1
|
Albertazzi B, Ciardi A, Nakatsutsumi M, Vinci T, Béard J, Bonito R, Billette J, Borghesi M, Burkley Z, Chen SN, Cowan TE, Herrmannsdörfer T, Higginson DP, Kroll F, Pikuz SA, Naughton K, Romagnani L, Riconda C, Revet G, Riquier R, Schlenvoigt HP, Skobelev IY, Faenov AY, Soloviev A, Huarte-Espinosa M, Frank A, Portugall O, Pépin H, Fuchs J. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field. Science 2014; 346:325-8. [PMID: 25324383 DOI: 10.1126/science.1259694] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations. The laboratory plasma becomes focused with an interior cavity. This gives rise to a standing conical shock from which the jet emerges. Following simulations of the process at the full astrophysical scale, we conclude that it can also explain recently discovered x-ray emission features observed in low-density regions at the base of protostellar jets, such as the well-studied jet HH 154.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
144 |
2
|
Lancia L, Albertazzi B, Boniface C, Grisollet A, Riquier R, Chaland F, Le Thanh KC, Mellor P, Antici P, Buffechoux S, Chen SN, Doria D, Nakatsutsumi M, Peth C, Swantusch M, Stardubtsev M, Palumbo L, Borghesi M, Willi O, Pépin H, Fuchs J. Topology of megagauss magnetic fields and of heat-carrying electrons produced in a high-power laser-solid interaction. PHYSICAL REVIEW LETTERS 2014; 113:235001. [PMID: 25526131 DOI: 10.1103/physrevlett.113.235001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Indexed: 06/04/2023]
Abstract
The intricate spatial and energy distribution of magnetic fields, self-generated during high power laser irradiation (at Iλ^{2}∼10^{13}-10^{14} W.cm^{-2}.μm^{2}) of a solid target, and of the heat-carrying electron currents, is studied in inertial confinement fusion (ICF) relevant conditions. This is done by comparing proton radiography measurements of the fields to an improved magnetohydrodynamic description that fully takes into account the nonlocality of the heat transport. We show that, in these conditions, magnetic fields are rapidly advected radially along the target surface and compressed over long time scales into the dense parts of the target. As a consequence, the electrons are weakly magnetized in most parts of the plasma flow, and we observe a reemergence of nonlocality which is a crucial effect for a correct description of the energetics of ICF experiments.
Collapse
|
|
11 |
13 |
3
|
Albertazzi B, Béard J, Ciardi A, Vinci T, Albrecht J, Billette J, Burris-Mog T, Chen SN, Da Silva D, Dittrich S, Herrmannsdörfer T, Hirardin B, Kroll F, Nakatsutsumi M, Nitsche S, Riconda C, Romagnagni L, Schlenvoigt HP, Simond S, Veuillot E, Cowan TE, Portugall O, Pépin H, Fuchs J. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:043505. [PMID: 23635194 DOI: 10.1063/1.4795551] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The production of strongly magnetized laser plasmas, of interest for laboratory astrophysics and inertial confinement fusion studies, is presented. This is achieved by coupling a 16 kV pulse-power system. This is achieved by coupling a 16 kV pulse-power system, which generates a magnetic field by means of a split coil, with the ELFIE laser facility at Ecole Polytechnique. In order to influence the plasma dynamics in a significant manner, the system can generate, repetitively and without debris, high amplitude magnetic fields (40 T) in a manner compatible with a high-energy laser environment. A description of the system and preliminary results demonstrating the possibility to magnetically collimate plasma jets are given.
Collapse
|
|
12 |
11 |
4
|
Rigon G, Casner A, Albertazzi B, Michel T, Mabey P, Falize E, Ballet J, Van Box Som L, Pikuz S, Sakawa Y, Sano T, Faenov A, Pikuz T, Ozaki N, Kuramitsu Y, Valdivia MP, Tzeferacos P, Lamb D, Koenig M. Rayleigh-Taylor instability experiments on the LULI2000 laser in scaled conditions for young supernova remnants. Phys Rev E 2019; 100:021201. [PMID: 31574771 DOI: 10.1103/physreve.100.021201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Indexed: 06/10/2023]
Abstract
We describe a platform developed on the LULI2000 laser facility to investigate the evolution of Rayleigh-Taylor instability (RTI) in scaled conditions relevant to young supernova remnants (SNRs) up to 200 years. An RT unstable interface is imaged with a short-pulse laser-driven (PICO2000) x-ray source, providing an unprecedented simultaneous high spatial (24μm) and temporal (10 ps) resolution. This experiment provides relevant data to compare with astrophysical codes, as observational data on the development of RTI at the early stage of the SNR expansion are missing. A comparison is also performed with FLASH radiative magnetohydrodynamic simulations.
Collapse
|
|
6 |
9 |
5
|
Rigon G, Albertazzi B, Pikuz T, Mabey P, Bouffetier V, Ozaki N, Vinci T, Barbato F, Falize E, Inubushi Y, Kamimura N, Katagiri K, Makarov S, Manuel MJE, Miyanishi K, Pikuz S, Poujade O, Sueda K, Togashi T, Umeda Y, Yabashi M, Yabuuchi T, Gregori G, Kodama R, Casner A, Koenig M. Micron-scale phenomena observed in a turbulent laser-produced plasma. Nat Commun 2021; 12:2679. [PMID: 33976145 PMCID: PMC8113596 DOI: 10.1038/s41467-021-22891-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/29/2021] [Indexed: 11/09/2022] Open
Abstract
Turbulence is ubiquitous in the universe and in fluid dynamics. It influences a wide range of high energy density systems, from inertial confinement fusion to astrophysical-object evolution. Understanding this phenomenon is crucial, however, due to limitations in experimental and numerical methods in plasma systems, a complete description of the turbulent spectrum is still lacking. Here, we present the measurement of a turbulent spectrum down to micron scale in a laser-plasma experiment. We use an experimental platform, which couples a high power optical laser, an x-ray free-electron laser and a lithium fluoride crystal, to study the dynamics of a plasma flow with micrometric resolution (~1μm) over a large field of view (>1 mm2). After the evolution of a Rayleigh–Taylor unstable system, we obtain spectra, which are overall consistent with existing turbulent theory, but present unexpected features. This work paves the way towards a better understanding of numerous systems, as it allows the direct comparison of experimental results, theory and numerical simulations. Turbulence effects explored use macroscale systems in general. Here the authors generate a turbulent plasma using laser irradiation of a solid target and study the dynamics of the plasma flow at the micron-scale by using scattering of an XFEL beam.
Collapse
|
|
4 |
9 |
6
|
Huser G, Recoules V, Ozaki N, Sano T, Sakawa Y, Salin G, Albertazzi B, Miyanishi K, Kodama R. Experimental and ab initio investigations of microscopic properties of laser-shocked Ge-doped ablator. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:063108. [PMID: 26764839 DOI: 10.1103/physreve.92.063108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 06/05/2023]
Abstract
Plastic materials (CH) doped with mid-Z elements are used as ablators in inertial confinement fusion (ICF) capsules and in their surrogates. Hugoniot equation of state (EOS) and electronic properties of CH doped with germanium (at 2.5% and 13% dopant fractions) are investigated experimentally up to 7 Mbar using velocity and reflectivity measurements of shock fronts on the GEKKO laser at Osaka University. Reflectivity and temperature measurements were updated using a quartz standard. Shocked quartz reflectivity was measured at 532 and 1064 nm. Theoretical investigation of shock pressure and reflectivity was then carried out by ab initio simulations using the quantum molecular dynamics (QMD) code abinit and compared with tabulated average atom EOS models. We find that shock states calculated by QMD are in better agreement with experimental data than EOS models because of a more accurate description of ionic structure. We finally discuss electronic properties by comparing reflectivity data to a semiconductor gap closure model and to QMD simulations.
Collapse
|
|
10 |
7 |
7
|
Ciardi A, Vinci T, Fuchs J, Albertazzi B, Riconda C, Pépin H, Portugall O. Astrophysics of magnetically collimated jets generated from laser-produced plasmas. PHYSICAL REVIEW LETTERS 2013; 110:025002. [PMID: 23383908 DOI: 10.1103/physrevlett.110.025002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Indexed: 06/01/2023]
Abstract
The generation of astrophysically relevant jets, from magnetically collimated, laser-produced plasmas, is investigated through three-dimensional, magnetohydrodynamic simulations. We show that for laser intensities I∼10(12)-10(14) W cm(-2), a magnetic field in excess of ∼0.1 MG, can collimate the plasma plume into a prolate cavity bounded by a shock envelope with a standing conical shock at its tip, which recollimates the flow into a supermagnetosonic jet beam. This mechanism is equivalent to astrophysical models of hydrodynamic inertial collimation, where an isotropic wind is focused into a jet by a confining circumstellar toruslike envelope. The results suggest an alternative mechanism for a large-scale magnetic field to produce jets from wide-angle winds.
Collapse
|
|
12 |
6 |
8
|
Mabey P, Albertazzi B, Falize E, Michel T, Rigon G, Van Box Som L, Pelka A, Brack FE, Kroll F, Filippov E, Gregori G, Kuramitsu Y, Lamb DQ, Li C, Ozaki N, Pikuz S, Sakawa Y, Tzeferacos P, Koenig M. Laboratory study of stationary accretion shock relevant to astrophysical systems. Sci Rep 2019; 9:8157. [PMID: 31148567 PMCID: PMC6544622 DOI: 10.1038/s41598-019-44596-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/17/2019] [Indexed: 11/24/2022] Open
Abstract
Accretion processes play a crucial role in a wide variety of astrophysical systems. Of particular interest are magnetic cataclysmic variables, where, plasma flow is directed along the star’s magnetic field lines onto its poles. A stationary shock is formed, several hundred kilometres above the stellar surface; a distance far too small to be resolved with today’s telescopes. Here, we report the results of an analogous laboratory experiment which recreates this astrophysical system. The dynamics of the laboratory system are strongly influenced by the interplay of material, thermal, magnetic and radiative effects, allowing a steady shock to form at a constant distance from a stationary obstacle. Our results demonstrate that a significant amount of plasma is ejected in the lateral direction; a phenomenon that is under-estimated in typical magnetohydrodynamic simulations and often neglected in astrophysical models. This changes the properties of the post-shock region considerably and has important implications for many astrophysical studies.
Collapse
|
Journal Article |
6 |
5 |
9
|
Mabey P, Albertazzi B, Michel T, Rigon G, Makarov S, Ozaki N, Matsuoka T, Pikuz S, Pikuz T, Koenig M. Characterization of high spatial resolution lithium fluoride X-ray detectors. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:063702. [PMID: 31255030 DOI: 10.1063/1.5092265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
The response of lithium fluoride (LiF) crystal detectors to monochromatic X-rays is measured in the multi-kilo-electron-volt range. This response, as a function of the X-ray dose, is independent of photon energy with no saturation level found. The response, as a function of the incident energy flux, is found to increase for photons of lower energy due to the differing attenuation lengths of X-ray photons within the crystal. Small differences are seen between different confocal microscopes used to scan the data, suggesting the need for absolute calibration. The spatial resolution of the LiF is also measured (1.19-1.36 μm) and is found to be independent of incident photon energy. Finally, a photometric study is performed in order to assess the feasibility of using these detectors at current X-ray free electron laser and laser facilities worldwide.
Collapse
|
|
6 |
5 |
10
|
Cerchez M, Giesecke AL, Peth C, Toncian M, Albertazzi B, Fuchs J, Willi O, Toncian T. Generation of laser-driven higher harmonics from grating targets. PHYSICAL REVIEW LETTERS 2013; 110:065003. [PMID: 23432262 DOI: 10.1103/physrevlett.110.065003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Indexed: 06/01/2023]
Abstract
The first experimental evidence of the higher-order harmonic radiation generated by periodically modulated targets (gratings) irradiated by relativistic, ultrashort (<30 fs), high intensity [Iλ(2)=10(20) (W/cm(2)) μm(2)] laser pulse is presented. The interference effects on the grating surface lead to the emission of high harmonics up to 45th order along the target surface when the laser beam is focused onto a grating target close to normal incidence (5°). By means of numerical simulations we demonstrate the possibility of controlling the composition of the higher harmonic spectrum and we prove the influence of the laser pulse parameters in the interaction area (laser focusing and wavefront curvature) on the emission angle of a certain high harmonic order.
Collapse
|
|
12 |
3 |
11
|
Albertazzi B, Antici P, Bocker J, Borghesi M, Chen S, Dervieux V, d'Humières E, Lancia L, Nakatsutsumi M, Shepherd R, Romagnagni L, Sentoku Y, Swantusch M, Willi O, Pépin H, Fuchs J. Longitudinal proton probing of ultrafast and high-contrast laser-solid interactions. EPJ WEB OF CONFERENCES 2013. [DOI: 10.1051/epjconf/20135917014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
|
12 |
3 |
12
|
Rigon G, Albertazzi B, Mabey P, Michel T, Falize E, Bouffetier V, Ceurvorst L, Masse L, Koenig M, Casner A. Exploring the Atwood-number dependence of the highly nonlinear Rayleigh-Taylor instability regime in high-energy-density conditions. Phys Rev E 2021; 104:045213. [PMID: 34781551 DOI: 10.1103/physreve.104.045213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/19/2021] [Indexed: 11/07/2022]
Abstract
We experimentally study the late-time, highly nonlinear regime of the Rayleigh-Taylor instability in a decelerating phase. A series of laser-driven experiments is performed on the LULI2000 laser, in which the initial Atwood number is varied by adjusting the decelerating medium density. The high-power laser is used in a direct drive configuration to put into motion a solid target. Its rear side, which initially possesses a two-dimensional machined sinusoidal perturbations, expands and decelerates into a foam leading to a Rayleigh-Taylor unstable situation. The interface position and morphology are measured by time-resolved x-ray radiography. We develop a simple Atwood-dependent model describing the motion of the decelerating interface, from which its acceleration history is obtained. The measured amplitude of the instability, or mixing zone width, is then compared with late-time acceleration-dependent Rayleigh-Taylor instability models. The shortcomings of this classical model, when applied to high-energy-density conditions, are shown. This calls into question their uses for systems, where a shock wave is present, such as those found in laboratory astrophysics or in inertial confinement fusion.
Collapse
|
|
4 |
2 |
13
|
Ruiz-Lopez M, Faenov A, Pikuz T, Ozaki N, Mitrofanov A, Albertazzi B, Hartley N, Matsuoka T, Ochante Y, Tange Y, Yabuuchi T, Habara T, Tanaka KA, Inubushi Y, Yabashi M, Nishikino M, Kawachi T, Pikuz S, Ishikawa T, Kodama R, Bleiner D. Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:196-204. [PMID: 28009559 DOI: 10.1107/s1600577516016568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M2 were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.
Collapse
|
|
8 |
1 |
14
|
Sakai K, Moritaka T, Morita T, Tomita K, Minami T, Nishimoto T, Egashira S, Ota M, Sakawa Y, Ozaki N, Kodama R, Kojima T, Takezaki T, Yamazaki R, Tanaka SJ, Aihara K, Koenig M, Albertazzi B, Mabey P, Woolsey N, Matsukiyo S, Takabe H, Hoshino M, Kuramitsu Y. Direct observations of pure electron outflow in magnetic reconnection. Sci Rep 2022; 12:10921. [PMID: 35773286 PMCID: PMC9247195 DOI: 10.1038/s41598-022-14582-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Magnetic reconnection is a universal process in space, astrophysical, and laboratory plasmas. It alters magnetic field topology and results in energy release to the plasma. Here we report the experimental results of a pure electron outflow in magnetic reconnection, which is not accompanied with ion flows. By controlling an applied magnetic field in a laser produced plasma, we have constructed an experiment that magnetizes the electrons but not the ions. This allows us to isolate the electron dynamics from the ions. Collective Thomson scattering measurements reveal the electron Alfvénic outflow without ion outflow. The resultant plasmoid and whistler waves are observed with the magnetic induction probe measurements. We observe the unique features of electron-scale magnetic reconnection simultaneously in laser produced plasmas, including global structures, local plasma parameters, magnetic field, and waves.
Collapse
|
|
3 |
1 |
15
|
Albertazzi B, d'Humières E, Lancia L, Dervieux V, Antici P, Böcker J, Bonlie J, Breil J, Cauble B, Chen SN, Feugeas JL, Nakatsutsumi M, Nicolaï P, Romagnani L, Shepherd R, Sentoku Y, Swantusch M, Tikhonchuk VT, Borghesi M, Willi O, Pépin H, Fuchs J. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:043502. [PMID: 25933857 DOI: 10.1063/1.4917273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.
Collapse
|
|
10 |
|
16
|
Katagiri K, Ozaki N, Ohmura S, Albertazzi B, Hironaka Y, Inubushi Y, Ishida K, Koenig M, Miyanishi K, Nakamura H, Nishikino M, Okuchi T, Sato T, Seto Y, Shigemori K, Sueda K, Tange Y, Togashi T, Umeda Y, Yabashi M, Yabuuchi T, Kodama R. Liquid Structure of Tantalum under Internal Negative Pressure. PHYSICAL REVIEW LETTERS 2021; 126:175503. [PMID: 33988455 DOI: 10.1103/physrevlett.126.175503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
In situ femtosecond x-ray diffraction measurements and ab initio molecular dynamics simulations were performed to study the liquid structure of tantalum shock released from several hundred gigapascals (GPa) on the nanosecond timescale. The results show that the internal negative pressure applied to the liquid tantalum reached -5.6 (0.8) GPa, suggesting the existence of a liquid-gas mixing state due to cavitation. This is the first direct evidence to prove the classical nucleation theory which predicts that liquids with high surface tension can support GPa regime tensile stress.
Collapse
|
|
4 |
|
17
|
Valdivia MP, Veloso F, Stutman D, Stoeckl C, Mileham C, Begishev IA, Theobald W, Vescovi M, Useche W, Regan SP, Albertazzi B, Rigon G, Mabey P, Michel T, Pikuz SA, Koenig M, Casner A. X-ray backlighter requirements for refraction-based electron density diagnostics through Talbot-Lau deflectometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:10G127. [PMID: 30399908 DOI: 10.1063/1.5039342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/08/2018] [Indexed: 06/08/2023]
Abstract
Talbot-Lau x-ray interferometers can map electron density gradients in High Energy Density (HED) samples. In the deflectometer configuration, it can provide refraction, attenuation, elemental composition, and scatter information from a single image. X-ray backlighters in Talbot-Lau deflectometry must meet specific requirements regarding source size and x-ray spectra, amongst others, to accurately diagnose a wide range of HED experiments. 8 keV sources produced in the high-power laser and pulsed power environment were evaluated as x-ray backlighters for Talbot-Lau x-ray deflectometry. In high-power laser experiments, K-shell emission was produced by irradiating copper targets (500 × 500 × 12.5 μm3 foils, 20 μm diameter wire, and >10 μm diameter spheres) with 30 J, 8-30 ps laser pulses and a 25 μm copper wire with a 60 J, 10 ps laser pulse. In the pulsed power environment, single (2 × 40 μm) and double (4 × 25 μm) copper x-pinches were driven at ∼1 kA/ns. Moiré fringe formation was demonstrated for all x-ray sources explored, and detector performance was evaluated for x-ray films, x-ray CCDs, and imaging plates in context of spatial resolution, x-ray emission, and fringe contrast.
Collapse
|
|
7 |
|
18
|
Paddock RW, von der Leyen MW, Aboushelbaya R, Norreys PA, Chapman DJ, Eakins DE, Oliver M, Clarke RJ, Notley M, Baird CD, Booth N, Spindloe C, Haddock D, Irving S, Scott RHH, Pasley J, Cipriani M, Consoli F, Albertazzi B, Koenig M, Martynenko AS, Wegert L, Neumayer P, Tchórz P, Rączka P, Mabey P, Garbett W, Goshadze RMN, Karasiev VV, Hu SX. Measuring the principal Hugoniot of inertial-confinement-fusion-relevant TMPTA plastic foams. Phys Rev E 2023; 107:025206. [PMID: 36932569 DOI: 10.1103/physreve.107.025206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Wetted-foam layers are of significant interest for inertial-confinement-fusion capsules, due to the control they provide over the convergence ratio of the implosion and the opportunity this affords to minimize hydrodynamic instability growth. However, the equation of state for fusion-relevant foams are not well characterized, and many simulations rely on modeling such foams as a homogeneous medium with the foam average density. To address this issue, an experiment was performed using the VULCAN Nd:glass laser at the Central Laser Facility. The aim was to measure the principal Hugoniot of TMPTA plastic foams at 260mg/cm^{3}, corresponding to the density of liquid DT-wetted-foam layers, and their "hydrodynamic equivalent" capsules. A VISAR was used to obtain the shock velocity of both the foam and an α-quartz reference layer, while streaked optical pyrometry provided the temperature of the shocked material. The measurements confirm that, for the 20-120 GPa pressure range accessed, this material can indeed be well described using the equation of state of the homogeneous medium at the foam density.
Collapse
|
|
2 |
|
19
|
Sakai K, Moritaka T, Morita T, Tomita K, Minami T, Nishimoto T, Egashira S, Ota M, Sakawa Y, Ozaki N, Kodama R, Kojima T, Takezaki T, Yamazaki R, Tanaka SJ, Aihara K, Koenig M, Albertazzi B, Mabey P, Woolsey N, Matsukiyo S, Takabe H, Hoshino M, Kuramitsu Y. Author Correction: Direct observations of pure electron outflow in magnetic reconnection. Sci Rep 2022; 12:16501. [PMID: 36192592 PMCID: PMC9530177 DOI: 10.1038/s41598-022-21220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
Published Erratum |
3 |
|
20
|
Pérez-Callejo G, Vlachos C, Walsh CA, Florido R, Bailly-Grandvaux M, Vaisseau X, Suzuki-Vidal F, McGuffey C, Beg FN, Bradford P, Ospina-Bohórquez V, Batani D, Raffestin D, Colaïtis A, Tikhonchuk V, Casner A, Koenig M, Albertazzi B, Fedosejevs R, Woolsey N, Ehret M, Debayle A, Loiseau P, Calisti A, Ferri S, Honrubia J, Kingham R, Mancini RC, Gigosos MA, Santos JJ. Cylindrical implosion platform for the study of highly magnetized plasmas at Laser MegaJoule. Phys Rev E 2022; 106:035206. [PMID: 36266806 DOI: 10.1103/physreve.106.035206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
Investigating the potential benefits of the use of magnetic fields in inertial confinement fusion experiments has given rise to experimental platforms like the Magnetized Liner Inertial Fusion approach at the Z-machine (Sandia National Laboratories) or its laser-driven equivalent at OMEGA (Laboratory for Laser Energetics). Implementing these platforms at MegaJoule-scale laser facilities, such as the Laser MegaJoule (LMJ) or the National Ignition Facility (NIF), is crucial to reaching self-sustained nuclear fusion and enlarges the level of magnetization that can be achieved through a higher compression. In this paper, we present a complete design of an experimental platform for magnetized implosions using cylindrical targets at LMJ. A seed magnetic field is generated along the axis of the cylinder using laser-driven coil targets, minimizing debris and increasing diagnostic access compared with pulsed power field generators. We present a comprehensive simulation study of the initial B field generated with these coil targets, as well as two-dimensional extended magnetohydrodynamics simulations showing that a 5 T initial B field is compressed up to 25 kT during the implosion. Under these circumstances, the electrons become magnetized, which severely modifies the plasma conditions at stagnation. In particular, in the hot spot the electron temperature is increased (from 1 keV to 5 keV) while the density is reduced (from 40g/cm^{3} to 7g/cm^{3}). We discuss how these changes can be diagnosed using x-ray imaging and spectroscopy, and particle diagnostics. We propose the simultaneous use of two dopants in the fuel (Ar and Kr) to act as spectroscopic tracers. We show that this introduces an effective spatial resolution in the plasma which permits an unambiguous observation of the B-field effects. Additionally, we present a plan for future experiments of this kind at LMJ.
Collapse
|
|
3 |
|
21
|
Vincenti MA, Montereali RM, Bonfigli F, Nichelatti E, Nigro V, Piccinini M, Koenig M, Mabey P, Rigon G, Dabrowski HJ, Benkadoum Y, Mercere P, Da Silva P, Pikuz T, Ozaki N, Makarov S, Pikuz S, Albertazzi B. Advanced spectroscopic investigation of colour centres in LiF crystals irradiated with monochromatic hard x-rays. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:205701. [PMID: 38330460 DOI: 10.1088/1361-648x/ad2796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
Nominally-pure lithium fluoride (LiF) crystals were irradiated with monochromatic hard x-rays of energy 5, 7, 9 and 12 keV at the METROLOGIE beamline of the SOLEIL synchrotron facility, in order to understand the role of the selected x-ray energy on their visible photoluminescence (PL) response, which is used for high spatial resolution 2D x-ray imaging detectors characterized by a wide dynamic range. At the energies of 7 and 12 keV the irradiations were performed at five different doses corresponding to five uniformly irradiated areas, while at 5 and 9 keV only two irradiations at two different doses were carried out. The doses were planned in a range between 4 and 1.4 × 103Gy (10.5 mJ cm-3to 3.7 J cm-3), depending on the x-ray energy. After irradiation at the energies of 7 and 12 keV, the spectrally-integrated visible PL intensity of the F2and F3+colour centres (CCs) generated in the LiF crystals, carefully measured by fluorescence microscopy under blue excitation, exhibits a linear dependence on the irradiation dose in the investigated dose range. This linear behaviour was confirmed by the optical absorption spectra of the irradiated spots, which shows a similar linear behaviour for both the F2and F3+CCs, as derived from their overlapping absorption band at around 450 nm. At the highest x-ray energy, the average concentrations of the radiation-induced F, F2and F3+CCs were also estimated. The volume distributions of F2defects in the crystals irradiated with 5 and 9 keV x-rays were reconstructed in 3D by measuring their PL signal using a confocal laser scanning microscope operating in fluorescence mode. On-going investigations are focusing on the results obtained through thisz-scanning technique to explore the potential impact of absorption effects at the excitation laser wavelength.
Collapse
|
|
1 |
|