1
|
Haribabu B, Richardson RM, Fisher I, Sozzani S, Peiper SC, Horuk R, Ali H, Snyderman R. Regulation of human chemokine receptors CXCR4. Role of phosphorylation in desensitization and internalization. J Biol Chem 1997; 272:28726-31. [PMID: 9353342 DOI: 10.1074/jbc.272.45.28726] [Citation(s) in RCA: 234] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Members of the chemokine receptor family CCR5 and CXCR4 have recently been shown to be involved in the entry of human immunodeficiency virus (HIV) into target cells. Here, we investigated the regulation of CXCR4 in rat basophilic leukemia cells (RBL-2H3) stably transfected with wild type (Wt CXCR4) or a cytoplasmic tail deletion mutant (DeltaCyto CXCR4) of CXCR4. The ligand, stromal cell derived factor-1 (SDF-1) stimulated higher G-protein activation, inositol phosphate generation, and a more sustained calcium elevation in cells expressing DeltaCyto CXCR4 relative to Wt CXCR4. SDF-1 and phorbol 12-myristate 13-acetate (PMA), but not a membrane permeable cAMP analog induced rapid phosphorylation as well as desensitization of Wt CXCR4. Phosphorylation of DeltaCyto CXCR4 was not detected under any of these conditions. Despite lack of receptor phosphorylation, calcium mobilization by SDF-1 in DeltaCyto CXCR4 cells was partially desensitized by prior treatment with SDF-1. Of interest, the rapid release of calcium was inhibited without affecting the sustained calcium elevation, indicating independent regulatory pathways for these processes. PMA completely inhibited phosphoinositide hydrolysis and calcium mobilization in Wt CXCR4 but only partially inhibited these responses in DeltaCyto CXCR4. cAMP also partially inhibited these responses in both Wt CXCR4 and DeltaCyto CXCR4. SDF-1, PMA, and cAMP caused phosphorylation of phospholipase Cbeta3 in Wt and DeltaCyto CXCR4 cells. Both SDF-1 as well as PMA induced rapid internalization of Wt CXCR4. SDF-1 but not PMA induced internalization of DeltaCyto CXCR4 albeit at reduced levels relative to Wt CXCR4. These results indicate that signaling and internalization of CXCR4 are regulated by receptor phosphorylation dependent and independent mechanisms. Desensitization of CXCR4 signaling, independent of receptor phosphorylation, appears to be a consequence of the phosphorylation of phospholipase Cbeta3.
Collapse
|
|
28 |
234 |
2
|
Ali H, Richardson RM, Haribabu B, Snyderman R. Chemoattractant receptor cross-desensitization. J Biol Chem 1999; 274:6027-30. [PMID: 10037679 DOI: 10.1074/jbc.274.10.6027] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
Review |
26 |
210 |
3
|
Haribabu B, Hook SS, Selbert MA, Goldstein EG, Tomhave ED, Edelman AM, Snyderman R, Means AR. Human calcium-calmodulin dependent protein kinase I: cDNA cloning, domain structure and activation by phosphorylation at threonine-177 by calcium-calmodulin dependent protein kinase I kinase. EMBO J 1995; 14:3679-86. [PMID: 7641687 PMCID: PMC394442 DOI: 10.1002/j.1460-2075.1995.tb00037.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human Ca(2+)-calmodulin (CaM) dependent protein kinase I (CaMKI) encodes a 370 amino acid protein with a calculated M(r) of 41,337. The 1.5 kb CaMKI mRNA is expressed in many different human tissues and is the product of a single gene located on human chromosome 3. CaMKI 1-306, was unable to bind Ca(2+)-CaM and was completely inactive thereby defining an essential component of the CaM-binding domain to residues C-terminal to 306. CaMKI 1-294 did not bind CaM but was fully active in the absence of Ca(2+)-CaM, indicating that residues 295-306 are sufficient to maintain CaMKI in an auto-inhibited state. CaMKI was phosphorylated on Thr177 and its activity enhanced approximately 25-fold by CaMKI kinase in a Ca(2+)-CaM dependent manner. Replacement of Thr177 with Ala or Asp prevented both phosphorylation and activation by CaMKI kinase and the latter replacement also led to partial activation in the absence of CaMKI kinase. Whereas CaMKI 1-306 was unresponsive to CaMKI kinase, the 1-294 mutant was phosphorylated and activated by CaMKI kinase in both the presence and absence of Ca(2+)-CaM although at a faster rate in its presence. These results indicate that the auto-inhibitory domain in CaMKI gates, in a Ca(2+)-CaM dependent fashion, accessibility of both substrates to the substrate binding cleft and CaMKI kinase to Thr177. Additionally, CaMKI kinase responds directly to Ca(2+)-CaM with increased activity.
Collapse
|
|
30 |
152 |
4
|
Haribabu B, Verghese MW, Steeber DA, Sellars DD, Bock CB, Snyderman R. Targeted disruption of the leukotriene B(4) receptor in mice reveals its role in inflammation and platelet-activating factor-induced anaphylaxis. J Exp Med 2000; 192:433-8. [PMID: 10934231 PMCID: PMC2193219 DOI: 10.1084/jem.192.3.433] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Leukotrienes are derived from arachidonic acid and serve as mediators of inflammation and immediate hypersensitivity. Leukotriene B(4) (LTB(4)) and leukotriene C(4) (LTC(4)) act through G protein-coupled receptors LTB(4) receptor (BLTR) and Cys-LTR, respectively. To investigate the physiological role of BLTR, we produced mice with a targeted disruption of the BLTR gene. Mice deficient for BLTR (BLTR(-/-)) developed normally and had no apparent hematopoietic abnormalities. Peritoneal neutrophils from BLTR(-/-) mice displayed normal responses to the inflammatory mediators C5a and platelet-activating factor (PAF) but did not respond to LTB(4) for calcium mobilization or chemotaxis. Additionally, LTB(4) elicited peritoneal neutrophil influx in control but not in BLTR(-/-) mice. Thus, BLTR is the sole receptor for LTB(4)-induced inflammation in mice. Neutrophil influx in a peritonitis model and acute ear inflammation in response to arachidonic acid was significantly reduced in BLTR(-/-) mice. In mice, intravenous administration of PAF induces immediate lethal anaphylaxis. Surprisingly, female BLTR(-/-) mice displayed selective survival (6 of 9; P = 0.002) relative to male (1 of 11) mice of PAF-induced anaphylaxis. These results demonstrate the role of BLTR in leukotriene-mediated acute inflammation and an unexpected sex-related involvement in PAF-induced anaphylaxis.
Collapse
|
research-article |
25 |
130 |
5
|
Richardson RM, Pridgen BC, Haribabu B, Ali H, Snyderman R. Differential cross-regulation of the human chemokine receptors CXCR1 and CXCR2. Evidence for time-dependent signal generation. J Biol Chem 1998; 273:23830-6. [PMID: 9726994 DOI: 10.1074/jbc.273.37.23830] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neutrophils and transfected RBL-2H3 cells were used to investigate the mechanism of cross-regulation of the human interleukin-8 (IL-8) receptors CXCR1 and CXCR2 by chemoattractants. In neutrophils, Ca2+ mobilization by the CXCR2-specific chemokine, growth-related oncogene alpha (Groalpha), was desensitized by prior exposure to the chemoattractants N-formylated peptides (fMLP) or a complement cleavage product (C5a). In contrast, growth-related oncogene alpha did not desensitize the latter receptors. To investigate this phenomenon, CXCR2 was stably expressed in RBL-2H3 cells and mediated phosphoinositide hydrolysis, Ca2+ mobilization, chemotaxis, and secretion. In cells co-expressing CXCR2 and receptors for either C5a (C5aR) or fMLP (FR), CXCR2 was cross-phosphorylated and cross-desensitized by C5a and fMLP. However, neither C5aR nor FR was cross-phosphorylated or cross-desensitized by CXCR2 activation, although CXCR1 did mediate this process. Receptor internalization induced by IL-8 was more rapid and occurred at lower doses with CXCR2 than CXCR1, although both receptors mediated equipotent chemotaxis and exocytosis in RBL. Truncation of the cytoplasmic tail of CXCR2 (331T) prolonged its signaling relative to CXCR2, increased its resistance to internalization, and induced phospholipase D activation. 331T was resistant to homologous phosphorylation and cross-phosphorylation but not cross-desensitization of its Ca2+ mobilization by fMLP or C5a, indicating an inhibitory site distal to receptor/G protein coupling. In contrast to CXCR2, stimulation of 331T cross-desensitized Ca2+ mobilization by both FR and C5aR. CXCR2 and the mutant 331T induced phospholipase C beta3 phosphorylation to an extent equivalent to that of CXCR1. Taken together, these results suggest that CXCR1 and CXCR2 bind IL-8 to produce a group of equipotent responses, but their ability to generate other signals, including receptor internalization, cross-desensitization, and phospholipase D activation, are very different. The latter phenomena apparently require prolonged receptor activation, which in the case of CXCR2 is precluded by rapid receptor phosphorylation and internalization. Thus, receptors coupling to identical G proteins may trigger different cellular responses dependent on the length of their signaling time, which can be regulated by receptor phosphorylation.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/physiology
- Calcium/metabolism
- Chemotaxis, Leukocyte
- Complement C5a/pharmacology
- Complement C5a/physiology
- GTP Phosphohydrolases/metabolism
- Humans
- Interleukin-8/pharmacology
- Interleukin-8/physiology
- Kinetics
- Leukemia, Basophilic, Acute
- N-Formylmethionine Leucyl-Phenylalanine/pharmacology
- Neutrophils/drug effects
- Neutrophils/physiology
- Phosphatidylinositols/metabolism
- Phospholipase D/metabolism
- Phosphorylation
- Rats
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/physiology
- Receptors, Cytokine/physiology
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin/physiology
- Receptors, Interleukin-8A
- Receptors, Interleukin-8B
- Recombinant Proteins/biosynthesis
- Signal Transduction
- Transfection
- Tumor Cells, Cultured
Collapse
|
|
27 |
118 |
6
|
Ali H, Richardson R, Tomhave E, DuBose R, Haribabu B, Snyderman R. Regulation of stably transfected platelet activating factor receptor in RBL-2H3 cells. Role of multiple G proteins and receptor phosphorylation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31428-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
|
31 |
112 |
7
|
Haribabu B, Zhelev DV, Pridgen BC, Richardson RM, Ali H, Snyderman R. Chemoattractant receptors activate distinct pathways for chemotaxis and secretion. Role of G-protein usage. J Biol Chem 1999; 274:37087-92. [PMID: 10601267 DOI: 10.1074/jbc.274.52.37087] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human leukocyte chemoattractant receptors activate chemotactic and cytotoxic pathways to varying degrees and also activate different G-proteins depending on the receptor and the cell-type. To determine the relationship between G-protein usage and the biological and biochemical responses activated, receptors for the chemoattractants formyl peptides (FR), platelet-activating factor (PAFR), and leukotriene B(4) (BLTR) were transfected into RBL-2H3 cells. Pertussis toxin (Ptx) served as a Galpha(i) inhibitor. These receptors were chosen to represent the spectrum of G(i) usage as Ptx had differential effects on their ability to induce calcium mobilization, phosphoinositide hydrolysis, and exocytosis with complete inhibition of all responses by FR, intermediate effects on BLTR, and little effect on PAFR. Ptx did not affect ligand-induced phosphorylation of PAFR and BLTR but inhibited phosphorylation of FR. In contrast, chemotaxis to formylmethionylleucylphenylalanine, leukotriene B(4), and platelet-activating factor was completely blocked by Ptx. Wortmannin, a phosphotidylinositol 3-kinase inhibitor, also completely blocked ligand-induced chemotaxis by all receptors but did not affect calcium mobilization or phosphoinositide hydrolysis; however, it partially blocked the exocytosis response to formylmethionylleucylphenylalanine and the platelet-activating factor. Membrane ruffling and pseudopod extension via the BLTR was also completely inhibited by both Ptx and wortmannin. These data suggest that of the chemoattractant receptors studied, G-protein usage varies with FR being totally dependent on G(i), whereas BLTR and PAFR utilize both G(i) and a Ptx-insensitive G-protein. Both Ptx-sensitive and -insensitive G-protein usage can mediate the activation of phospholipase C, mobilization of intracellular calcium, and exocytosis by chemoattractant receptors. Chemotaxis, however, had an absolute requirement for a G(i)-mediated pathway.
Collapse
|
|
26 |
81 |
8
|
Richardson RM, Ali H, Tomhave ED, Haribabu B, Snyderman R. Cross-desensitization of chemoattractant receptors occurs at multiple levels. Evidence for a role for inhibition of phospholipase C activity. J Biol Chem 1995; 270:27829-33. [PMID: 7499254 DOI: 10.1074/jbc.270.46.27829] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To define the molecular mechanisms of cross-regulation among chemoattractant receptors, we stably coexpressed, in a rat basophilic leukemia (RBL-2H3) cell line, epitope-tagged receptors for the chemoattractants formylmethionylleucylphenylalanine (fMLP), a peptide of the fifth component of the complement system (C5a), and interleukin-8 (IL-8). All the expressed receptors underwent homologous phosphorylation and desensitization upon agonist stimulation. When co-expressed, epitope-tagged C5a receptor (ET-C5aR) and epitope-tagged IL-8 receptor (ET-IL-8RA) were cross-phosphorylated by activation of the other. Activation of epitope-tagged fMLP receptor (ET-FR) also cross-phosphorylated ET-C5aR and ET-IL-8RA, but ET-FR was totally resistant to cross-phosphorylation. Similarly, C5a and IL-8 stimulation of [35S]guanosine 5'-3-O-(thio) triphosphate (GTP gamma S) binding and Ca2+ mobilization were cross-desensitized by each other and by fMLP. Stimulation of [35S]GTP gamma S binding by fMLP was also not cross-desensitized by C5a or IL-8, however, Ca2+ mobilization was, suggesting a site of inhibition distal to G protein activation. Consistent with this desensitization of Ca2+ mobilization, inositol 1,4,5-trisphosphate release in RBL-2H3 cells expressing both ET-C5aR and ET-FR revealed that fMLP and C5a cross-desensitized each other's ability to stimulate phosphoinositide hydrolysis. Taken together, these results indicate that receptor cross-phosphorylation correlates directly with desensitization at the level of G protein activation. The ET-FR was resistant to this process. Of note, cross-desensitization of ET-FR at the level of phosphoinositide hydrolysis and Ca2+ mobilization was demonstrated in the absence of receptor phosphorylation. This suggests a new form of chemoattractant cross-regulation at a site distal to receptor/G protein coupling, involving the activity of phospholipase C.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/physiology
- Calcium/metabolism
- Cell Line
- Complement C5a/pharmacology
- Epitopes
- Gene Expression
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol Phosphates/metabolism
- Interleukin-8/pharmacology
- Leukemia, Basophilic, Acute
- Molecular Sequence Data
- N-Formylmethionine Leucyl-Phenylalanine/pharmacology
- Phosphorylation
- Rats
- Receptor, Anaphylatoxin C5a
- Receptors, Complement/biosynthesis
- Receptors, Complement/physiology
- Receptors, Formyl Peptide
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/physiology
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin/physiology
- Receptors, Interleukin-8A
- Receptors, Peptide/biosynthesis
- Receptors, Peptide/physiology
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/metabolism
- Tumor Cells, Cultured
- Type C Phospholipases/antagonists & inhibitors
- Type C Phospholipases/metabolism
Collapse
|
|
30 |
78 |
9
|
Richardson RM, DuBose RA, Ali H, Tomhave ED, Haribabu B, Snyderman R. Regulation of human interleukin-8 receptor A: identification of a phosphorylation site involved in modulating receptor functions. Biochemistry 1995; 34:14193-201. [PMID: 7578017 DOI: 10.1021/bi00043a025] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The human type A interleukin-8 receptor (IL-8RA) was modified to express an amino-terminal epitope tag and stably overexpressed in a rat basophilic leukemia cell line (RBL-2H3). This receptor (ET-IL-8RA) displayed functional properties similar to those of the native receptor in neutrophils in that exposure to IL-8 stimulated GTPase activity, phosphoinositide (PI) hydrolysis, intracellular calcium mobilization, and degranulation in a pertussis toxin (PTx) susceptible fashion. IL-8 induced dose- and time-dependent phosphorylation of ET-IL-8RA. Phorbol 12-myristate 13-acetate (PMA) treatment also resulted in phosphorylation of the receptor although to a lesser extent. Staurosporine totally blocked PMA-induced phosphorylation but only partially inhibited IL-8-mediated phosphorylation. Phosphorylation of ET-IL-8RA correlated with its desensitization as measured by GTPase activation and calcium mobilization. To determine the role of phosphorylation in IL-8RA signal transduction, three mutants lacking specific serine and threonine residues located at the C-terminal of this receptor were constructed by site-directed mutagenesis (M1, M2, and M3). The mutated receptors expressed in RBL-2H3 cells displayed pharmacological properties (Kd approximately 2-2.8 nM and Bmax approximately 3-3.5 pmol/mg of protein) similar to those of the wild-type ET-IL-8RA. M2 and M3, but not M1, showed a marked decrease in IL-8-induced phosphorylation compared to the wild-type receptor. M2 and M3 but not M1 were resistant to PMA-mediated phosphorylation and desensitization and were also more resistant to homologous desensitization than M1 or ET-IL-8RA.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
30 |
76 |
10
|
Ali H, Fisher I, Haribabu B, Richardson RM, Snyderman R. Role of phospholipase Cbeta3 phosphorylation in the desensitization of cellular responses to platelet-activating factor. J Biol Chem 1997; 272:11706-9. [PMID: 9115222 DOI: 10.1074/jbc.272.18.11706] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Platelet-activating factor (PAF) stimulates a diverse array of cellular responses through receptors coupled to G proteins that activate phospholipase C (PLC). Truncation of the cytoplasmic tail of the receptor to remove phosphorylation sites (mutant PAF receptor, mPAFR) results in enhancement of PAF-stimulated responses. Here we demonstrate that PAF or phorbol 12-myristate 13-acetate (PMA) pretreatment inhibited wild type PAFR-induced PLC-mediated responses by approximately 90%, whereas these responses to the phosphorylation-deficient mPAFR were inhibited by approximately 50%, despite normal G protein coupling, suggesting a distal inhibitory locus. PAF and PMA, as well as a membrane permeable cyclic AMP analog, stimulated phosphorylation of PLCbeta3. A protein kinase C (PKC) inhibitor blocked phosphorylation of PLCbeta3 stimulated by PAF and PMA but not by cAMP. Activation of protein kinase A (PKA) by cAMP did not result in inhibition of Ca2+ mobilization stimulated by PAF. In contrast, cAMP did inhibit the response to formylpeptide chemoattractant receptor. These data suggest that homologous desensitization of PAF-mediated responses is regulated via phosphorylation at two levels in the signaling pathway, one at the receptor and the other at PLCbeta3 mediated by PKC but not by PKA. Phosphorylation of PLCbeta3 by PKA could explain the inhibition of formylpeptide chemoattractant receptor signaling by cAMP. As PAF and formylpeptide chemoattractant receptors activate PLC via different G proteins, phosphorylation of PLCbeta3 by PKC and PKA could provide distinct regulatory control for classes of G protein-coupled receptors.
Collapse
|
|
28 |
70 |
11
|
Ali H, Haribabu B, Richardson RM, Snyderman R. Mechanisms of inflammation and leukocyte activation. Med Clin North Am 1997; 81:1-28. [PMID: 9012753 DOI: 10.1016/s0025-7125(05)70503-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article reviews the current status of the knowledge of mechanisms of activating inflammatory responses. It also describes inflammatory mediators, adhesion proteins, the inflammatory process itself, and the molecular mechanisms controlling inflammatory cell activation and regulation.
Collapse
|
Review |
28 |
62 |
12
|
Richardson RM, Ali H, Pridgen BC, Haribabu B, Snyderman R. Multiple signaling pathways of human interleukin-8 receptor A. Independent regulation by phosphorylation. J Biol Chem 1998; 273:10690-5. [PMID: 9553132 DOI: 10.1074/jbc.273.17.10690] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-8 (IL-8) receptor A (CXCR1) couples to a pertussis toxin-sensitive G protein to mediate phospholipase Cbeta (PLCbeta) activation and cellular responses. Responses to CXCR1 are attenuated by prior exposure of neutrophils to either IL-8, a cleavage product of the fifth component of complement (C5a) or n-formylated peptides (formylmethionylleucylphenylalanine, fMLP). To characterize the role of receptor phosphorylation in the regulation of the CXCR1, a phosphorylation-deficient mutant, M2CXCR1, was constructed. This receptor, stably expressed in RBL-2H3 cells, coupled more efficiently to G protein and stimulated enhanced phosphoinositide hydrolysis, cAMP production, exocytosis, and phospholipase D activation, and was resistant to IL-8-induced receptor internalization. The rate and total amount of ligand stimulated actin polymerization remained unchanged, but interestingly, chemotaxis was decreased by approximately 30% compared with the wild type receptor. To study the role of receptor phosphorylation in cross-desensitization of chemoattractant receptors, M2CXCR1 was coexpressed with cDNAs encoding receptors for either fMLP (FR), C5a (C5aR), or platelet-activating factor (PAFR). Both C5aR and PAFR were cross-phosphorylated upon M2CXCR1 activation, resulting in attenuated guanosine 5'-3'-O-(thio)triphosphate (GTPgammaS) binding in membranes. In contrast, FR and M2CXCR1 were resistant to cross-phosphorylation and cross-inhibition of GTPgammaS binding by other receptors. Despite the resistance of M2CXCR1 to cross-phosphorylation and receptor/G protein uncoupling, its susceptibility to cross-desensitization of its Ca2+ response by fMLP and C5a, was equivalent to CXCR1. Regardless of the enhancement in certain receptor functions in M2CXCR1 compared with the wild type CXCR1, the mutated receptors mediated equivalent PLCbeta3 phosphorylation and cross-desensitization of Ca2+ mobilization by FR, C5aR, and PAFR. The results herein indicate that phosphorylation of CXCR1 regulates some, but not all of the receptors functions. While receptor phosphorylation inhibits G protein turnover, PLC activation, Ca2+ mobilization and secretion, it is required for normal chemotaxis and receptor internalization. Since phosphorylation of CXCR1 had no effect on its ability to induce phosphorylation of PLCbeta3 or to mediate class-desensitization, these activities may be mediated by independently regulated pathways.
Collapse
|
|
27 |
57 |
13
|
Uriarte SM, Joshi-Barve S, Song Z, Sahoo R, Gobejishvili L, Jala VR, Haribabu B, McClain C, Barve S. Akt inhibition upregulates FasL, downregulates c-FLIPs and induces caspase-8-dependent cell death in Jurkat T lymphocytes. Cell Death Differ 2005; 12:233-42. [PMID: 15665818 DOI: 10.1038/sj.cdd.4401549] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In T lymphocytes, the role of Akt in regulating Fas/Fas ligand (FasL)-mediated apoptotic signaling and death is not clearly understood. In this study, we observed that inhibition of Akt causes enhanced expression of FasL mRNA and protein and increased death-inducing signaling complex (DISC) formation with Fas-associated death domain (FADD) and procaspase-8 recruitment. Also, caspase-8 was activated at the DISC with accompanying decrease in c-FLIPs expression. FasL neutralizing antibody significantly decreased apoptotic death in the Akt-inhibited T cells. Additionally, Akt inhibition-induced Fas signaling was observed to link to the mitochondrial pathway via Bid cleavage. Further, inhibition of caspase-8 activity effectively blocked the loss of mitochondrial membrane potential and DNA fragmentation, suggesting that DISC formation and subsequent caspase-8 activation are critical initiating events in Akt inhibition-induced apoptotic death in T lymphocytes. These data demonstrate yet another important survival function governed by Akt kinase in T lymphocytes, which involves the regulation of FasL expression and consequent apoptotic signaling.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
56 |
14
|
Richardson RM, Pridgen BC, Haribabu B, Snyderman R. Regulation of the human chemokine receptor CCR1. Cross-regulation by CXCR1 and CXCR2. J Biol Chem 2000; 275:9201-8. [PMID: 10734056 DOI: 10.1074/jbc.275.13.9201] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the regulation of the CCR1 chemokine receptor, a rat basophilic leukemia (RBL-2H3) cell line was modified to stably express epitope-tagged receptor. These cells responded to RANTES (regulated upon activation normal T expressed and secreted), macrophage inflammatory protein-1alpha, and monocyte chemotactic protein-2 to mediate phospholipase C activation, intracellular Ca(2+) mobilization and exocytosis. Upon activation, CCR1 underwent phosphorylation and desensitization as measured by diminished GTPase stimulation and Ca(2+) mobilization. Alanine substitution of specific serine and threonine residues (S2 and S3) or truncation of the cytoplasmic tail (DeltaCCR1) of CCR1 abolished receptor phosphorylation and desensitization of G protein activation but did not abolish desensitization of Ca(2+) mobilization. S2, S3, and DeltaCCR1 were also resistant to internalization, mediated greater phosphatidylinositol hydrolysis and sustained Ca(2+) mobilization, and were only partially desensitized by RANTES, relative to S1 and CCR1. To study CCR1 cross-regulation, RBL cells co-expressing CCR1 and receptors for interleukin-8 (CXCR1, CXCR2, or a phosphorylation-deficient mutant of CXCR2, 331T) were produced. Interleukin-8 stimulation of CXCR1 or CXCR2 cross-phosphorylated CCR1 and cross-desensitized its ability to stimulate GTPase activity and Ca(2+) mobilization. Interestingly, CCR1 cross-phosphorylated and cross-desensitized CXCR2, but not CXCR1. Ca(2+) mobilization by S3 and DeltaCCR1 were also cross-desensitized by CXCR1 and CXCR2 despite lack of receptor phosphorylation. In contrast to wild type CCR1, S3 and DeltaCCR1, which produced sustained signals, cross-phosphorylated and cross-desensitized responses to CXCR1 as well as CXCR2. Taken together, these results indicate that CCR1-mediated responses are regulated at several steps in the signaling pathway, by receptor phosphorylation at the level of receptor/G protein coupling and by an unknown mechanism at the level of phospholipase C activation. Moreover selective cross-regulation among chemokine receptors is, in part, a consequence of the strength of signaling (i.e. greater phosphatidylinositol hydrolysis and sustained Ca(2+) mobilization) which is inversely correlated with the receptor's susceptibility to phosphorylation. Since many chemokines activate multiple chemokine receptors, selective cross-regulation among such receptors may play a role in their immunomodulation.
Collapse
|
|
25 |
56 |
15
|
Ali H, Sozzani S, Fisher I, Barr AJ, Richardson RM, Haribabu B, Snyderman R. Differential regulation of formyl peptide and platelet-activating factor receptors. Role of phospholipase Cbeta3 phosphorylation by protein kinase A. J Biol Chem 1998; 273:11012-6. [PMID: 9556582 DOI: 10.1074/jbc.273.18.11012] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Formylated peptides (e.g. n-formyl-Met-Leu-Phe (fMLP)) and platelet-activating factor (PAF) mediate chemotactic and cytotoxic responses in leukocytes through receptors coupled to G proteins that activate phospholipase C (PLC). In RBL-2H3 cells, fMLP utilizes a pertussis toxin (ptx)-sensitive G protein to activate PLC, whereas PAF utilizes a ptx-insensitive G protein. Here we demonstrate that fMLP, but not PAF, enhanced intracellular cAMP levels via a ptx-sensitive mechanism. Protein kinase A (PKA) inhibition by H-89 enhanced inositol phosphate formation stimulated by fMLP but not PAF. Furthermore, a membrane-permeable cAMP analog 8-(4-chlorophenylthio)-cAMP (cpt-cAMP) inhibited phosphoinositide hydrolysis and secretion stimulated by fMLP but not PAF. Both cpt-cAMP and fMLP stimulated PLCbeta3 phosphorylation in intact RBL cells. The purified catalytic subunit of PKA phosphorylated PLCbeta3 immunoprecipitated from RBL cell lysate. Pretreatment of intact cells with cpt-cAMP and fMLP, but not PAF, resulted in an inhibition of subsequent PLCbeta3 phosphorylation by PKA in vitro. These data demonstrate that fMLP receptor, which couples to a ptx-sensitive G protein, activates both PLC and cAMP production. The resulting PKA activation phosphorylates PLCbeta3 and appears to block the ability of Gbetagamma to activate PLC. Thus, both fMLP and PAF generate stimulatory signals for PLCbeta3, but only fMLP produces a PKA-dependent inhibitory signal. This suggests a novel mechanism for the bidirectional regulation of receptors which activate PLC by ptx-sensitive G proteins.
Collapse
|
|
27 |
45 |
16
|
Haribabu B, Snyderman R. Identification of additional members of human G-protein-coupled receptor kinase multigene family. Proc Natl Acad Sci U S A 1993; 90:9398-402. [PMID: 8415712 PMCID: PMC47575 DOI: 10.1073/pnas.90.20.9398] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Human neutrophils express several distinct guanine nucleotide binding (G)-protein-coupled receptors that mediate their responsiveness to chemoattractants. Phosphorylation by receptor-specific and second messenger-activated protein kinases is a common mechanism for regulation of G-protein-coupled receptors. To explore the possibility that chemoattractant receptors are regulated by unique receptor kinases, we utilized PCR to identify receptor kinases in human neutrophils. Here, we report the isolation of three G-protein-coupled-receptor-kinase (GPRK)-like sequences termed GPRK5, GPRK6, and GPRK7 in addition to the beta-adrenergic receptor kinase (beta ARK) 1 and 2 isoforms (beta ARK1 and beta ARK2). Two, GPRK5 and GPRK6, showed high homology at the amino acid level to the recently identified receptor-kinase-like sequence localized close to the Huntington disease locus. GPRK7 is of interest in that it contains a DLG (Asp-Leu-Gly) amino acid motif of receptor kinases preceded by a DFD (Asp-Phe-Asp) motif. We isolated cDNAs corresponding to GPRK6; the complete sequence shows > 66% identity and 81% similarity at the amino acid level to the GPRK from the Huntington disease locus. The GPRK6 cDNA probe hybridizes to two mRNAs of 2.9 and 2.1 kb that were expressed in all the tested human tissues including HL-60 cells and neutrophils. Genomic Southern blot analysis and chromosome mapping showed that GPRK6 hybridizes to two closely related genes located on chromosomes 5 and 13 and are, therefore, distinct from the GPRK located near the Huntington disease locus on chromosome 4. The identification herein of three putative receptor kinases indicates that in addition to beta ARK and rhodopsin kinase subfamilies, there are other receptor-kinase subfamilies that regulate the broad spectrum of G-protein-coupled receptors.
Collapse
|
research-article |
32 |
42 |
17
|
Haribabu B, Richardson RM, Verghese MW, Barr AJ, Zhelev DV, Snyderman R. Function and regulation of chemoattractant receptors. Immunol Res 2001; 22:271-9. [PMID: 11339362 DOI: 10.1385/ir:22:2-3:271] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phagocyte migration and activation at sites of inflammation is mediated through chemoattractant receptors that are coupled to G-proteins. Early studies from our laboratory demonstrated G-protein-mediated phospholipase C activation by chemoattractants. Recently, this laboratory developed cellular and animal models to allow biochemical, cell biological and molecular genetic approaches to be used in determining the mechanisms of chemoattractant receptor function, regulation, and cross regulation. These studies provided evidence that chemoattractant receptors activate distinct pathways for chemotaxis and exocytosis and cross-regulate each other's function at multiple levels. A major site of regulation is through phosphorylation of receptors by G-protein-coupled receptor kinases and by protein kinase C. In addition, the activation of phospholipase C by chemoattractants is also regulated at additional sites distal to receptor phosphorylation. These may include modulation of G-protein activation by regulators of G-protein signaling (RGS) and modification of phospholipase C. Phosphorylation of phospholipase Cbeta3 by both protein kinase A and protein kinase C has been demonstrated. The function and regulation of chemoattractant receptors are also being examined in mouse models. In these studies, mice deficient in leukotriene B4 receptors have been generated by targeted gene disruption. These mice displayed reduced neutrophil accumulation in certain inflammation models and sex-related differences in platelet-activating-factor induced anaphylaxis.
Collapse
|
Review |
24 |
40 |
18
|
Richardson RM, Haribabu B, Ali H, Snyderman R. Cross-desensitization among receptors for platelet activating factor and peptide chemoattractants. Evidence for independent regulatory pathways. J Biol Chem 1996; 271:28717-24. [PMID: 8910508 DOI: 10.1074/jbc.271.45.28717] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cross-desensitization among receptors for peptide chemoattractants have been shown to involve two independent processes, receptor phosphorylation and inhibition of phospholipase C (PLC) activation. Receptors for lipid chemoattractants, i.e. platelet activating factor (PAF) and leukotriene B4, did not inhibit the responses of peptide chemoattractant receptors, suggesting distinct signaling pathways. To examine cross-desensitization between receptors for lipid and peptide chemoattractants, cDNA encoding the PAF receptor (PAFR) was co-expressed into RBL-2H3 cells with cDNAs encoding receptors for either formylated peptides (FR), a product of the fifth component of complement (C5aR) or interleukin-8 A (IL-8RA). PAFR was homologously phosphorylated and desensitized by PAF, and cross-phosphorylated and cross-desensitized by fMet-Leu-Phe, C5a, and IL-8. In contrast, the receptors for peptide chemoattractants were neither cross-phosphorylated nor cross-desensitized by PAF. Staurosporine blocked cross-phosphorylation and cross-desensitization of the PAFR by peptide chemoattractants. Truncation of the cytoplasmic tail of PAFR (mPAFR) abolished its homologous and cross-phosphorylation. mPAFR was also resistant to cross-desensitization by peptide chemoattractants at the level of PLC activation. Interestingly, mPAFR mediated a sustained Ca2+ mobilization in response to PAF and was more active in inducing GTPase activity, phosphoinositide hydrolysis, secretion, and phospholipase D activation than the wild type PAFR. In contrast to PAFR, stimulation of the mPAFR cross-phosphorylated and cross-desensitized responses to IL-8RA. As expected, FR, which is resistant to cross-phosphorylation by C5aR and IL-8RA, was not phosphorylated by mPAFR. However, unlike C5aR and IL-8RA, mPAFR did not inhibit the ability of FR to activate PLC. Blocking Ca2+ influx inhibited mPAFR-mediated sustained Ca2+ response, phospholipase D activation and secretion, but not phosphoinositide hydrolysis and cross-phosphorylation and cross-desensitization of IL-8RA. The data herein suggest that cross-desensitization of PAFR by peptide chemoattractants is solely due to receptor phosphorylation. The PAFR and the peptide chemoattractant receptors do not cross-regulate each other at the level of PLC, suggesting distinct regulatory pathways.
Collapse
|
|
29 |
39 |
19
|
Haribabu B, Steeber DA, Ali H, Richardson RM, Snyderman R, Tedder TF. Chemoattractant receptor-induced phosphorylation of L-selectin. J Biol Chem 1997; 272:13961-5. [PMID: 9153259 DOI: 10.1074/jbc.272.21.13961] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The selectin adhesion molecules and chemoattractant receptors synergistically regulate leukocyte migration into lymphoid tissues and sites of inflammation, but little is known about how these families of receptors modulate each other's function. In this study, L-selectin was found to be phosphorylated in lymphoblastoid cell lines, and phosphorylation was enhanced by phorbol ester (phorbol 12-myristate 13-acetate (PMA)) treatment. Interactions between L-selectin and chemoattractant receptors were therefore examined using transfected rat basophilic leukemia cell lines (RBL-2H3) that expressed human L-selectin along with human leukocyte chemoattractant receptors. L-selectin was rapidly phosphorylated in cells treated with chemoattractants, thrombin, IgE receptor agonists, or PMA. Pertussis toxin or the protein kinase C inhibitor, staurosporine, completely blocked chemoattractant receptor-induced phosphorylation of L-selectin. PMA-induced phosphorylation was on serine residues within the cytoplasmic tail of L-selectin that have been well conserved during recent evolution. Although L-selectin phosphorylation was not essential for basal levels of adhesion through L-selectin in transformed cell lines, the rapid increase in ligand binding activity of L-selectin that occurs following leukocyte activation was blocked by staurosporine. These results demonstrate that L-selectin can be phosphorylated following engagement of chemoattractant receptors and suggest that this may be a physiologically relevant mechanism for the synergistic regulation of these receptors during leukocyte migration.
Collapse
|
|
28 |
38 |
20
|
Barr AJ, Ali H, Haribabu B, Snyderman R, Smrcka AV. Identification of a region at the N-terminus of phospholipase C-beta 3 that interacts with G protein beta gamma subunits. Biochemistry 2000; 39:1800-6. [PMID: 10677230 DOI: 10.1021/bi992021f] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Members of the phospholipase C-beta (PLC-beta) family of proteins are activated either by G alpha or G beta gamma subunits of heterotrimeric G proteins. To define specific regions of PLC-beta 3 that are involved in binding and activation by G beta gamma, a series of fragments of PLC-beta 3 as glutathione-S-transferase (GST) fusion proteins were produced. A fragment encompassing the N-terminal pleckstrin homology (PH) domain and downstream sequence (GST-N) bound to G protein beta 1 gamma 2 in an in vitro binding assay, and binding was inhibited by G protein alpha subunit, G alpha i1. This PLC-beta 3 fragment also inhibited G beta gamma-stimulated PLC-beta activity in a reconstitution system, while having no significant effect on G alpha q-stimulated PLC-beta 3 activity. The N-terminal G beta gamma binding region was delineated further to the first 180 amino acids, and the sequence Asn150-Ser180, just distal to the PH domain, was found to be required for the interaction. Mutation of basic residues 154Arg, 155Lys, 159Lys, and 161Lys to Glu within this region reduced G beta gamma binding affinity and specifically reduced the EC50 for G beta gamma-dependent activation of the mutant enzyme 3-fold. Basal activity and G alpha q-dependent activation of the enzyme were unaffected by the mutations. While these basic residues may not directly mediate the interaction with G beta gamma, the data provide evidence for an N-terminal G beta gamma binding region of PLC-beta 3 that is involved in activation of the enzyme.
Collapse
|
|
25 |
36 |
21
|
Haribabu B, Rajkovic A, Dottin RP. Cell-cell contact and cAMP regulate the expression of a UDP glucose pyrophosphorylase gene of Dictyostelium discoideum. Dev Biol 1986; 113:436-42. [PMID: 3005092 DOI: 10.1016/0012-1606(86)90178-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UDP glucose pyrophosphorylase (UDPGP) (EC.2.7.7.9) is a developmentally regulated enzyme of Dictyostelium discoideum. Two polypeptides of UDPGP are translated from Dictyostelium mRNA. Recently we isolated a cDNA clone which encodes one of the UDPGP polypeptides (B. R. Fishel, J. A. Ragheb, A. Rajkovic, B. Haribabu, C. W. Schweinfest, and R. P. Dottin (1985). Dev. Biol. 110, 369-381). By hybridization with the cDNA and by in vitro translation and immunoprecipitation, we examined the effect of cell-cell contact and cAMP on the regulation of UDPGP expression. Disaggregation of slugs resulted in a rapid loss of UDPGP mRNA. Addition of cAMP to these cells resulted in increased levels of UDPGP mRNA, though not to the same extent as seen during normal development. The two UDPGP polypeptides observed in vitro are coordinately regulated. Unaggregated cells, starved and shaken rapidly in suspension, did not show UDPGP mRNA accumulation. However, addition of cAMP to these cells caused UDPGP induction, suggesting that the requirement for cell-cell contact could be bypassed in part by cAMP addition.
Collapse
|
|
39 |
31 |
22
|
Ali H, Tomhave ED, Richardson RM, Haribabu B, Snyderman R. Thrombin primes responsiveness of selective chemoattractant receptors at a site distal to G protein activation. J Biol Chem 1996; 271:3200-6. [PMID: 8621721 DOI: 10.1074/jbc.271.6.3200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To define the molecular basis of human chemoattractant receptor regulation, rat basophilic leukemia RBL-2H3 cells, which are thrombin-responsive, were transfected to stably express epitope-tagged receptors for C5a, interleukin-8 (IL-8), formylpeptides (e.g. N-formyl-methionyl-leucyl-phenylalanine (fMLP)), and platelet-activating factor (PAF). Here we demonstrate that both thrombin and a synthetic peptide ligand for the thrombin receptor (sequence SFLLRN) caused phosphorylation and heterologous desensitization of the receptors for C5a, IL-8, and PAF but not that for formylpeptides as measured by agonist-stimulated [35S]guanosine 5'-3-O-(thio)triphosphate binding to membranes. Consistent with the PAF receptor phosphorylation, both thrombin and thrombin receptor peptide inhibited phosphoinositide hydrolysis, Ca2+ mobilization, and degranulation stimulated by PAF. Unexpectedly, despite heterologous desensitization at the level of receptor/G protein activation, there was enhancement ("priming") by thrombin of subsequent activities stimulated by C5a and IL-8 as well as fMLP. The priming effect of thrombin was blocked by its inhibitor, hirudin. However, two other activators of the thrombin receptor, the peptide SFLLRN and trypsin, stimulated Ca2+ mobilization in RBL-2H3 cells but did not cause priming. In addition, SFLLRN and the thrombin receptor antagonist peptide FLLRN both inhibited thrombin-induced Ca2+ mobilization but not priming. Furthermore, the proteolytically active gamma-thrombin, which does not stimulate the tethered ligand thrombin receptor and caused little or no Ca2+ mobilization in RBL-2H3 cells, effectively primed the response to fMLP. These data demonstrate that heterologous receptor phosphorylation and attenuation of G protein activation are not, by themselves, sufficient for the inhibition of biological responses mediated by C5a and IL-8. Moreover, thrombin appears to utilize mechanism(s) independent of its tethered ligand receptor to selectively prime phospholipase C-mediated biological responses of the C5a, IL-8, and formylpeptide receptors but not PAF. Because C5a, IL-8, and formylpeptide activate phospholipase Cbeta2, whereas PAF stimulates a different phospholipase C, the striking selectivity of thrombin's priming may be mediated via its ability to enhance receptor-mediated activation of phospholipase Cbeta2.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/isolation & purification
- Antigens, CD/physiology
- Binding Sites
- Calcium/metabolism
- Cell Line
- Complement C5a/pharmacology
- Endopeptidases/pharmacology
- GTP-Binding Proteins/metabolism
- Humans
- Inositol/metabolism
- Inositol Phosphates/metabolism
- Interleukin-8/pharmacology
- Kinetics
- Leukemia, Basophilic, Acute
- Molecular Sequence Data
- N-Formylmethionine Leucyl-Phenylalanine/pharmacology
- Peptide Fragments/pharmacology
- Phosphorylation
- Platelet Membrane Glycoproteins/biosynthesis
- Platelet Membrane Glycoproteins/isolation & purification
- Platelet Membrane Glycoproteins/physiology
- Rats
- Receptor, Anaphylatoxin C5a
- Receptors, Cell Surface
- Receptors, Complement/biosynthesis
- Receptors, Complement/isolation & purification
- Receptors, Complement/physiology
- Receptors, Formyl Peptide
- Receptors, G-Protein-Coupled
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/isolation & purification
- Receptors, Immunologic/physiology
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin/isolation & purification
- Receptors, Interleukin/physiology
- Receptors, Interleukin-8A
- Receptors, Peptide/biosynthesis
- Receptors, Peptide/isolation & purification
- Receptors, Peptide/physiology
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Sequence Tagged Sites
- Thrombin/pharmacology
- Transfection
- Tumor Cells, Cultured
- beta-N-Acetylhexosaminidases/metabolism
Collapse
|
|
29 |
29 |
23
|
Ahamed J, Haribabu B, Ali H. Cutting edge: Differential regulation of chemoattractant receptor-induced degranulation and chemokine production by receptor phosphorylation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3559-63. [PMID: 11564766 DOI: 10.4049/jimmunol.167.7.3559] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphorylation of G protein-coupled receptors and the subsequent recruitment of beta-arrestin play an important role in desensitization of receptor-mediated responses, including degranulation in leukocytes. In this study, we report that receptor phosphorylation also provides a stimulatory signal for CCR ligand 2 (CCL2) production. C3a stimulated degranulation in a basophilic leukemia RBL-2H3 cell expressing wild-type C3aR or a phosphorylation-deficient mutant (DeltaST-C3aR). In contrast, C3a caused CCL2 production only in C3aR but not DeltaST-C3aR cells. Furthermore, overexpression of G protein-coupled receptor kinase 2 resulted in enhancement of both ligand-induced receptor phosphorylation and CCL2 production but inhibition of degranulation. Agonist activation of C3aR, but not DeltaST-C3aR, led to the translocation of green fluorescent protein tagged beta-arrestin 2 from the cytoplasm to the plasma membrane. These data demonstrate that receptor phosphorylation, which provides a turn off signal for degranulation, is essential for CCL2 production.
Collapse
|
|
24 |
27 |
24
|
Haribabu B, Dottin RP. Pharmacological characterization of cyclic AMP receptors mediating gene regulation in Dictyostelium discoideum. Mol Cell Biol 1986; 6:2402-8. [PMID: 3023932 PMCID: PMC367793 DOI: 10.1128/mcb.6.7.2402-2408.1986] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Extracellular molecules regulate gene expression in eucaryotes. Exogenous cyclic AMP (cAMP) affects the expression of a large number of developmentally regulated genes in Dictyostelium discoideum. Here, we determine the specificity of the receptor(s) which mediates gene expression by using analogs of cAMP. The order of potency with which these analogs affect the expression of specific genes is consistent with the specificity of their binding to a cell surface receptor and is distinct from their affinity for intracellular cAMP-dependent protein kinase. Dose-response curves with cAMP and adenosine 3',5'-monophosphorothioate, a nonhydrolyzable analog, revealed that the requirement for high concentrations of exogenous cAMP for regulating gene expression is due to the rapid degradation of cAMP by phosphodiesterase. The addition of low concentrations of cAMP (100 nM) or analogs in pulses also regulates gene expression. Both the genes that are positively regulated by exogenous cAMP and the discoidin gene, which is negatively regulated, respond to cAMP analogs to the same degree. Genes expressed in prespore or prestalk cells are also similarly regulated. These data suggest that the effects are mediated through the same receptor. The specificity of this receptor is indistinguishable from that of the well-characterized cell surface cAMP receptor.
Collapse
|
research-article |
39 |
25 |
25
|
Roy BC, Subramaniam D, Ahmed I, Jala VR, Hester CM, Greiner KA, Haribabu B, Anant S, Umar S. Role of bacterial infection in the epigenetic regulation of Wnt antagonist WIF1 by PRC2 protein EZH2. Oncogene 2014; 34:4519-30. [PMID: 25486432 PMCID: PMC4459936 DOI: 10.1038/onc.2014.386] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 12/19/2022]
Abstract
The Enhancer of Zeste Homolog-2 (EZH2) represses gene transcription through histone H3 lysine-27-trimethylation (H3K27me3). Citrobacter rodentium (CR) promotes crypt hyperplasia and tumorigenesis by aberrantly regulating Wnt/β-catenin signaling. We aimed at investigating EZH2’s role in epigenetically regulating Wnt/β-catenin signaling following bacterial infection. NIH:Swiss outbred and ApcMin/+ mice were infected with CR (108cfu); BLT1−/−ApcMin/+ mice, AOM/DSS-treated mice and de-identified human adenocarcinoma samples were models of colon cancer. Following infection with wild type but not mutant CR, elevated EZH2 levels in the crypt at days-6 and 12 (peak hyperplasia) coincided with increases in H3K27me3 and β-catenin levels, respectively. Chromatin immunoprecipitation revealed EZH2 and H3K27me3’s occupancy on WIF1 (Wnt Inhibitory Factor-1) promoter resulting in reduced WIF1 mRNA and protein expression. Following EZH2 knockdown via siRNA or EZH2-inhibitor DZNep either alone or in combination with HDAC inhibitor SAHA, WIF1 promoter activity increased significantly while overexpression of EZH2 attenuated WIF1-reporter activity. Ectopic overexpression of SET domain mutant (F681Y) almost completely rescued WIF1 reporter activity and partially rescued WIF1 protein levels while H3K27me3 levels were significantly attenuated suggesting that an intact methyltransferases activity is required for EZH2-dependent effects. Interestingly, while β-catenin levels were lower in EZH2-knocked-down cells, F681Y mutants exhibited only partial reduction in β-catenin levels. Besides EZH2, increases in miR-203 expression in the crypts at days-6 and 12 post-infection correlated with reduced levels of its target WIF1; overexpression of miR-203 in primary colonocytes decreased WIF1 mRNA and protein levels. Elevated levels of EZH2 and β-catenin with concomitant decrease in WIF1 expression in the polyps of CR-infected ApcMin/+ mice paralleled changes recorded in BLT1−/−ApcMin/+, AOM/DSS and human adenocarcinomas. Thus, EZH2-induced downregulation of WIF1 expression may partially regulate Wnt/β-catenin-dependent crypt hyperplasia in response to CR infection.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
25 |