rapeseed under future climate as a consequence of higher sensitivity of HMA genes and better photosynthetic performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168164. [PMID: 37914112 DOI: 10.1016/j.scitotenv.2023.168164] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
This study aimed to investigate the underlying physiological, biochemical, and molecular mechanisms responsible for Brassica napu's potential to remediate Cd-contaminated soil under current (CC) vs. future (FC) climate (400 vs. 800 ppm of CO2, 21/14 °C vs. 25/18 °C). B. napus exhibited good tolerance to low Cd treatments (Cd-1, Cd-10, i.e., 1, 10 mg kg-1) under both climates without visible phytotoxicity symptoms. TI sharply decreased by 47 % and 68 % (p < 0.05), respectively, in Cd-50 and Cd-100 treated shoots under CC, but to a lesser extent (-26 % and -53 %, p < 0.05) under FC. This agreed with increased photosynthetic apparatus performance under FC, primarily due to a significant decrease in the closure of active PSII RCs ((dV/dt)o, TRo/RC) and less dissipated excitation energy (DIo/RC, φDo). Calvin Benson cycle-related enzyme activity also improved under FC with 2.2-fold and 2.4-fold (p < 0.05) increases in Rubisco and TPI under Cd-50 and Cd-100, respectively. Consequentially, a 2.2-fold and 2.3-fold (p < 0.05) boosted Pr resulted in a 2.3-fold and 2.4-fold (p < 0.05) increase in the DW of Cd-50 and Cd-100 treated shoots, respectively. This also led to a decrease (26 %, p < 0.05) in shoot Cd concentration under both high Cd treatments with a slight reduction in BCF. Translocation factor (TF) decreased (on average 42 %, p < 0.05) by high Cd treatments under both climates. However, under Cd-100, FC increased TF by 1.7-fold (p < 0.05) compared to CC, which could be explained by significant increases in the expression of HMA genes, especially BnaHMA4a and BnaHMA4c. Finally, Cd TU increased under FC by 65 % and 76 % (p < 0.05) under Cd-50 and Cd-100. This led to a shorter hypothetical remediation time for reaching the Cd pollution limit by 35 (p > 0.05) and 61 (p < 0.05) years, respectively, compared to CC.
Collapse
|
|
1 |
6 |
5
|
Dikšaitytė A, Viršilė A, Žaltauskaitė J, Januškaitienė I, Praspaliauskas M, Pedišius N. Do plants respond and recover from a combination of drought and heatwave in the same manner under adequate and deprived soil nutrient conditions? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110333. [PMID: 31928679 DOI: 10.1016/j.plantsci.2019.110333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/25/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Extreme climatic conditions with extended drought periods and heatwaves are predicted to increase in frequency and severity in many regions of the world. Aside from this, other abiotic stress factors such as nutrient deficiency could pose a serious problem to plants when combined with other stressors resulting in more complex underpinning mechanisms. In the present study, we evaluated the response of Brassica napus to single and combined impacts of drought and heatwave (HW) under adequate or deprived (N-A and N-D) soil nutrient conditions. In addition, to get better insights in the plant response to combined stress, a post-stress period, pointing out a degree of the recovery after the cessation of stress, was also included. The results showed a different manner of single drought and heatwave action. The adverse effect of drought on leaf gas exchange was lagged on the growth and became more apparent only after recovery period with no obvious difference between different nutrient levels. Contrary, the growth response of nutrient-deprived plants to single HW was weak and in most cases, insignificant. Heatwave applied simultaneously with drought highly exacerbated the adverse effect of drought both under N-A and N-D conditions. Combined drought and heatwave stress resulted in the sharper decline of Asat and it was attributed to both stomatal and non-stomatal limitations. Interestingly, plants underwent combined drought and HW treatment under N-D conditions showed better aboveground growth recovery, compared to those grown under N-A conditions, while displayed far more diminished photochemistry of photosystem II and badly disturbed the C/N balance. This discrepancy came from the fact that soil nutrient deficiency, by itself, evoked strong stress under control climate conditions resulting in a dramatically slower aboveground growth of nutrient-deprived plant. In turn, although combined drought and HW stress had similar effect on the aboveground growth either under N-A or N-D conditions, the recovery of later one was better. These results highlight the necessity to look at plants' performance under unfavorable environmental conditions beyond the actual event, since it can be depended not only on the duration of exposure but also on the legacy effect after treatment.
Collapse
|
|
5 |
2 |
6
|
Kacienė G, Miškelytė D, AbdElgawad H, Beemster G, Asard H, Dikšaitytė A, Žaltauskaitė J, Sujetovienė G, Januškaitienė I, Juknys R. O 3 pollution in a future climate increases the competition between summer rape and wild mustard. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:194-205. [PMID: 30557848 DOI: 10.1016/j.plaphy.2018.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/12/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
The initial aim of this study was to evaluate an effect of elevated CO2 concentration and air temperature (future climate) and O3 pollution on mono- and mixed-culture grown summer rape (Brassica napus L.) and wild mustard (Sinapis arvensis L.). The second task was to reveal the mechanisms of the shift in plants' competitiveness in response to single and combined environmental changes. Plants were grown in mono- and mixed-cultures under current climate (CC) (400 μmol mol-1 of CO2, 21/14 °C day/night temperature) or future climate (FC) conditions (800 μmol mol-1 of CO2, 25/18 °C day/night temperature) with and without O3 treatment (180 μg m-3). Competition had relatively little effect on growth of both species at current climate, independent of O3 treatment. In contrast, competitive effect of both plant species considerably increased under FC, and especially FC + O3 conditions, when growth of mixed-culture rape reduced up to 48% and that of wild mustard up to 80%. The mechanisms of elevated competitiveness of rape under the future climate consisted of better antioxidative protection, particularly elevated total antioxidative capacity and activities of peroxidase and ascorbate peroxidase. Whereas stronger oxidative damage, disproportionally high activities of H2O2 scavenging enzymes and lower pool of soluble sugars in mixed-culture wild mustard reduced its competitiveness under FC + O3 conditions. In conclusion it must be pointed out, that regardless improved competitive abilities of rape under FC and FC + O3 conditions, competition with wild mustard reduced growth, indicating increased weed-induced yield losses in the future climate, especially with concomitant intensification of O3 pollution.
Collapse
|
|
6 |
2 |
7
|
Sujetovienė G, Jasas M, Miškelytė D, Dikšaitytė A, Januškaitienė I, Kacienė G, Dagiliūtė R, Žaltauskaitė J. Toxic effects of tetracycline on non-target lichen Evernia prunastri. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:395-408. [PMID: 39718831 DOI: 10.1080/15287394.2024.2445081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Tetracycline (TC) antibiotics are one of the class of drugs widely used in clinical practice but also constitute a significant environmental concern. However, the adverse effects of TC on non-target organisms have not been well studied. The aim of this study was to examine the influence of exposure to high levels of TC on thalli of lichens to determine the impact on (1) physiological parameters including integrity of cell membranes, photosynthetic efficiency and viability, (2) oxidative stress response such as membrane lipid peroxidation, and (3) enzymatic antioxidant activities as catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR). Data demonstrated that exposure to tetracycline did not markedly affect the lichen membrane damage as indicated by no change in conductivity. This antibiotic diminished the potential photosystem II efficiency (FV/FM) indicating enhanced susceptibility as evidenced by lower chlorophyll fluorescence and chlorophyll content. The viability of lichens exposed to high concentrations of tetracycline was significantly reduced. The concentrations of thiobarbituric acid reactive substances were markedly elevated with increasing concentrations of antibiotics. At higher TC concentrations, 500 mg/L SOD activity was significantly elevated. In the case of CAT, APX and GR, TC at higher concentrations significantly decreased these enzymic activities. The findings of this study contribute to the knowledge that TC antibiotics exert adverse ecotoxicological effects on lichens at high concentrations and provided a better understanding of the mechanisms underlying toxicity. Data also indicates that lichens may serve as an effective biomonitoring species for TC antibiotic exposure.
Collapse
|
|
1 |
|
8
|
Kacienė G, Dikšaitytė A, Januškaitienė I, Miškelytė D, Sujetovienė G, Dagiliūtė R, Žaltauskaitė J. Veterinary antibiotics differ in phytotoxicity on oilseed rape grown over a wide range of concentrations. CHEMOSPHERE 2024; 356:141977. [PMID: 38608779 DOI: 10.1016/j.chemosphere.2024.141977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Residues of veterinary antibiotics are a worldwide problem of increasing concern due to their persistence and diverse negative effects on organisms, including crops, and limited understanding of their phytotoxicity. Therefore, this study aimed to compare the phytotoxic effects of veterinary antibiotics tetracycline (TC) and ciprofloxacin (CIP) applied in a wide range of concentrations on model plant oilseed rape (Brassica napus). Overall phytotoxicity of 1-500 mg kg-1 of TC and CIP was investigated based on morphological, biochemical, and physiological plant response. Photosystem II (PSII) performance was suppressed by TC even under environmentally relevant concentration (1 mg kg-1), with an increasing effect proportionally to TC concentration in soil. In contrast, CIP was found to be more phytotoxic than TC when applied at high concentrations, inducing a powerful oxidative burst, impairment of photosynthetic performance, collapse of antioxidative protection and sugar metabolism, and in turn, complete growth retardation at 250 and 500 mg kg-1 CIP treatments. Results of our study suggest that TC and CIP pollution do not pose a significant risk to oilseed rapes in many little anthropogenically affected agro-environments where TC or CIP concentrations do not exceed 1 mg kg-1; however, intensive application of manure with high CIP concentrations (more than 50 mg kg-1) might be detrimental to plants and, in turn, lead to diminished agricultural production and a potential risk to human health.
Collapse
|
|
1 |
|
9
|
Žaltauskaitė J, Dikšaitytė A, Miškelytė D, Kacienė G, Sujetovienė G, Januškaitienė I, Juknys R. Effects of elevated CO2 concentration and temperature on the mixed-culture grown wild mustard (Sinapis arvensis L.) response to auxin herbicide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13711-13725. [PMID: 36136189 DOI: 10.1007/s11356-022-23134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Recently, there has been growing concern over the potential impact of CO2 concentration and temperature on herbicide efficacy. The aim of the study was to examine the influence of single elevated CO2 (400 vs. 800 ppm) and elevated CO2 in combination with temperature (21 °C vs. 25 °C) on the effects of auxin herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) (0.5-2 × field recommended rate) to wild mustard (Sinapis arvensis L.) grown in mixed-culture with spring barley (Hordeum vulgare L.). MCPA had a detrimental effect on aboveground and belowground biomass, content of chlorophylls, enzymatic and non-enzymatic antioxidants and induced oxidative stress. The significant decline in photosynthetic rate, stomatal conductance and transpiration with MCPA dose was detected. Elevated CO2 reinforced MCPA efficacy on S. arvensis: sharper decline in biomass, photosynthetic rate and antioxidant enzymes and more pronounced lipid peroxidation were detected. Under elevated CO2 and temperature, MCPA efficacy to control S. arvensis dropped due to herbicide dilution because of increased root:shoot ratio, higher activity of antioxidants and less pronounced oxidative damage. Reinforced MCPA impact on weeds under elevated CO2 resulted in higher H. vulgare biomass, while decreased MCPA efficacy under elevated CO2 and temperature reduced H. vulgare biomass.
Collapse
|
|
2 |
|
10
|
Žaltauskaitė J, Miškelytė D, Sujetovienė G, Dikšaitytė A, Kacienė G, Januškaitienė I, Dagiliūtė R. Comprehensive tetracycline, ciprofloxacin and sulfamethoxazole toxicity evaluation to earthworm Dendrobaena veneta through life-cycle, behavioral and biochemical parameters. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104609. [PMID: 39667546 DOI: 10.1016/j.etap.2024.104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Veterinary antibiotics are widely spread in the environment, however, the knowledge about their impact on soil key species is still limited. This study evaluated the short-term and long-term effects of tetracycline (TC), ciprofloxacin (CIP) and sulfamethoxazole (SMX) (1-500 mg kg) on earthworm Dendrobaena veneta by measuring multiple parameters (survival, growth, reproduction, behavior and biochemical responses). Neither antibiotic induced acute toxicity and low mortality was observed after chronic exposure. TC and CIP had a negligible effect on the earthworm's weight from the 6th week of exposure, SMX inhibited the earthworm growth when was present in the range of 50-500 mg kg-1. In parallel, SMX reduced earthworm reproduction at environmentally relevant concentrations. Antibiotics altered superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and gluthathione-S-transferase (GST) activities and induced lipid peroxidation. Overall, earthworms showed no apparent acute response at environmentally relevant concentrations except for avoidance behavior; after long-term exposure earthworms experienced biochemical, physiological, and reproductive impairments and reduced survival at high soil contamination.
Collapse
|
|
1 |
|
11
|
Žaltauskaitė J, Meištininkas R, Dikšaitytė A, Degutytė-Fomins L, Mildažienė V, Naučienė Z, Žūkienė R, Koga K. Heavy fuel oil-contaminated soil remediation by individual and bioaugmentation-assisted phytoremediation with Medicago sativa and with cold plasma-treated M. sativa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30026-30038. [PMID: 38594559 DOI: 10.1007/s11356-024-33182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Developing an optimal environmentally friendly bioremediation strategy for petroleum products is of high interest. This study investigated heavy fuel oil (HFO)-contaminated soil (4 and 6 g kg-1) remediation by individual and combined bioaugmentation-assisted phytoremediation with alfalfa (Medicago sativa L.) and with cold plasma (CP)-treated M. sativa. After 14 weeks of remediation, HFO removal efficiency was in the range between 61 and 80% depending on HFO concentration and remediation technique. Natural attenuation had the lowest HFO removal rate. As demonstrated by growth rate and biomass acquisition, M. sativa showed good tolerance to HFO contamination. Cultivation of M. sativa enhanced HFO degradation and soil quality improvement. Bioaugmentation-assisted phytoremediation was up to 18% more efficient in HFO removal through alleviated HFO stress to plants, stimulated plant growth, and biomass acquisition. Cold plasma seed treatment enhanced HFO removal by M. sativa at low HFO contamination and in combination with bioaugmentation it resulted in up to 14% better HFO removal compared to remediation with CP non-treated and non-bioaugmented M. sativa. Our results show that the combination of different remediation techniques is an effective soil rehabilitation strategy to remove HFO and improve soil quality. CP plant seed treatment could be a promising option in soil clean-up and valorization.
Collapse
|
|
1 |
|