1
|
Tottenham N, Tanaka JW, Leon AC, McCarry T, Nurse M, Hare TA, Marcus DJ, Westerlund A, Casey BJ, Nelson C. The NimStim set of facial expressions: judgments from untrained research participants. Psychiatry Res 2009; 168:242-9. [PMID: 19564050 PMCID: PMC3474329 DOI: 10.1016/j.psychres.2008.05.006] [Citation(s) in RCA: 2452] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 08/24/2007] [Accepted: 05/04/2008] [Indexed: 12/14/2022]
Abstract
A set of face stimuli called the NimStim Set of Facial Expressions is described. The goal in creating this set was to provide facial expressions that untrained individuals, characteristic of research participants, would recognize. This set is large in number, multiracial, and available to the scientific community online. The results of psychometric evaluations of these stimuli are presented. The results lend empirical support for the validity and reliability of this set of facial expressions as determined by accurate identification of expressions and high intra-participant agreement across two testing sessions, respectively.
Collapse
|
research-article |
16 |
2452 |
2
|
Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, Soules ME, Teslovich T, Dellarco DV, Garavan H, Orr CA, Wager TD, Banich MT, Speer NK, Sutherland MT, Riedel MC, Dick AS, Bjork JM, Thomas KM, Chaarani B, Mejia MH, Hagler DJ, Daniela Cornejo M, Sicat CS, Harms MP, Dosenbach NUF, Rosenberg M, Earl E, Bartsch H, Watts R, Polimeni JR, Kuperman JM, Fair DA, Dale AM. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Dev Cogn Neurosci 2018; 32:43-54. [PMID: 29567376 PMCID: PMC5999559 DOI: 10.1016/j.dcn.2018.03.001] [Citation(s) in RCA: 1208] [Impact Index Per Article: 172.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 01/29/2018] [Accepted: 03/02/2018] [Indexed: 11/29/2022] Open
Abstract
The ABCD study is recruiting and following the brain development and health of over 10,000 9–10 year olds through adolescence. The imaging component of the study was developed by the ABCD Data Analysis and Informatics Center (DAIC) and the ABCD Imaging Acquisition Workgroup. Imaging methods and assessments were selected, optimized and harmonized across all 21 sites to measure brain structure and function relevant to adolescent development and addiction. This article provides an overview of the imaging procedures of the ABCD study, the basis for their selection and preliminary quality assurance and results that provide evidence for the feasibility and age-appropriateness of procedures and generalizability of findings to the existent literature.
Collapse
|
Review |
7 |
1208 |
3
|
Abstract
Adolescence is a developmental period characterized by suboptimal decisions and actions that are associated with an increased incidence of unintentional injuries, violence, substance abuse, unintended pregnancy, and sexually transmitted diseases. Traditional neurobiological and cognitive explanations for adolescent behavior have failed to account for the nonlinear changes in behavior observed during adolescence, relative to both childhood and adulthood. This review provides a biologically plausible model of the neural mechanisms underlying these nonlinear changes in behavior. We provide evidence from recent human brain imaging and animal studies that there is a heightened responsiveness to incentives and socioemotional contexts during this time, when impulse control is still relatively immature. These findings suggest differential development of bottom-up limbic systems, implicated in incentive and emotional processing, to top-down control systems during adolescence as compared to childhood and adulthood. This developmental pattern may be exacerbated in those adolescents prone to emotional reactivity, increasing the likelihood of poor outcomes.
Collapse
|
Review |
17 |
1208 |
4
|
Casey BJ, Giedd JN, Thomas KM. Structural and functional brain development and its relation to cognitive development. Biol Psychol 2000; 54:241-57. [PMID: 11035225 DOI: 10.1016/s0301-0511(00)00058-2] [Citation(s) in RCA: 891] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite significant gains in the fields of pediatric neuroimaging and developmental neurobiology, surprisingly little is known about the developing human brain or the neural bases of cognitive development. This paper addresses MRI studies of structural and functional changes in the developing human brain and their relation to changes in cognitive processes over the first few decades of human life. Based on post-mortem and pediatric neuroimaging studies published to date, the prefrontal cortex appears to be one of the last brain regions to mature. Given the prolonged physiological development and organization of the prefrontal cortex during childhood, tasks believed to involve this region are ideal for investigating the neural bases of cognitive development. A number of normative pediatric fMRI studies examining prefrontal cortical activity in children during memory and attention tasks are reported. These studies, while largely limited to the domain of prefrontal functioning and its development, lend support for continued development of attention and memory both behaviorally and physiologically throughout childhood and adolescence. Specifically, the magnitude of activity observed in these studies was greater and more diffuse in children relative to adults. These findings are consistent with the view that increasing cognitive capacity during childhood may coincide with a gradual loss rather than formation of new synapses and presumably a strengthening of remaining synaptic connections. It is clear that innovative methods like fMRI together with MRI-based morphometry and nonhuman primate studies will transform our current understanding of human brain development and its relation to behavioral development.
Collapse
|
Review |
25 |
891 |
5
|
Casey BJ, Tottenham N, Liston C, Durston S. Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci 2005; 9:104-10. [PMID: 15737818 DOI: 10.1016/j.tics.2005.01.011] [Citation(s) in RCA: 873] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The human brain undergoes significant changes in both its structural architecture and functional organization across the life span. Advances in neuroimaging techniques over the past decade have allowed us to track these changes safely in the human in vivo. We review the imaging literature on the neurobiology of cognitive development, focusing specifically on cognitive task-dependent changes observed in brain physiology and anatomy across childhood and adolescence. The findings suggest that cortical function becomes fine-tuned with development. Brain regions associated with more basic functions such as sensory and motor processes mature first, followed by association areas involved in top-down control of behavior.
Collapse
|
|
20 |
873 |
6
|
Galvan A, Hare TA, Parra CE, Penn J, Voss H, Glover G, Casey BJ. Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. J Neurosci 2006; 26:6885-92. [PMID: 16793895 PMCID: PMC6673830 DOI: 10.1523/jneurosci.1062-06.2006] [Citation(s) in RCA: 816] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adolescence has been characterized by risk-taking behaviors that can lead to fatal outcomes. This study examined the neurobiological development of neural systems implicated in reward-seeking behaviors. Thirty-seven participants (7-29 years of age) were scanned using event-related functional magnetic resonance imaging and a paradigm that parametrically manipulated reward values. The results show exaggerated accumbens activity, relative to prefrontal activity in adolescents, compared with children and adults, which appeared to be driven by different time courses of development for these regions. Accumbens activity in adolescents looked like that of adults in both extent of activity and sensitivity to reward values, although the magnitude of activity was exaggerated. In contrast, the extent of orbital frontal cortex activity in adolescents looked more like that of children than adults, with less focal patterns of activity. These findings suggest that maturing subcortical systems become disproportionately activated relative to later maturing top-down control systems, biasing the adolescent's action toward immediate over long-term gains.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
816 |
7
|
Noble KG, Houston SM, Brito NH, Bartsch H, Kan E, Kuperman JM, Akshoomoff N, Amaral DG, Bloss CS, Libiger O, Schork NJ, Murray SS, Casey BJ, Chang L, Ernst TM, Frazier JA, Gruen JR, Kennedy DN, Van Zijl P, Mostofsky S, Kaufmann WE, Kenet T, Dale AM, Jernigan TL, Sowell ER. Family income, parental education and brain structure in children and adolescents. Nat Neurosci 2015; 18:773-8. [PMID: 25821911 PMCID: PMC4414816 DOI: 10.1038/nn.3983] [Citation(s) in RCA: 758] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/27/2015] [Indexed: 01/18/2023]
Abstract
Socioeconomic disparities are associated with differences in cognitive development. The extent to which this translates to disparities in brain structure is unclear. Here, we investigated relationships between socioeconomic factors and brain morphometry, independently of genetic ancestry, among a cohort of 1099 typically developing individuals between 3 and 20 years. Income was logarithmically associated with brain surface area. Specifically, among children from lower income families, small differences in income were associated with relatively large differences in surface area, whereas, among children from higher income families, similar income increments were associated with smaller differences in surface area. These relationships were most prominent in regions supporting language, reading, executive functions and spatial skills; surface area mediated socioeconomic differences in certain neurocognitive abilities. These data indicate that income relates most strongly to brain structure among the most disadvantaged children. Potential implications are discussed.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
758 |
8
|
Casey BJ, Trainor RJ, Orendi JL, Schubert AB, Nystrom LE, Giedd JN, Castellanos FX, Haxby JV, Noll DC, Cohen JD, Forman SD, Dahl RE, Rapoport JL. A Developmental Functional MRI Study of Prefrontal Activation during Performance of a Go-No-Go Task. J Cogn Neurosci 1997; 9:835-47. [PMID: 23964603 DOI: 10.1162/jocn.1997.9.6.835] [Citation(s) in RCA: 693] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
This study examines important developmental differences in patterns of activation in the prefrontal cortex during performance of a Go-No-Go paradigm using functional magnetic resonance imaging (fMRI). Eighteen subjects (9 children and 9 adults) were scanned using gradient echo, echo planar imaging during performance of a response inhibition task. The results suggest four general findings. First, the location of activation in the prefrontal cortex was not different between children and adults, which is similar to our earlier pediatric fMRI results of prefrontal activation during a working memory task (Casey et al., 1995). Second, the volume of activation was significantly greater for children relative to adults. These differences in volume of activation were observed predominantly in the dorsal and lateral prefrontal cortices. Third, although inhibitory processes have typically been associated with more ventral or orbital frontal regions, the current study revealed activation that was distributed across both dorsolateral and orbitofrontal cortices. Finally, consistent with animal and human lesion studies, activity in orbital frontal and anterior cingulate cortices correlated with behavioral performance (i.e., number of false alarms). These results further demonstrate the utility of this methodology in studying pediatric populations.
Collapse
|
|
28 |
693 |
9
|
Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL, Vaituzis AC, Vauss YC, Hamburger SD, Kaysen D, Rapoport JL. Quantitative magnetic resonance imaging of human brain development: ages 4-18. Cereb Cortex 1996; 6:551-60. [PMID: 8670681 DOI: 10.1093/cercor/6.4.551] [Citation(s) in RCA: 680] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Brain magnetic resonance images (MRI) of 104 healthy children and adolescents, age 4-18, showed significant effects of age and gender on brain morphometry. Males had larger cerebral (9%) and cerebellar (8%) volumes (P < 0.0001 and P = 0.008, respectively), which remained significant even after correction for height and weight. After adjusting for cerebral size, the putamen and globus pallidus remained larger in males, while relative caudate size was larger in females. Neither cerebral nor cerebellar volume changed significantly across this age range. Lateral ventricular volume increased significantly in males (trend for females), with males showing an increase in slope after age 11. In males only, caudate and putamen decrease with age (P = 0.007 and 0.05, respectively). The left lateral ventricles and putamen were significantly greater than the right (P = 0.01 and 0.001, respectively). In contrast, the cerebral hemispheres and caudate showed a highly consistent right-greater-than-left asymmetry (P < 0.0001 for both). All volumes demonstrated a high degree of variability. These findings highlight gender-specific maturational changes of the developing brain and the need for large gender-matched samples in pediatric neuropsychiatric studies.
Collapse
|
Clinical Trial |
29 |
680 |
10
|
Hare TA, Tottenham N, Galvan A, Voss HU, Glover GH, Casey BJ. Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-nogo task. Biol Psychiatry 2008; 63:927-34. [PMID: 18452757 PMCID: PMC2664095 DOI: 10.1016/j.biopsych.2008.03.015] [Citation(s) in RCA: 648] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 03/17/2008] [Accepted: 03/19/2008] [Indexed: 11/21/2022]
Abstract
BACKGROUND Adolescence is a transition period from childhood to adulthood that is often characterized by emotional instability. This period is also a time of increased incidence of anxiety and depression, underscoring the importance of understanding biological substrates of behavioral and emotion regulation during adolescence. Developmental changes in the brain in concert with individual predispositions for anxiety might underlie the increased risk for poor outcomes reported during adolescence. We tested the hypothesis that difficulties in regulating behavior in emotional contexts in adolescents might be due to competition between heightened activity in subcortical emotional processing systems and immature top-down prefrontal systems. Individual differences in emotional reactivity might put some teens at greater risk during this sensitive transition in development. METHODS We examined the association between emotion regulation and frontoamygdala circuitry in 60 children, adolescents, and adults with an emotional go-nogo paradigm. We went beyond examining the magnitude of neural activity and focused on neural adaptation within this circuitry across time with functional magnetic resonance imaging. RESULTS Adolescents showed exaggerated amygdala activity relative to children and adults. This age-related difference decreased with repeated exposures to the stimuli, and individual differences in self-ratings of anxiety predicted the extent of adaptation or habituation in amygdala. Individuals with higher trait anxiety showed less habituation over repeated exposures. This failure to habituate was associated with less functional connectivity between ventral prefrontal cortex and amygdala. CONCLUSIONS These findings suggest that exaggerated emotional reactivity during adolescence might increase the need for top-down control and put individuals with less control at greater risk for poor outcomes.
Collapse
|
Comparative Study |
17 |
648 |
11
|
Somerville LH, Jones RM, Casey BJ. A time of change: behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain Cogn 2009; 72:124-33. [PMID: 19695759 DOI: 10.1016/j.bandc.2009.07.003] [Citation(s) in RCA: 635] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
Abstract
Adolescence is a developmental period that entails substantial changes in affective and incentive-seeking behavior relative to both childhood and adulthood, including a heightened propensity to engage in risky behaviors and experience persistent negative and labile mood states. This review discusses the emotional and incentive-driven behavioral changes in adolescents and their associated neural mechanisms, focusing on the dynamic interactions between the amygdala, ventral striatum, and prefrontal cortex. Common behavioral changes during adolescence may be associated with a heightened responsiveness to incentives and emotional cues while the capacity to effectively engage in cognitive and emotion regulation is still relatively immature. We highlight empirical work in humans and animals that addresses the interactions between these neural systems in adolescents relative to children and adults, and propose a neurobiological model that may account for the nonlinear changes in adolescent behavior. Finally, we discuss other influences that may contribute to exaggerated reward and emotion processing associated with adolescence, including hormonal fluctuations and the role of the social environment.
Collapse
|
Review |
16 |
635 |
12
|
Hagler DJ, Hatton SN, Cornejo MD, Makowski C, Fair DA, Dick AS, Sutherland MT, Casey BJ, Barch DM, Harms MP, Watts R, Bjork JM, Garavan HP, Hilmer L, Pung CJ, Sicat CS, Kuperman J, Bartsch H, Xue F, Heitzeg MM, Laird AR, Trinh TT, Gonzalez R, Tapert SF, Riedel MC, Squeglia LM, Hyde LW, Rosenberg MD, Earl EA, Howlett KD, Baker FC, Soules M, Diaz J, de Leon OR, Thompson WK, Neale MC, Herting M, Sowell ER, Alvarez RP, Hawes SW, Sanchez M, Bodurka J, Breslin FJ, Morris AS, Paulus MP, Simmons WK, Polimeni JR, van der Kouwe A, Nencka AS, Gray KM, Pierpaoli C, Matochik JA, Noronha A, Aklin WM, Conway K, Glantz M, Hoffman E, Little R, Lopez M, Pariyadath V, Weiss SRB, Wolff-Hughes DL, DelCarmen-Wiggins R, Ewing SWF, Miranda-Dominguez O, Nagel BJ, Perrone AJ, Sturgeon DT, Goldstone A, Pfefferbaum A, Pohl KM, Prouty D, Uban K, Bookheimer SY, Dapretto M, Galvan A, Bagot K, Giedd J, Infante MA, Jacobus J, Patrick K, Shilling PD, Desikan R, Li Y, Sugrue L, Banich MT, Friedman N, Hewitt JK, Hopfer C, Sakai J, Tanabe J, Cottler LB, Nixon SJ, Chang L, Cloak C, Ernst T, Reeves G, Kennedy DN, Heeringa S, Peltier S, et alHagler DJ, Hatton SN, Cornejo MD, Makowski C, Fair DA, Dick AS, Sutherland MT, Casey BJ, Barch DM, Harms MP, Watts R, Bjork JM, Garavan HP, Hilmer L, Pung CJ, Sicat CS, Kuperman J, Bartsch H, Xue F, Heitzeg MM, Laird AR, Trinh TT, Gonzalez R, Tapert SF, Riedel MC, Squeglia LM, Hyde LW, Rosenberg MD, Earl EA, Howlett KD, Baker FC, Soules M, Diaz J, de Leon OR, Thompson WK, Neale MC, Herting M, Sowell ER, Alvarez RP, Hawes SW, Sanchez M, Bodurka J, Breslin FJ, Morris AS, Paulus MP, Simmons WK, Polimeni JR, van der Kouwe A, Nencka AS, Gray KM, Pierpaoli C, Matochik JA, Noronha A, Aklin WM, Conway K, Glantz M, Hoffman E, Little R, Lopez M, Pariyadath V, Weiss SRB, Wolff-Hughes DL, DelCarmen-Wiggins R, Ewing SWF, Miranda-Dominguez O, Nagel BJ, Perrone AJ, Sturgeon DT, Goldstone A, Pfefferbaum A, Pohl KM, Prouty D, Uban K, Bookheimer SY, Dapretto M, Galvan A, Bagot K, Giedd J, Infante MA, Jacobus J, Patrick K, Shilling PD, Desikan R, Li Y, Sugrue L, Banich MT, Friedman N, Hewitt JK, Hopfer C, Sakai J, Tanabe J, Cottler LB, Nixon SJ, Chang L, Cloak C, Ernst T, Reeves G, Kennedy DN, Heeringa S, Peltier S, Schulenberg J, Sripada C, Zucker RA, Iacono WG, Luciana M, Calabro FJ, Clark DB, Lewis DA, Luna B, Schirda C, Brima T, Foxe JJ, Freedman EG, Mruzek DW, Mason MJ, Huber R, McGlade E, Prescot A, Renshaw PF, Yurgelun-Todd DA, Allgaier NA, Dumas JA, Ivanova M, Potter A, Florsheim P, Larson C, Lisdahl K, Charness ME, Fuemmeler B, Hettema JM, Maes HH, Steinberg J, Anokhin AP, Glaser P, Heath AC, Madden PA, Baskin-Sommers A, Constable RT, Grant SJ, Dowling GJ, Brown SA, Jernigan TL, Dale AM. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neuroimage 2019; 202:116091. [PMID: 31415884 PMCID: PMC6981278 DOI: 10.1016/j.neuroimage.2019.116091] [Show More Authors] [Citation(s) in RCA: 585] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 01/29/2023] Open
Abstract
The Adolescent Brain Cognitive Development (ABCD) Study is an ongoing, nationwide study of the effects of environmental influences on behavioral and brain development in adolescents. The main objective of the study is to recruit and assess over eleven thousand 9-10-year-olds and follow them over the course of 10 years to characterize normative brain and cognitive development, the many factors that influence brain development, and the effects of those factors on mental health and other outcomes. The study employs state-of-the-art multimodal brain imaging, cognitive and clinical assessments, bioassays, and careful assessment of substance use, environment, psychopathological symptoms, and social functioning. The data is a resource of unprecedented scale and depth for studying typical and atypical development. The aim of this manuscript is to describe the baseline neuroimaging processing and subject-level analysis methods used by ABCD. Processing and analyses include modality-specific corrections for distortions and motion, brain segmentation and cortical surface reconstruction derived from structural magnetic resonance imaging (sMRI), analysis of brain microstructure using diffusion MRI (dMRI), task-related analysis of functional MRI (fMRI), and functional connectivity analysis of resting-state fMRI. This manuscript serves as a methodological reference for users of publicly shared neuroimaging data from the ABCD Study.
Collapse
|
research-article |
6 |
585 |
13
|
De Bellis MD, Keshavan MS, Clark DB, Casey BJ, Giedd JN, Boring AM, Frustaci K, Ryan ND. A.E. Bennett Research Award. Developmental traumatology. Part II: Brain development. Biol Psychiatry 1999; 45:1271-84. [PMID: 10349033 DOI: 10.1016/s0006-3223(99)00045-1] [Citation(s) in RCA: 551] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Previous investigations suggest that maltreated children with a diagnosis of posttraumatic stress disorder (PTSD) evidence alterations of biological stress systems. Increased levels of catecholaminergic neurotransmitters and steroid hormones during traumatic experiences in childhood could conceivably adversely affect brain development. METHODS In this study, 44 maltreated children and adolescents with PTSD and 61 matched controls underwent comprehensive psychiatric and neuropsychological assessments and an anatomical magnetic resonance imaging (MRI) brain scan. RESULTS PTSD subjects had smaller intracranial and cerebral volumes than matched controls. The total midsagittal area of corpus callosum and middle and posterior regions remained smaller; while right, left, and total lateral ventricles were proportionally larger than controls, after adjustment for intracranial volume. Brain volume robustly and positively correlated with age of onset of PTSD trauma and negatively correlated with duration of abuse. Symptoms of intrusive thoughts, avoidance, hyperarousal or dissociation correlated positively with ventricular volume, and negatively with brain volume and total corpus callosum and regional measures. Significant gender by diagnosis effect revealed greater corpus callosum area reduction in maltreated males with PTSD and a trend for greater cerebral volume reduction than maltreated females with PTSD. The predicted decrease in hippocampal volume seen in adult PTSD was not seen in these subjects. CONCLUSIONS These data suggest that the overwhelming stress of maltreatment experiences in childhood is associated with adverse brain development.
Collapse
|
|
26 |
551 |
14
|
Tottenham N, Hare TA, Quinn BT, McCarry TW, Nurse M, Gilhooly T, Millner A, Galvan A, Davidson MC, Eigsti IM, Thomas KM, Freed PJ, Booma ES, Gunnar MR, Altemus M, Aronson J, Casey BJ. Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Dev Sci 2010; 13:46-61. [PMID: 20121862 PMCID: PMC2817950 DOI: 10.1111/j.1467-7687.2009.00852.x] [Citation(s) in RCA: 544] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Early adversity, for example poor caregiving, can have profound effects on emotional development. Orphanage rearing, even in the best circumstances, lies outside of the bounds of a species-typical caregiving environment. The long-term effects of this early adversity on the neurobiological development associated with socio-emotional behaviors are not well understood. Seventy-eight children, who include those who have experienced orphanage care and a comparison group, were assessed. Magnetic resonance imaging (MRI) was used to measure volumes of whole brain and limbic structures (e.g. amygdala, hippocampus). Emotion regulation was assessed with an emotional go-nogo paradigm, and anxiety and internalizing behaviors were assessed using the Screen for Child Anxiety Related Emotional Disorders, the Child Behavior Checklist, and a structured clinical interview. Late adoption was associated with larger corrected amygdala volumes, poorer emotion regulation, and increased anxiety. Although more than 50% of the children who experienced orphanage rearing met criteria for a psychiatric disorder, with a third having an anxiety disorder, the group differences observed in amygdala volume were not driven by the presence of an anxiety disorder. The findings are consistent with previous reports describing negative effects of prolonged orphanage care on emotional behavior and with animal models that show long-term changes in the amygdala and emotional behavior following early postnatal stress. These changes in limbic circuitry may underlie residual emotional and social problems experienced by children who have been internationally adopted.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
544 |
15
|
Casey BJ, Castellanos FX, Giedd JN, Marsh WL, Hamburger SD, Schubert AB, Vauss YC, Vaituzis AC, Dickstein DP, Sarfatti SE, Rapoport JL. Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 1997; 36:374-83. [PMID: 9055518 DOI: 10.1097/00004583-199703000-00016] [Citation(s) in RCA: 515] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To examine the relation between specific frontostriatal structures (prefrontal cortex and basal ganglia) and response inhibition deficits observed in attention-deficit/hyperactivity disorder (ADHD). METHOD Children with ADHD and age-matched normal controls were scanned using magnetic resonance imaging (MRI) and tested on three response inhibition tasks. Behavioral performance was correlated with MRI-based anatomical measures of frontostriatal circuitry (prefrontal cortex and basal ganglia) implicated in ADHD. RESULTS First, significant differences in performance by children with ADHD and normal volunteers were observed on all three response inhibition tasks. Second, performance on these tasks correlated only with those anatomical measures of frontostriatal circuitry observed to be abnormal in children with ADHD (e.g., the region of the prefrontal cortex, caudate, and globus pallidus, but not the putamen) in the authors' previous study. Third, significant correlations between task performance and anatomical measures of the prefrontal cortex and caudate nuclei were predominantly in the right hemisphere, supporting a role of right frontostriatal circuitry in response inhibition and ADHD. CONCLUSION The data suggest a role of the right prefrontal cortex in suppressing responses to salient, but otherwise irrelevant events while the basal ganglia appear to be involved in executing these behavioral responses.
Collapse
|
|
28 |
515 |
16
|
Soliman F, Glatt CE, Bath KG, Levita L, Jones RM, Pattwell SS, Jing D, Tottenham N, Amso D, Somerville LH, Voss HU, Glover G, Ballon DJ, Liston C, Teslovich T, Van Kempen T, Lee FS, Casey BJ. A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science 2010; 327:863-6. [PMID: 20075215 PMCID: PMC2829261 DOI: 10.1126/science.1181886] [Citation(s) in RCA: 444] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mouse models are useful for studying genes involved in behavior, but whether they are relevant to human behavior is unclear. Here, we identified parallel phenotypes in mice and humans resulting from a common single-nucleotide polymorphism in the brain-derived neurotrophic factor (BDNF) gene, which is involved in anxiety-related behavior. An inbred genetic knock-in mouse strain expressing the variant BDNF recapitulated the phenotypic effects of the human polymorphism. Both were impaired in extinguishing a conditioned fear response, which was paralleled by atypical frontoamygdala activity in humans. Thus, this variant BDNF allele may play a role in anxiety disorders showing impaired learning of cues that signal safety versus threat and in the efficacy of treatments that rely on extinction mechanisms, such as exposure therapy.
Collapse
|
Comparative Study |
15 |
444 |
17
|
Durston S, Davidson MC, Tottenham N, Galvan A, Spicer J, Fossella JA, Casey BJ. A shift from diffuse to focal cortical activity with development. Dev Sci 2006; 9:1-8. [PMID: 16445387 DOI: 10.1111/j.1467-7687.2005.00454.x] [Citation(s) in RCA: 431] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent imaging studies have suggested that developmental changes may parallel aspects of adult learning in cortical activation becoming less diffuse and more focal over time. However, while adult learning studies examine changes within subjects, developmental findings have been based on cross-sectional samples and even comparisons across studies. Here, we used functional MRI in children to test directly for shifts in cortical activity during performance of a cognitive control task, in a combined longitudinal and cross-sectional study. Our longitudinal findings, relative to our cross-sectional ones, show attenuated activation in dorsolateral prefrontal cortical areas, paralleled by increased focal activation in ventral prefrontal regions related to task performance.
Collapse
|
|
19 |
431 |
18
|
Abstract
Adolescence is the transition from childhood to adulthood that begins around the onset of puberty and ends with relative independence from the parent. This developmental period is one when an individual is probably stronger, of higher reasoning capacity, and more resistant to disease than ever before, yet when mortality rates increase by 200%. These untimely deaths are not due to disease but to preventable deaths associated with adolescents putting themselves in harm's way (e.g., accidental fatalities). We present evidence that these alarming health statistics are in part due to diminished self-control--the ability to inhibit inappropriate desires, emotions, and actions in favor of appropriate ones. Findings of adolescent-specific changes in self-control and underlying brain circuitry are considered in terms of how evolutionarily based biological constraints and experiences shape the brain to adapt to the unique intellectual, physical, sexual, and social challenges of adolescence.
Collapse
|
Review |
11 |
427 |
19
|
Somerville LH, Casey BJ. Developmental neurobiology of cognitive control and motivational systems. Curr Opin Neurobiol 2010; 20:236-41. [PMID: 20167473 DOI: 10.1016/j.conb.2010.01.006] [Citation(s) in RCA: 411] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
One form of cognitive control is the ability to resist temptation in favor of long-term goal-oriented behavior. Historically, the development of cognitive control capacity has been described by a linear function from infancy to adulthood. However, the context in which control is required impacts behavioral regulation abilities, such that emotionally charged or rewarding contexts can diminish control. More recently, studies have begun to examine the development of cognitive control in contexts that vary in motivation. These studies suggest specific windows of development in which cognitive control capacity is more vulnerable to incentive-based modulation. In this review we highlight the most recent work on neurobiological changes supporting motivational and cognitive development, underscoring the importance of functional organization and development of the underlying circuitry implicated in these processes, and provide a theoretical perspective that moves away from discussing singular functional regions toward considering functional circuitry.
Collapse
|
Review |
15 |
411 |
20
|
Durston S, Tottenham NT, Thomas KM, Davidson MC, Eigsti IM, Yang Y, Ulug AM, Casey BJ. Differential patterns of striatal activation in young children with and without ADHD. Biol Psychiatry 2003; 53:871-8. [PMID: 12742674 DOI: 10.1016/s0006-3223(02)01904-2] [Citation(s) in RCA: 410] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Cognitive control, defined as the ability to suppress inappropriate thoughts and actions, is compromised in attention-deficit/hyperactivity disorder (ADHD). This study examines the neural basis of this deficit. METHODS We used a paradigm that incorporates a parametric manipulation within a go/nogo task, so that the number of go trials preceding a nogo trial is varied to tax the neural systems underlying cognitive control with increasing levels of interference. RESULTS Using this paradigm in combination with event-related functional magnetic resonance imaging (fMRI), we show that children without ADHD have increased susceptibility to interference with increasing numbers of go trials preceding a nogo trial, but children with ADHD have difficulty even with a single go trial preceding a nogo trial. In addition, children with ADHD do not activate frontostriatal regions in the same manner as normally developing children, but rather rely on a more diffuse network of regions, including more posterior and dorsolateral prefrontal regions. CONCLUSIONS Normal immature cognition may be characterized as being susceptible to interference and supported by the maturation of frontostriatal circuitry. ADHD children show a slightly different cognitive profile at 6 to 10 years of age that is paralleled by a relative lack of or delay in the maturation of ventral frontostriatal circuitry.
Collapse
|
|
22 |
410 |
21
|
Thomas KM, Drevets WC, Dahl RE, Ryan ND, Birmaher B, Eccard CH, Axelson D, Whalen PJ, Casey BJ. Amygdala response to fearful faces in anxious and depressed children. ARCHIVES OF GENERAL PSYCHIATRY 2001; 58:1057-63. [PMID: 11695953 DOI: 10.1001/archpsyc.58.11.1057] [Citation(s) in RCA: 400] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Alterations in amygdala function have been implicated in the pathophysiological characteristics of adult anxiety and depressive disorders. Studies with healthy adults and children, as well as with adults who have amygdala lesions, have found facial expressions of emotion to be useful probes of amygdala activity. Our study examined the amygdala response to fearful and neutral facial expressions in healthy, anxious, and depressed children. We hypothesized that children with anxiety and depression may show atypical amygdala responses to emotional stimuli. METHODS Twelve children (8-16 years of age) with generalized anxiety or panic disorder and 12 healthy comparison children underwent noninvasive functional magnetic resonance imaging while viewing photographs of fearful and neutral facial expressions. In a second comparison, 5 girls with major depressive disorder were compared with 5 anxious and 5 healthy girls from the previous sample. RESULTS Children with anxiety disorders showed an exaggerated amygdala response to fearful faces compared with healthy children, whereas depressed children showed a blunted amygdala response to these faces. In addition, the magnitude of the amygdala's signal change between fearful and neutral faces was positively correlated with the severity of everyday anxiety symptoms. CONCLUSIONS Our results suggest that amygdala function is affected in both anxiety and depression during childhood and adolescence. Moreover, this disruption appears to be specific to the child's own rating of everyday anxiety.
Collapse
|
|
24 |
400 |
22
|
Swanson JM, Kinsbourne M, Nigg J, Lanphear B, Stefanatos GA, Volkow N, Taylor E, Casey BJ, Castellanos FX, Wadhwa PD. Etiologic subtypes of attention-deficit/hyperactivity disorder: brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychol Rev 2007; 17:39-59. [PMID: 17318414 DOI: 10.1007/s11065-007-9019-9] [Citation(s) in RCA: 394] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Multiple theories of Attention-Deficit/Hyper-activity Disorder (ADHD) have been proposed, but one that has stood the test of time is the dopamine deficit theory. We review the narrow literature from recent brain imaging and molecular genetic studies that has improved our understanding of the role of dopamine in manifestation of symptoms of ADHD, performance deficits on neuropsychological tasks, and response to stimulant medication that constitutes the most common treatment of this disorder. First, we consider evidence of the presence of dopamine deficits based on the recent literature that (1) confirms abnormalities in dopamine-modulated frontal-striatal circuits, reflected by size (smaller-than-average components) and function (hypoactivation); (2) clarifies the agonist effects of stimulant medication on dopaminergic mechanisms at the synaptic and circuit level of analysis; and (3) challenges the most-widely accepted ADHD-related neural abnormality in the dopamine system (higher-than-normal dopamine transporter [DAT] density). Second, we discuss possible genetic etiologies of dopamine deficits based on recent molecular genetic literature, including (1) multiple replications that confirm the association of ADHD with candidate genes related to the dopamine receptor D4 (DRD4) and the DAT; (2) replication of differences in performance of neuropsychological tasks as a function of the DRD4 genotype; and (3) multiple genome-wide linkage scans that demonstrate the limitations of this method when applied to complex disorders but implicate additional genes that may contribute to the genetic basis of ADHD. Third, we review possible environmental etiologies of dopamine deficits based on recent studies of (1) toxic substances that may affect the dopamine system in early development and contribute substantially to the etiology of ADHD; (2) fetal adaptations in dopamine systems in response to stress that may alter early development with lasting effects, as proposed by the developmental origins of health and disease hypothesis; and (3) gene-environment interactions that may moderate selective damage or adaptation of dopamine neurons. Based on these reviews, we identify critical issues about etiologic subtypes of ADHD that may involve dopamine, discuss methods that could be used to address these issues, and review old and new theories that may direct research in this area in the future.
Collapse
|
Review |
18 |
394 |
23
|
Cohen JD, Forman SD, Braver TS, Casey BJ, Servan-Schreiber D, Noll DC. Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. Hum Brain Mapp 2014; 1:293-304. [PMID: 24591198 DOI: 10.1002/hbm.460010407] [Citation(s) in RCA: 386] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/1994] [Accepted: 06/27/1994] [Indexed: 11/08/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) was used to examine the pattern of activity of the prefrontal cortex during performance of subjects in a nonspatial working memory task. Subjects observed sequences of letters and responded whenever a letter repeated with exactly one nonidentical letter intervening. In a comparison task, subjects monitored similar sequences of letters for any occurrence of a single, prespecified target letter. Functional scanning was performed using a newly developed spiral scan image acquisition technique that provides high-resolution, multislice scanning at approximately five times the rate usually possible on conventional equipment (an average of one image per second). Using these methods, activation of the middle and inferior frontal gyri was reliably observed within individual subjects during performance of the working memory task relative to the comparison task. Effect sizes (2-4%) closely approximated those that have been observed within primary sensory and motor cortices using similar fMRI techniques. Furthermore, activation increased and decreased with a time course that was highly consistent with the task manipulations. These findings corroborate the results of positron emission tomography studies, which suggest that the prefrontal cortex is engaged by tasks that rely on working memory. Furthermore, they demonstrate the applicability of newly developed fMRI techniques using conventional scanners to study the associative cortex in individual subjects. © 1994 Wiley-Liss, Inc.
Collapse
|
Journal Article |
11 |
386 |
24
|
Liston C, Watts R, Tottenham N, Davidson MC, Niogi S, Ulug AM, Casey BJ. Frontostriatal Microstructure Modulates Efficient Recruitment of Cognitive Control. Cereb Cortex 2005; 16:553-60. [PMID: 16033925 DOI: 10.1093/cercor/bhj003] [Citation(s) in RCA: 377] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many studies have linked activity in a frontostriatal network with the capacity to suppress inappropriate thoughts and actions, but relatively few have examined the role of connectivity between these structures. Here, we use diffusion tensor imaging to assess frontostriatal connectivity in 21 subjects (ages 7-31 years). Fifteen subjects were tested on a go/no-go task, where they responded with a button press to a visual stimulus and inhibited a response to a second infrequent stimulus. An automated fiber tracking algorithm was used to delineate white matter fibers adjacent to ventral prefrontal cortex and the striatum, and the corticospinal tract, which was not expected to contribute to control per se. Diffusion in frontostriatal and corticospinal tracts became more restricted with age. This shift was paralleled by an increase in efficiency of task performance. Frontostriatal radial diffusivities predicted faster reaction times, independent of age and accuracy, and this correlation grew stronger for trials expected to require greater control. This was not observed in the corticospinal tract. On trials matched for speed of task performance, adults were significantly more accurate, and accuracies were correlated with frontostriatal, but not corticospinal, diffusivities. These findings suggest that frontostriatal connectivity may contribute to developmental and individual differences in the efficient recruitment of cognitive control.
Collapse
|
|
20 |
377 |
25
|
Somerville LH, Hare T, Casey BJ. Frontostriatal maturation predicts cognitive control failure to appetitive cues in adolescents. J Cogn Neurosci 2010; 23:2123-34. [PMID: 20809855 DOI: 10.1162/jocn.2010.21572] [Citation(s) in RCA: 354] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Adolescent risk-taking is a public health issue that increases the odds of poor lifetime outcomes. One factor thought to influence adolescents' propensity for risk-taking is an enhanced sensitivity to appetitive cues, relative to an immature capacity to exert sufficient cognitive control. We tested this hypothesis by characterizing interactions among ventral striatal, dorsal striatal, and prefrontal cortical regions with varying appetitive load using fMRI scanning. Child, teen, and adult participants performed a go/no-go task with appetitive (happy faces) and neutral cues (calm faces). Impulse control to neutral cues showed linear improvement with age, whereas teens showed a nonlinear reduction in impulse control to appetitive cues. This performance decrement in teens was paralleled by enhanced activity in the ventral striatum. Prefrontal cortical recruitment correlated with overall accuracy and showed a linear response with age for no-go versus go trials. Connectivity analyses identified a ventral frontostriatal circuit including the inferior frontal gyrus and dorsal striatum during no-go versus go trials. Examining recruitment developmentally showed that teens had greater between-subject ventral-dorsal striatal coactivation relative to children and adults for happy no-go versus go trials. These findings implicate exaggerated ventral striatal representation of appetitive cues in adolescents relative to an intermediary cognitive control response. Connectivity and coactivity data suggest these systems communicate at the level of the dorsal striatum differentially across development. Biased responding in this system is one possible mechanism underlying heightened risk-taking during adolescence.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
354 |