1
|
Lin SY, Makino K, Xia W, Matin A, Wen Y, Kwong KY, Bourguignon L, Hung MC. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 2001; 3:802-8. [PMID: 11533659 DOI: 10.1038/ncb0901-802] [Citation(s) in RCA: 801] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epidermal growth factor receptor (EGFR) has been detected in the nucleus in many tissues and cell lines. However, the potential functions of nuclear EGFR have largely been overlooked. Here we demonstrate that nuclear EGFR is strongly correlated with highly proliferating activities of tissues. When EGFR was fused to the GAL4 DNA-binding domain, we found that the carboxy terminus of EGFR contained a strong transactivation domain. Moreover, the receptor complex bound and activated AT-rich consensus-sequence-dependent transcription, including the consensus site in cyclin D1 promoter. By using chromatin immunoprecipitation assays, we further demonstrated that nuclear EGFR associated with promoter region of cyclin D1 in vivo. EGFR might therefore function as a transcription factor to activate genes required for highly proliferating activities.
Collapse
|
|
24 |
801 |
2
|
Nadeau JH, Singer JB, Matin A, Lander ES. Analysing complex genetic traits with chromosome substitution strains. Nat Genet 2000; 24:221-5. [PMID: 10700173 DOI: 10.1038/73427] [Citation(s) in RCA: 352] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many valuable animal models of human disease are known and new models are continually being generated in existing inbred strains,. Some disease models are simple mendelian traits, but most have a polygenic basis. The current approach to identifying quantitative trait loci (QTLs) that underlie such traits is to localize them in crosses, construct congenic strains carrying individual QTLs, and finally map and clone the genes. This process is time-consuming and expensive, requiring the genotyping of large crosses and many generations of breeding. Here we describe a different approach in which a panel of chromosome substitution strains (CSSs) is used for QTL mapping. Each of these strains has a single chromosome from the donor strain substituting for the corresponding chromosome in the host strain. We discuss the construction, applications and advantages of CSSs compared with conventional crosses for detecting and analysing QTLs, including those that have weak phenotypic effects.
Collapse
|
Review |
25 |
352 |
3
|
Jenkins DE, Schultz JE, Matin A. Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J Bacteriol 1988; 170:3910-4. [PMID: 3045081 PMCID: PMC211389 DOI: 10.1128/jb.170.9.3910-3914.1988] [Citation(s) in RCA: 350] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glucose- or nitrogen-starved cultures of Escherichia coli exhibited enhanced resistance to heat (57 degrees C) or H2O2 (15 mM) challenge, compared with their exponentially growing counterparts. The degree of resistance increased with the time for which the cells were starved prior to the challenge, with 4 h of starvation providing the maximal protection. Protein synthesis during starvation was essential for these cross protections, since chloramphenicol addition at the onset of starvation prevented the development of thermal or oxidative resistance. Starved cultures also demonstrated stronger thermal and oxidative resistance than did growing cultures adapted to heat, H2O2, or ethanol prior to the heat or H2O2 challenge. Two-dimensional gel electrophoresis of 35S-pulse-labeled proteins showed that subsets of the 30 glucose starvation proteins were also synthesized during heat or H2O2 adaptation; three proteins were common to all three stresses. Most of the common proteins were among the previously identified Pex proteins (J.E. Schultz, G. I. Latter, and A. Matin, J. Bacteriol. 170:3903-3909, 1988), which are independent of cyclic AMP positive control for their induction during starvation. Induction of starvation proteins dependent on cyclic AMP was not important in these cross protections, since a delta cya strain of E. coli K-12 exhibited the same degree of resistance to heat or H2O2 as the wild-type parent did during both growth and starvation.
Collapse
|
research-article |
37 |
350 |
4
|
Rozmahel R, Wilschanski M, Matin A, Plyte S, Oliver M, Auerbach W, Moore A, Forstner J, Durie P, Nadeau J, Bear C, Tsui LC. Modulation of disease severity in cystic fibrosis transmembrane conductance regulator deficient mice by a secondary genetic factor. Nat Genet 1996; 12:280-7. [PMID: 8589719 DOI: 10.1038/ng0396-280] [Citation(s) in RCA: 311] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mice that have been made deficient for the cystic fibrosis transmembrane conductance regulator (Cftr) usually die of intestinal obstruction. We have created Cftr-deficient mice and demonstrate prolonged survival among backcross and intercross progeny with different inbred strains, suggesting that modulation of disease severity is genetically determined. A genome scan showed that the major modifier locus maps near the centromere of mouse chromosome 7. Electrophysiological studies on mice with prolonged survival show that the partial rectification of Cl- and Na+ ion transport abnormalities can be explained in part by up-regulation of a calcium-activated Cl- conductance. Identification of modifier genes in our Cftr(m1HSC)/Cftr(m1HSC) mice should provide important insight into the heterogeneous disease presentation observed among CF patients.
Collapse
|
|
29 |
311 |
5
|
Abstract
At the onset of starvation Escherichia coli undergoes a temporally ordered program of starvation gene expression involving 40-80 genes which some four hours later yields cells possessing an enhanced general resistance. Two classes of genes are induced upon carbon starvation: the cst genes, requiring cyclic AMP, and the pex genes, not requiring this nucleotide for induction. The cst genes are not involved in the development of the resistant state and are concerned with escape from starvation, while the pex gene induction appears to be associated with resistance. Many of the latter are induced in response to a variety of starvation conditions. They include heat shock and oxidation resistance genes, and some utilize minor, stationary-phase-specific sigma factors for induction during starvation. The protective role of stress proteins may be due to their ability to rescue misfolded macromolecules. The starvation promoters can be potentially useful for selective expression of desired genes in metabolically sluggish populations, e.g. in high-density industrial fermentations and in situ bioremediation.
Collapse
|
Review |
34 |
286 |
6
|
Schweder T, Lee KH, Lomovskaya O, Matin A. Regulation of Escherichia coli starvation sigma factor (sigma s) by ClpXP protease. J Bacteriol 1996; 178:470-6. [PMID: 8550468 PMCID: PMC177680 DOI: 10.1128/jb.178.2.470-476.1996] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In Escherichia coli, starvation (stationary-phase)-mediated differentiation involves 50 or more genes and is triggered by an increase in cellular sigma s levels. Western immunoblot analysis showed that in mutants lacking the protease ClpP or its cognate ATPase-containing subunit ClpX, sigma s levels of exponential-phase cells increased to those of stationary-phase wild-type cells. Lack of other potential partners of ClpP, i.e., ClpA or ClpB, or of Lon protease had no effect. In ClpXP-proficient cells, the stability of sigma s increased markedly in stationary-phase compared with exponential-phase cells, but in ClpP-deficient cells, sigma s became virtually completely stable in both phases. There was no decrease in ClpXP levels in stationary-phase wild-type cells. Thus, sigma s probably becomes more resistant to this protease in stationary phase. The reported sigma s-stabilizing effect of the hns mutation also was not due to decreased protease levels. Studies with translational fusions containing different lengths of sigma s coding region suggest that amino acid residues 173 to 188 of this sigma factor may directly or indirectly serve as at least part of the target for ClpXP protease.
Collapse
|
research-article |
29 |
261 |
7
|
Matin A, Auger EA, Blum PH, Schultz JE. Genetic basis of starvation survival in nondifferentiating bacteria. Annu Rev Microbiol 1989; 43:293-316. [PMID: 2478072 DOI: 10.1146/annurev.mi.43.100189.001453] [Citation(s) in RCA: 260] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
Review |
36 |
260 |
8
|
McCann MP, Kidwell JP, Matin A. The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. J Bacteriol 1991; 173:4188-94. [PMID: 2061293 PMCID: PMC208069 DOI: 10.1128/jb.173.13.4188-4194.1991] [Citation(s) in RCA: 254] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
KatF is required for the expression of some 32 carbon starvation proteins in Escherichia coli including 6 previously identified as Pex. Mutants with the katF gene survive carbon and nitrogen starvation poorly. Many of the KatF-regulated starvation proteins are common to those induced by other stresses, and the mutant failed to develop starvation-mediated cross protection to osmotic, oxidative, and heat stresses. Furthermore, thermal resistance was not induced in the mutant by heat preadaptation, and it exhibited an altered pattern of protein synthesis at elevated temperature. Thus, KatF is a major switch that controls the starvation-mediated resistant state in E. coli.
Collapse
|
research-article |
34 |
254 |
9
|
Groat RG, Schultz JE, Zychlinsky E, Bockman A, Matin A. Starvation proteins in Escherichia coli: kinetics of synthesis and role in starvation survival. J Bacteriol 1986; 168:486-93. [PMID: 3536847 PMCID: PMC213508 DOI: 10.1128/jb.168.2.486-493.1986] [Citation(s) in RCA: 210] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Starvation proteins synthesized by Escherichia coli at the onset of carbon starvation (R. G. Groat and A. Matin, J. Indust. Microbiol. 1:69-73, 1986) exhibited four temporal classes of synthesis in response to glucose or succinate starvation, indicating sequential expression of carbon starvation response (cst) genes. A cst mutant of E. coli showed greatly impaired carbon starvation survival. Thus, it appears that E. coli undergoes a significant molecular realignment in response to starvation, which increases its resistance to this stress. New polypeptides were also synthesized by E. coli in response to phosphate or nitrogen starvation. Some of these polypeptides were unique to a given starvation regimen, but at least 13 appeared to be synthesized regardless of the nutrient deprivation causing the starvation.
Collapse
|
research-article |
39 |
210 |
10
|
Lomovskaya O, Lewis K, Matin A. EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB. J Bacteriol 1995; 177:2328-34. [PMID: 7730261 PMCID: PMC176888 DOI: 10.1128/jb.177.9.2328-2334.1995] [Citation(s) in RCA: 202] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The emrAB locus of Escherichia coli encodes a multidrug resistance pump that protects the cell from several chemically unrelated antimicrobial agents, e.g., the protonophores carbonyl cyanide m-chlorophenylhydrazone (CCCP) and tetrachlorosalicyl anilide and the antibiotics nalidixic acid and thiolactomycin. The mprA gene is located immediately upstream of this locus and was shown to be a repressor of microcin biosynthesis (I. del Castillo, J. M. Gomez, and F. Moreno, J. Bacteriol. 173:3924-3929, 1991). There is a putative transcriptional terminator sequence between the mprA and emrA genes. To locate the emr promoter, single-copy lacZ operon fusions containing different regions of the emr locus were made. Only fusions containing the mprA promoter region were expressed. mprA is thus the first gene of the operon, and we propose that it be renamed emrR. Overproduction of the EmrR protein (with a multicopy vector containing the cloned emrR gene) suppressed transcription of the emr locus. A mutation in the emrR gene led to overexpression of the EmrAB pump and increased resistance to antimicrobial agents. CCCP, nalidixic acid, and a number of other structurally unrelated chemicals induced expression of the emr genes, and the induction required EmrR. We conclude that emrRAB genes constitute an operon and that EmrR serves as a negative regulator of this operon. Some of the chemicals that induce the pump serve as its substrates, suggesting that their extrusion is the natural function of the pump.
Collapse
|
research-article |
30 |
202 |
11
|
Jenkins DE, Chaisson SA, Matin A. Starvation-induced cross protection against osmotic challenge in Escherichia coli. J Bacteriol 1990; 172:2779-81. [PMID: 2185233 PMCID: PMC208926 DOI: 10.1128/jb.172.5.2779-2781.1990] [Citation(s) in RCA: 181] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stationary-phase Escherichia coli cultures showed enhanced osmotic resistance as compared with cultures in mid-logarithmic growth or preadapted to osmotic stress. The osmotolerance that developed during starvation or osmotic adaptation required de novo protein synthesis. Of the 22 polypeptides induced during osmotic shock, five were also starvation proteins.
Collapse
|
research-article |
35 |
181 |
12
|
Park CH, Keyhan M, Wielinga B, Fendorf S, Matin A. Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 2000; 66:1788-95. [PMID: 10788340 PMCID: PMC101413 DOI: 10.1128/aem.66.5.1788-1795.2000] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cr(VI) (chromate) is a widespread environmental contaminant. Bacterial chromate reductases can convert soluble and toxic chromate to the insoluble and less toxic Cr(III). Bioremediation can therefore be effective in removing chromate from the environment, especially if the bacterial propensity for such removal is enhanced by genetic and biochemical engineering. To clone the chromate reductase-encoding gene, we purified to homogeneity (>600-fold purification) and characterized a novel soluble chromate reductase from Pseudomonas putida, using ammonium sulfate precipitation (55 to 70%), anion-exchange chromatography (DEAE Sepharose CL-6B), chromatofocusing (Polybuffer exchanger 94), and gel filtration (Superose 12 HR 10/30). The enzyme activity was dependent on NADH or NADPH; the temperature and pH optima for chromate reduction were 80 degrees C and 5, respectively; and the K(m) was 374 microM, with a V(max) of 1.72 micromol/min/mg of protein. Sulfate inhibited the enzyme activity noncompetitively. The reductase activity remained virtually unaltered after 30 min of exposure to 50 degrees C; even exposure to higher temperatures did not immediately inactivate the enzyme. X-ray absorption near-edge-structure spectra showed quantitative conversion of chromate to Cr(III) during the enzyme reaction.
Collapse
|
research-article |
25 |
178 |
13
|
Threadgill DW, Yee D, Matin A, Nadeau JH, Magnuson T. Genealogy of the 129 inbred strains: 129/SvJ is a contaminated inbred strain. Mamm Genome 1997; 8:390-3. [PMID: 9166580 DOI: 10.1007/s003359900453] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The 129 mouse is the most widely used strain in gene targeting experiments. However, numerous substrains exist with demonstrable physiological differences. In this study a set of simple sequence length polymorphisms (SSLPs) was used to determine the relatedness of selected 129 substrains. 129/SvJ was significantly different from the other 129 substrains and is more accurately classified as a recombinant congenic strain (129cX/Sv), being derived from 129/Sv and an unknown strain. This mixed genetic background could complicate gene targeting experiments by reducing homologous recombination efficiency when constructs and ES cells are not derived from the same 129 substrain. Additionally, discrepancies due to different genetic backgrounds may arise when comparing phenotypes of genes targeted in different 129-derived ES cell lines.
Collapse
|
|
28 |
173 |
14
|
Ackerley DF, Gonzalez CF, Park CH, Blake R, Keyhan M, Matin A. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol 2004; 70:873-82. [PMID: 14766567 PMCID: PMC348923 DOI: 10.1128/aem.70.2.873-882.2004] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cr(VI) (chromate) is a toxic, soluble environmental contaminant. Bacteria can reduce chromate to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of interest. Genetic and protein engineering of suitable enzymes can improve bacterial bioremediation. Many bacterial enzymes catalyze one-electron reduction of chromate, generating Cr(V), which redox cycles, generating excessive reactive oxygen species (ROS). Such enzymes are not appropriate for bioremediation, as they harm the bacteria and their primary end product is not Cr(III). In this work, the chromate reductase activities of two electrophoretically pure soluble bacterial flavoproteins--ChrR (from Pseudomonas putida) and YieF (from Escherichia coli)-were examined. Both are dimers and reduce chromate efficiently to Cr(III) (kcat/Km = approximately 2 x 10(4) M(-1) x s(-1)). The ChrR dimer generated a flavin semiquinone during chromate reduction and transferred >25% of the NADH electrons to ROS. However, the semiquinone was formed transiently and ROS diminished with time. Thus, ChrR probably generates Cr(V), but only transiently. Studies with mutants showed that ChrR protects against chromate toxicity; this is possibly because it preempts chromate reduction by the cellular one-electron reducers, thereby minimizing ROS generation. ChrR is thus a suitable enzyme for further studies. During chromate reduction by YieF, no flavin semiquinone was generated and only 25% of the NADH electrons were transferred to ROS. The YieF dimer may therefore be an obligatory four-electron chromate reducer which in one step transfers three electrons to chromate and one to molecular oxygen. As a mutant lacking this enzyme could not be obtained, the role of YieF in chromate protection could not be directly explored. The results nevertheless suggest that YieF may be an even more suitable candidate for further studies than ChrR.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
21 |
164 |
15
|
Reeve CA, Amy PS, Matin A. Role of protein synthesis in the survival of carbon-starved Escherichia coli K-12. J Bacteriol 1984; 160:1041-6. [PMID: 6389505 PMCID: PMC215816 DOI: 10.1128/jb.160.3.1041-1046.1984] [Citation(s) in RCA: 157] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In a typical Escherichia coli K-12 culture starved for glucose, 50% of the cells lose viability in ca. 6 days (Reeve et al., J. Bacteriol. 157:758-763, 1984). Inhibition of protein synthesis by chloramphenicol resulted in a more rapid loss of viability in glucose-starved E. coli K-12 cultures. The more chloramphenicol added (i.e., the more protein synthesis was inhibited) and the earlier during starvation it was added, the greater was its effect on culture viability. Chloramphenicol was found to have the same effect on a relA strain as on an isogenic relA+ strain of E. coli. Addition of the amino acid analogs S-2-aminoethylcysteine, 7-azatryptophan, and p-fluorophenylalanine to carbon-starved cultures to induce synthesis of abnormal proteins had an effect on viability similar to that observed when 50 micrograms of chloramphenicol per ml was added at zero time for starvation. Both chloramphenicol and the amino acid analogs had delayed effects on viability, compared with their effects on synthesis of normal proteins. The need for protein synthesis did not arise from cryptic growth, since no cryptic growth of the starving cells was observed under the conditions used. From these and previous results obtained from work with peptidase-deficient mutants of E. coli K-12 and Salmonella typhimurium LT2 (Reeve et al., J. Bacteriol. 157:758-763, 1984), we concluded that a number of survival-related proteins are synthesized by E. coli K-12 cells as a response to carbon starvation. These proteins are largely synthesized during the early hours of starvation, but their continued activity is required for long-term survival.
Collapse
|
research-article |
41 |
157 |
16
|
Reeve CA, Bockman AT, Matin A. Role of protein degradation in the survival of carbon-starved Escherichia coli and Salmonella typhimurium. J Bacteriol 1984; 157:758-63. [PMID: 6365890 PMCID: PMC215323 DOI: 10.1128/jb.157.3.758-763.1984] [Citation(s) in RCA: 146] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
When an Escherichia coli K-12 culture was starved for glucose, 50% of the cells lost viability in about 6 days. When a K-12 mutant lacking five distinct peptidase activities, CM89, was starved in the same manner, viability was lost much more rapidly; 50% of the cells lost viability in about 2 days, whereas a parent strain lacking only one peptidase activity lost 50% viability in about 4 days. Compared with the wild-type strain and with its parent strain CM17, CM89 was defective in both protein degradation and protein synthesis during carbon starvation. Similar results were obtained with glucose-starved Salmonella typhimurium LT2 and LT2-derived mutants lacking various peptidase activities. An S. typhimurium mutant lacking four peptidases, TN852, which was deficient in both protein degradation and synthesis during carbon starvation (Yen et al., J. Mol. Biol. 143:21-33, 1980), was roughly one-third as stable as the isogenic wild type. Isogenic S. typhimurium strains that lacked various combinations of three of four peptidases and that displayed protein degradation and synthesis rates intermediate between those of LT2 and TN852 (Yen et al., J. Mol. Biol. 143:21-33, 1980) displayed corresponding stabilities during carbon starvation. These results point to a role for protein degradation in the survival of bacteria during starvation for carbon.
Collapse
|
research-article |
41 |
146 |
17
|
Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A. Effect of chromate stress on Escherichia coli K-12. J Bacteriol 2006; 188:3371-81. [PMID: 16621832 PMCID: PMC1447458 DOI: 10.1128/jb.188.9.3371-3381.2006] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nature of the stress experienced by Escherichia coli K-12 exposed to chromate, and mechanisms that may enable cells to withstand this stress, were examined. Cells that had been preadapted by overnight growth in the presence of chromate were less stressed than nonadapted controls. Within 3 h of chromate exposure, the latter ceased growth and exhibited extreme filamentous morphology; by 5 h there was partial recovery with restoration of relatively normal cell morphology. In contrast, preadapted cells were less drastically affected in their morphology and growth. Cellular oxidative stress, as monitored by use of an H2O2-responsive fluorescent dye, was most severe in the nonadapted cells at 3 h postinoculation, lower in the partially recovered cells at 5 h postinoculation, and lower still in the preadapted cells. Chromate exposure depleted cellular levels of reduced glutathione and other free thiols to a greater extent in nonadapted than preadapted cells. In both cell types, the SOS response was activated, and levels of proteins such as SodB and CysK, which can counter oxidative stress, were increased. Some mutants missing antioxidant proteins (SodB, CysK, YieF, or KatE) were more sensitive to chromate. Thus, oxidative stress plays a major role in chromate toxicity in vivo, and cellular defense against this toxicity involves activation of antioxidant mechanisms. As bacterial chromate bioremediation is limited by the toxicity of chromate, minimizing oxidative stress during bacterial chromate reduction and bolstering the capacity of these organisms to deal with this stress will improve their effectiveness in chromate bioremediation.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
145 |
18
|
Ackerley DF, Gonzalez CF, Keyhan M, Blake R, Matin A. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol 2004; 6:851-60. [PMID: 15250887 DOI: 10.1111/j.1462-2920.2004.00639.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chromate [Cr(VI)] is a serious environmental pollutant, which is amenable to bacterial bioremediation. NfsA, the major oxygen-insensitive nitroreductase of Escherichia coli, is a flavoprotein that is able to reduce chromate to less soluble and less toxic Cr(III). We show that this process involves single-electron transfer, giving rise to a flavin semiquinone form of NfsA and Cr(V) as intermediates, which redox cycle, generating more reactive oxygen species (ROS) than a divalent chromate reducer, YieF. However, NfsA generates less ROS than a known one-electron chromate reducer, lipoyl dehydrogenase (LpDH), suggesting that NfsA employs a mixture of uni- and di-valent electron transfer steps. The presence of YieF, ChrR (another chromate reductase we previously characterized), or NfsA in an LpDH-catalysed chromate reduction reaction decreased ROS generation by c. 65, 40, or 20%, respectively, suggesting that these enzymes can pre-empt ROS generation by LpDH. We previously showed that ChrR protects Pseudomonas putida against chromate toxicity; here we show that NfsA or YieF overproduction can also increase the tolerance of E. coli to this compound.
Collapse
|
|
21 |
143 |
19
|
Schultz JE, Matin A. Molecular and functional characterization of a carbon starvation gene of Escherichia coli. J Mol Biol 1991; 218:129-40. [PMID: 1848300 DOI: 10.1016/0022-2836(91)90879-b] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Escherichia coli induces the synthesis of at least 30 proteins at the onset of carbon starvation, two-thirds of which are positively regulated by the cyclic AMP (cAMP) and cAMP receptor protein (CRP) complex. Two of the cAMP-CRP-dependent genes mapped to 14 and 93 minutes of the chromosome and are designated cstA and cstB, respectively. The cstA promoter region was cloned and localized to a 600 base-pair fragment downstream from the iron-regulated entCEBA-P15 operon. Carbon starvation-inducible transcription initiated at three sites spaced one turn of the DNA helix apart. All had--10 sequences similar to consensus E sigma 70 promoters and poor--35 sequences. Deletion of a putative CRP binding site abolished carbon starvation-mediated induction. Sequence analysis of the cstA coding region revealed the presence of three sequential open reading frames potentially encoding two hydrophobic proteins of 60,223 Da and 15,201 Da and a hydrophilic protein of 7467 Da. Overexpression of the cstA region produced starvation-inducible proteins of the expected sizes. Suggestive evidence was obtained that cstA is involved in peptide utilization.
Collapse
|
|
34 |
116 |
20
|
Blom A, Harder W, Matin A. Unique and overlapping pollutant stress proteins of Escherichia coli. Appl Environ Microbiol 1992; 58:331-4. [PMID: 1539981 PMCID: PMC195211 DOI: 10.1128/aem.58.1.331-334.1992] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Exposure of growing batch cultures of Escherichia coli to nine different "model micropollutants" (benzene, cadmium chloride, chlorpyrivos, 2,4-dichloroaniline, dioctylphtalate, hexachlorobenzene, pentachlorophenol, trichloroethylene, and tetrapropylbenzosulfonate) led to the induction of 13 to 39 proteins, as analyzed by two-dimensional gel electrophoresis. Some of these proteins overlapped with heat shock and carbon starvation proteins, but at least 50% were unique to a given chemical. The stress protein induction showed a temporal pattern, indicating sequential gene expression. Chemical stress protein synthesis occurred even at concentrations that had no effect on growth. Thus, the synthesis of these proteins can be a sensitive index of stress and the nature of environmental pollution.
Collapse
|
research-article |
33 |
108 |
21
|
Matin A, Konings WN. Transport of lactate and succinate by membrane vesicles of Escherichia coli, Bacillus subtilis and a pseudomonas species. EUROPEAN JOURNAL OF BIOCHEMISTRY 1973; 34:58-67. [PMID: 4349657 DOI: 10.1111/j.1432-1033.1973.tb02728.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
|
52 |
102 |
22
|
|
Review |
47 |
101 |
23
|
Schultz JE, Latter GI, Matin A. Differential regulation by cyclic AMP of starvation protein synthesis in Escherichia coli. J Bacteriol 1988; 170:3903-9. [PMID: 2842291 PMCID: PMC211388 DOI: 10.1128/jb.170.9.3903-3909.1988] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Of the 30 carbon starvation proteins whose induction has been previously shown to be important for starvation survival of Escherichia coli, two-thirds were not induced in cya or crp deletion mutants of E. coli at the onset of carbon starvation. The rest were induced, although not necessarily with the same temporal pattern as exhibited in the wild type. The starvation proteins that were homologous to previously identified heat shock proteins belonged to the latter class and were hyperinduced in delta cya or delta crp mutants during starvation. Most of the cyclic AMP-dependent proteins were synthesized in the delta cya mutant if exogenous cyclic AMP was added at the onset of starvation. Furthermore, beta-galactosidase induction of several carbon starvation response gene fusions occurred only in a cya+ genetic background. Thus, two-thirds of the carbon starvation proteins of E. coli require cyclic AMP and its receptor protein for induction; the rest do not. The former class evidently has no role in starvation survival, since delta cya or delta crp mutants of either E. coli or Salmonella typhimurium survived starvation as well as their wild-type parents did. The latter class, therefore, is likely to have a direct role in starvation survival. This possibility is strengthened by the finding that nearly all of the cya- and crp-independent proteins were also induced during nitrogen starvation and, as shown previously, during phosphate starvation. Proteins whose synthesis is independent of cya- and crp control are referred to as Pex (postexponential).
Collapse
|
research-article |
37 |
100 |
24
|
Pandza S, Baetens M, Park CH, Au T, Keyhan M, Matin A. The G-protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida. Mol Microbiol 2000; 36:414-23. [PMID: 10792727 DOI: 10.1046/j.1365-2958.2000.01859.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The flhF gene of Pseudomonas putida, which encodes a GTP-binding protein, is part of the flagellar-motility-chemotaxis operon. Its disruption leads to a random flagellar arrangement in the mutant (MK107) and loss of directional motility in contrast to the wild type, which has polar flagella. The return of a normal flhF allele restores polar flagella and normal motility to MK107; its overexpression triples the flagellar number but does not restore directional motility. As FlhF is homologous to the receptor protein of the signal recognition particle (SRP) pathway of membrane protein translocation, this pathway may have a role in polar flagellar placement in P. putida. MK107 is also compromised in the development of the starvation-induced general stress resistance (SGSR) and effective synthesis of several starvation and exponential phase proteins. While somewhat increased protein secretion in MK107 may contribute to its SGSR impairment, the altered protein synthesis pattern also appears to have a role.
Collapse
|
|
25 |
92 |
25
|
Lynch SV, Mukundakrishnan K, Benoit MR, Ayyaswamy PS, Matin A. Escherichia coli biofilms formed under low-shear modeled microgravity in a ground-based system. Appl Environ Microbiol 2006; 72:7701-10. [PMID: 17028231 PMCID: PMC1694224 DOI: 10.1128/aem.01294-06] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial biofilms cause chronic diseases that are difficult to control. Since biofilm formation in space is well documented and planktonic cells become more resistant and virulent under modeled microgravity, it is important to determine the effect of this gravity condition on biofilms. Inclusion of glass microcarrier beads of appropriate dimensions and density with medium and inoculum, in vessels specially designed to permit ground-based investigations into aspects of low-shear modeled microgravity (LSMMG), facilitated these studies. Mathematical modeling of microcarrier behavior based on experimental conditions demonstrated that they satisfied the criteria for LSMMG conditions. Experimental observations confirmed that the microcarrier trajectory in the LSMMG vessel concurred with the predicted model. At 24 h, the LSMMG Escherichia coli biofilms were thicker than their normal-gravity counterparts and exhibited increased resistance to the general stressors salt and ethanol and to two antibiotics (penicillin and chloramphenicol). Biofilms of a mutant of E. coli, deficient in sigma(s), were impaired in developing LSMMG-conferred resistance to the general stressors but not to the antibiotics, indicating two separate pathways of LSMMG-conferred resistance.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
89 |