1
|
Tuchinda P, Munyoo B, Pohmakotr M, Thinapong P, Sophasan S, Santisuk T, Reutrakul V. Cytotoxic styryl-lactones from the leaves and twigs of Polyalthia crassa. JOURNAL OF NATURAL PRODUCTS 2006; 69:1728-33. [PMID: 17190450 DOI: 10.1021/np060323u] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Four new styryl-lactones, crassalactones A-D (1-4), were isolated from a cytotoxic ethyl acetate-soluble extract of the leaves and twigs of Polyalthia crassa, together with seven known compounds, (+)-3-acetylaltholactone, (+)-altholactone, aristolactam AII, cinnamic acid, (+)-goniofufurone, (+)-goniopypyrone, and (+)-howiinol A. Their structures were determined on the basis of spectroscopic methods. The absolute configuration of 1-3 was established by chemical conversions. Single-crystal X-ray analysis and the Mosher ester method were used to confirm the absolute stereochemistry of 4. Cytotoxic evaluation against several mammalian cancer cell lines was performed on all new isolates, aristolactam AII, and the modified (+)-tricinnamate derivative 11 obtained from 1.
Collapse
|
|
19 |
53 |
2
|
Thangnipon W, Suwanna N, Kitiyanant N, Soi-Ampornkul R, Tuchinda P, Munyoo B, Nobsathian S. Protective role of N-trans-feruloyltyramine against β-amyloid peptide-induced neurotoxicity in rat cultured cortical neurons. Neurosci Lett 2012; 513:229-32. [PMID: 22387154 DOI: 10.1016/j.neulet.2012.02.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/17/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
Enhanced oxidative stress and inflammation play important roles in the pathogenesis of Alzheimer's disease (AD). Amyloid β-peptide (Aβ), a major component of amyloid plaques, is considered to have a causal role in the development and progress of AD by being the initiator of a pathological cascade leading to oxidative stress. The present study investigated the effect of N-trans-feruloyltyramine (NTF) purified from Polyalthia suberosa, an alkaloid shown to protect against oxidative stress and cell death. Pre-treatment of rat primary cortical cell cultures with 25-250μM NTF significantly attenuated 10μM Aβ(1-42)-induced neuronal death in a dose-dependent manner. Apoptotic cell death was demonstrated morphologically as well as by detection of the presence of activated caspase-3 and Bax, levels of which could be reduced by NTF pre-treatment. NTF also reduced production of reactive oxygen species induced by Aβ(1-42). These findings suggest that the protective effect of NTF against Aβ(1-42)-induced neuronal death might be due to its antioxidative property.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
30 |
3
|
Tuchinda P, Pohmakotr M, Munyoo B, Reutrakul V, Santisuk T. An azaanthracene alkaloid from Polyalthia suberosa. PHYTOCHEMISTRY 2000; 53:1079-1082. [PMID: 10820834 DOI: 10.1016/s0031-9422(99)00535-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An azaanthracene alkaloid, 1-aza-9,10-dimethoxy-4-methyl-2-oxo-1,2-dihydroanthracene (kalasinamide) has been isolated from the stems of Polyalthia suberosa. In addition, the known N-trans-feruloyltyramine and N-trans-coumaroyltyramine are also reported from the same source. The structures were elucidated by spectroscopic methods.
Collapse
|
|
25 |
23 |
4
|
Nasongkla N, Tuchinda P, Munyoo B, Eawsakul K. Preparation and Characterization of MUC-30-Loaded Polymeric Micelles against MCF-7 Cell Lines Using Molecular Docking Methods and In Vitro Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5597681. [PMID: 34135981 PMCID: PMC8179782 DOI: 10.1155/2021/5597681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
MUC-30 is a hydrophobic compound which is active against the MCF-7 cancer cell line. In this study, MUC-30 was loaded in polymeric micelles to improve the water solubility and release rate. For prolonged MUC-30 release, MUC-30 was encapsulated in polymeric micelles using PEG-b-PLA and PEG-b-PCL as materials. Micelles prepared with 1 : 9 w per w ratios by film hydration achieved the highest entrapment efficiency (EE%). The EE% of MUC-30-loaded PEG-b-PCL micelles was approximately 30% greater than that of PEG-b-PLA micelles, due to the different H-bond formations between MUC-30 and the polymer membrane (PCL, 4; PLA, 3). The cytotoxic activity of MUC-30 against EGFR theoretically presented 399.31 nM (IC50 = 282.26 ng/mL) by molecular docking. In vitro cytotoxic activity of MUC-30 was confirmed by MTT assay. MUC-30 (IC50 = 11 ± 0.39 ng/mL) showed three-fold higher activity over MUC-30-loaded PEG-b-PLA micelles (IC50 = 37 ± 1.18 ng/mL) and two-fold higher over PEG-b-PCL micelles (IC50 = 75 ± 3.97 ng/mL). This was due to the higher release rate of MUC-30 from PEG-b-PLA micelles compared to PEG-b-PCL micelles. Therefore, MUC-30-loaded PEG-b-PLA micelles could be a promising candidate for breast cancer chemotherapy.
Collapse
|
research-article |
4 |
10 |
5
|
Paha J, Kanjanasirirat P, Munyoo B, Tuchinda P, Suvannang N, Nantasenamat C, Boonyarattanakalin K, Kittakoop P, Srikor S, Kongklad G, Rangkasenee N, Hongeng S, Utaisincharoen P, Borwornpinyo S, Ponpuak M. A novel potent autophagy inhibitor ECDD-S27 targets vacuolar ATPase and inhibits cancer cell survival. Sci Rep 2019; 9:9177. [PMID: 31235856 PMCID: PMC6591302 DOI: 10.1038/s41598-019-45641-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a conserved lysosomal-dependent cellular degradation process and its dysregulation has been linked to numerous diseases including neurodegeneration, infectious diseases, and cancer. Modulation of autophagy is therefore considered as an attractive target for disease intervention. We carried out a high-content image analysis screen of natural product-derived compounds to discover novel autophagy modulating molecules. Our screen identified ECDD-S27 as the most effective compound for increasing the number of autophagic vacuoles inside cells. The structure of ECDD-S27 revealed that it is a derivative of cleistanthin A, a natural arylnaphthalene lignan glycoside found in plants. ECDD-S27 increases the number of autophagic vacuoles by inhibiting the autophagic flux and is able to restrict the survival of different cancer cells at low nanomolar concentrations. Molecular docking and SERS analysis showed that ECDD-S27 may potentially target the V-ATPase. Upon treatment of various cancer cells with ECDD-S27, the V-ATPase activity is potently inhibited thereby resulting in the loss of lysosomal acidification. Taken together, these data indicated that ECDD-S27 retards the autophagy pathway by targeting the V-ATPase and inhibits cancer cell survival. The observed antitumor activity without cytotoxicity to normal cells suggests the therapeutic potential warranting further studies on lead optimization of the compound for cancer treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
9 |
6
|
Jearawuttanakul K, Khumkhrong P, Suksen K, Reabroi S, Munyoo B, Tuchinda P, Borwornpinyo S, Boonmuen N, Chairoungdua A. Cleistanthin A induces apoptosis and suppresses motility of colorectal cancer cells. Eur J Pharmacol 2020; 889:173604. [PMID: 32980346 DOI: 10.1016/j.ejphar.2020.173604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Here, we investigated the molecular mechanisms that underpin the anticancer effects of cleistanthin A (CA) in two CRC cell lines, HCT 116, and SW480. At 48 h, CA exhibited apoptotic cytotoxic effects in both CRC cell lines, concomitant with reduction of an anti-apoptotic protein, survivin. Mechanistically, CA treatment significantly reduced the expression levels of β-catenin and active-β-catenin in a dose-dependent manner in both CRC cell lines. Moreover, CA suppressed the Wnt/β-catenin signaling pathway by decreasing β-catenin-mediated transcriptional activity and expression of β-catenin target genes, AXIN2, CCND1, and survivin. Furthermore, CA also inhibited transcriptional activity in cells overexpressing a constitutively active β-catenin S33Y, indicating a GSK-3β-independent mechanism underlying the observed CA effects on CRC cells. Although cytotoxic activity was not observed with CA treatment at 24 h, cell migration and invasion were significantly reduced. In addition, CA suppressed V-type ATPase activity and focal adhesion kinase (FAK) phosphorylation. Collectively, our study reveals that CA has time-dependent effects on CRC cell phenotypes. First, short-term CA treatment inhibited CRC cell migration and invasion partly through the suppression of V-type ATPase activity. This suppression resulted in reduced FAK activation. Second, longer-term CA treatment decreased cell viability which correlated with the suppression of Wnt/β-catenin signaling induced transcriptional activity. Altogether, our data suggest that CA has the potential to develop as an effective and novel therapeutic drug for CRC patients.
Collapse
|
Journal Article |
5 |
7 |
7
|
Thinapong P, Rangsiman O, Tuchinda P, Munyoo B, Pohmakotr M, Reutrakul V. 9,10-Dimethoxy-4-methyl-1,2-dihydro-1-azaanthracen-2-one (kalasinamide), a new azaanthracene alkaloid. Acta Crystallogr C 2000. [DOI: 10.1107/s0108270100008064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
|
25 |
5 |
8
|
Kitdumrongthum S, Reabroi S, Suksen K, Tuchinda P, Munyoo B, Mahalapbutr P, Rungrotmongkol T, Ounjai P, Chairoungdua A. Inhibition of topoisomerase IIα and induction of DNA damage in cholangiocarcinoma cells by altholactone and its halogenated benzoate derivatives. Biomed Pharmacother 2020; 127:110149. [PMID: 32344256 DOI: 10.1016/j.biopha.2020.110149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 01/02/2023] Open
Abstract
Topoisomerase IIα enzyme (Topo IIα) plays a critical function in DNA replication process and is considered to be a promising target of anti-cancer drugs. In the present study, we reported that the altholactone derivatives modified by adding a halogenated benzoate group showed greater inhibitory activity on Topo IIα enzyme in cell-free system concomitant with cytotoxicity against the CCA cell lines (KKU-M055 and KKU-M213) than those of the parent altholactone. However, the cytotoxic activities of four halogenated benzoate altholactone derivatives including iodo-, fluoro-, chloro-, and bromobenzoate derivatives (compound 1, 2, 3, and 4, respectively) were of equal potency. The fluorobenzoate derivative (compound 2) was chosen for investigating the underlying mechanism in CCA cells. Compound 2 arrested CCA cell cycle at sub G1 phase and induced apoptotic cell death. It markedly inhibited Topo IIα protein expression in both KKU-M055 and KKU-M213 cells, which was accompanied by DNA double-strand breaks demonstrated by an increase in phosphorylated H2A.X protein. Interestingly, KKU-M055 cells, which express higher Topo IIα mRNA compared to KKU-M213 cells, showed greater sensitivity to the compound, indicating the selectivity of the compound to Topo IIα enzyme. By computational docking analysis, the binding affinity of altholactone (-52.5 kcal/mol) and compound 2 (-56.7 kcal/mol) were similar to that of the Topo II poison salvicine (-53.7 kcal/mol). The aromatic moiety of both altholactones embedded in a hydrophobic pocket of Topo II ATPase domain. In addition, compound 2 induced the formation of linear DNA in Topo II-mediated cleavage assay. Collectively, our results demonstrate that the addition of fluorobenzoyl group to altholactone enhances potency and selectivity to inhibit type IIα topoisomerases. Atholactone and fluorobenzoate derivative act as Topo II cleavage complexes stabilizing compounds or Topo II poisons preferentially through binding at ATPase domain of Topo IIα, leading to DNA double-strand breaks and apoptosis induction. Such activity of 3-fluorobenzoate derivative of altholactone should be further explored for the development of an anti-cancer drug for CCA.
Collapse
|
Journal Article |
5 |
3 |
9
|
Euanorasetr J, Junhom M, Tantimavanich S, Vorasin O, Munyoo B, Tuchinda P, Panbangred W. Halogenated benzoate derivatives of altholactone with improved anti-fungal activity. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2016; 18:462-474. [PMID: 26765144 DOI: 10.1080/10286020.2015.1133611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Altholactone exhibited the anti-fungal activity with a high MIC value of 128 μg ml(-1) against Cryptococcus neoformans and Saccharomyces cerevisiae. Fifteen ester derivatives of altholactone 1-15 were modified by esterification and their structures were confirmed by spectroscopic methods. Most of the ester derivatives exhibited stronger anti-fungal activities than that of the precursor altholactone. 3-Bromo- and 2,4-dichlorobenzoates (7 and 15) exhibited the lowest minimal inhibitory concentration (MIC) values against C. neoformans at 16 μg ml(-1), while the 4-bromo-, 4-iodo-, and 1-bromo-3-chlorobenzoates (11-13) displayed potent activity against S. cerevisiae with MIC values of 1 μg ml(-1). In conclusion, this analysis indicates that the anti-fungal activity of altholactone is enhanced by addition of halogenated benzoyl group to the 3-OH group.
Collapse
|
|
9 |
3 |
10
|
Thongnuanjan P, Soodvilai S, Fongsupa S, Thipboonchoo N, Chabang N, Munyoo B, Tuchinda P, Soodvilai S. Panduratin A Derivative Protects against Cisplatin-Induced Apoptosis of Renal Proximal Tubular Cells and Kidney Injury in Mice. Molecules 2021; 26:6642. [PMID: 34771049 PMCID: PMC8588142 DOI: 10.3390/molecules26216642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Panduratin A is a bioactive cyclohexanyl chalcone exhibiting several pharmacological activities, such as anti-inflammatory, anti-oxidative, and anti-cancer activities. Recently, the nephroprotective effect of panduratin A in cisplatin (CDDP) treatment was revealed. The present study examined the potential of certain compounds derived from panduratin A to protect against CDDP-induced nephrotoxicity. METHODS Three derivatives of panduratin A (DD-217, DD-218, and DD-219) were semi-synthesized from panduratin A. We investigated the effects and corresponding mechanisms of the derivatives of panduratin A for preventing nephrotoxicity of CDDP in both immortalized human renal proximal tubular cells (RPTEC/TERT1 cells) and mice. RESULTS Treating the cell with 10 µM panduratin A significantly reduced the viability of RPTEC/TERT1 cells compared to control (panduratin A: 72% ± 4.85%). Interestingly, DD-217, DD-218, and DD-219 at the same concentration did not significantly affect cell viability (92% ± 8.44%, 90% ± 7.50%, and 87 ± 5.2%, respectively). Among those derivatives, DD-218 exhibited the most protective effect against CDDP-induced renal proximal tubular cell apoptosis (control: 57% ± 1.23%; DD-218: 19% ± 10.14%; DD-219: 33% ± 14.06%). The cytoprotective effect of DD-218 was mediated via decreases in CDDP-induced mitochondria dysfunction, intracellular reactive oxygen species (ROS) generation, activation of ERK1/2, and cleaved-caspase 3 and 7. In addition, DD-218 attenuated CDDP-induced nephrotoxicity by a decrease in renal injury and improved in renal dysfunction in C57BL/6 mice. Importantly, DD-218 did not attenuate the anti-cancer efficacy of CDDP in non-small-cell lung cancer cells or colon cancer cells. CONCLUSIONS This finding suggests that DD-218, a derivative of panduratin A, holds promise as an adjuvant therapy in patients receiving CDDP.
Collapse
|
research-article |
4 |
3 |
11
|
Thangnipon W, Suwanna N, Kitiyanant N, Soi‐ampornkul R, Munyoo B, Tuchinda P, Nobsathian S. P3‐077: Protective role of n‐trans‐feruloyltyramine against beta‐amyloid‐peptide–induced neurotoxicity, bax, caspase and ROS in rat‐cultured cortical neurons. Alzheimers Dement 2012. [DOI: 10.1016/j.jalz.2012.05.1296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
13 |
1 |
12
|
Chabang N, Soodvilai S, Munyoo B, Tuchinda P, Soodvilai S. Modified cycloartanes with improved inhibitory effect on SGLT-mediated glucose uptake in human renal proximal tubular cells. SCIENCEASIA 2021. [DOI: 10.2306/scienceasia1513-1874.2021.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
4 |
|
13
|
Sunrat C, Kwanthongdee J, Uppakara K, Chabang N, Munyoo B, Tuchinda P, Saengsawang W. Phyllanthus taxodiifolius Beille Disrupted N-cadherin, Vimentin, Paxillin and Actin Stress Fibers in Glioblastoma. ASIAN PACIFIC JOURNAL OF CANCER PREVENTION : APJCP 2022; 23:2379-2386. [PMID: 35901345 DOI: 10.31557/apjcp.2022.23.7.2379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Glioblastoma is the most aggressive and lethal brain tumor in adults with highly invasive properties. In this present study, we explored the effects of Phyllanthus taxodiifolius Beille extract on molecules known to be hallmarks of aggressive glioblastoma including N-cadherin and vimentin, mesenchymal markers, as well as paxillin, a major adaptor protein that regulates the linking of focal adhesions to the actin cytoskeleton. METHODS P. taxodiifolius were air-dried, powdered and percolated with methanol, filtered, concentrated and lyophilized to yield a crude methanol extract. C6 glioblastoma cell line was used in this study. The expression of N-cadherin and vimentin, as well as the activation of paxillin was determined using Western blot analysis. The effect of the extract on focal adhesions and actin cytoskeleton were investigated using immunofluorescence staining and confocal imaging. RESULTS In the presence of 40 µg/ml Phyllanthus taxodiifolius Beille extract, the expression of N-cadherin and vimentin were significantly decreased (p<0.001 and p<0.05, respectively). Activation of paxillin was also diminished as indicated by a reduction of phosphorylated-paxillin (p<0.01). Consequently, actin stress fibers in glioblastoma cells were abolished as evidenced by the decrease in focal adhesion (p<0.001) and stress fibers numbers (p<0.001). CONCLUSION Our study demonstrates for the first time that P. taxodiifolius interferes with multiple key molecules related to pathological hallmarks of glioblastoma. These molecules are involved with cell contacts, focal adhesions, and the formation and stabilization of actin stress fibers, which are required for glioblastoma metastatic behavior. These results provide further evidence supporting the potential of P. taxodiifolius and its bioactive compounds as anti-cancer agents.
Collapse
|
|
3 |
|
14
|
Kwanthongdee J, Sunrat C, Munyoo B, Tuchinda P, Chabang N, Saengsawang W. Phyllanthus taxodiifolius Beille suppresses microtubule dynamics and restricts glioblastoma aggressiveness. Biomed Pharmacother 2019; 112:108645. [PMID: 30798125 DOI: 10.1016/j.biopha.2019.108645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma is the most common and the most malignant form of brain tumor. This devastating tumor results in death within a year after diagnosis. Although the tumor mass can be surgically removed, glioma cells invade other areas in the brain leading to tumor recurrence and poor prognosis. Therefore, new agents that can overcome cancer cell invasion are urgently required. Phyllanthus taxodiifolius Beille (P. taxodiifolius), has been reported to have potent anti-cancer activities. However, its effects on glioblastoma cells and its underlying mechanisms have never been revealed. Here we investigated the effect and underlying mechanisms of P. taxodiifolius extract on aggressive properties of the glioblastoma, including adhesion, migration, and invasion. P. taxodiifolius extract disrupted adhesion, delayed migration and interfered with the invasion of glioblastoma cells. In addition, the extract suppressed microtubule dynamics as shown by live imaging of a microtubule plus tip protein and decreased focal adhesion by decreasing focal adhesion kinase activity. Our study is the first evidence showing that P. taxodiifolius extract suppresses invasive properties of glioblastoma cells by disrupting microtubule structure and interfering with microtubule dynamics, suggesting the possibility to further develop P. taxodiifolius and its bioactive compounds as an anti-cancer drug targeting microtubules in glioblastoma.
Collapse
|
|
6 |
|
15
|
Wongpan A, Panvongsa W, Krobthong S, Nutho B, Kanjanasirirat P, Jearawuttanakul K, Khumpanied T, Phlaetita S, Chabang N, Munyoo B, Tuchinda P, Ponpuak M, Borwornpinyo S, Chairoungdua A. Cleistanthin A derivative disrupts autophagy and suppresses head and neck squamous cell carcinoma progression via targeted vacuolar ATPase. Sci Rep 2024; 14:22582. [PMID: 39343784 PMCID: PMC11439923 DOI: 10.1038/s41598-024-73186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) present a significant challenge due to its heterogeneity and limited treatment options, often resulting in severe side effects and poor survival rates with conventional chemoradiotherapy. Here, we investigated the anticancer activity of halogenated benzoate derivatives of cleistanthin A, ECDD-S16 and ECDD-S18, in HNSCC cells. Our findings revealed that ECDD-S18 exhibited remarkable cytotoxicity, surpassing that of cisplatin with minimal impact on normal and cisplatin-sensitive cells. Notably, ECDD-S18 induced apoptosis in a dose-dependent manner and effectively targeted vacuolar ATPase (V-ATPase), impairing lysosomal acidification. Intriguingly, ECDD-S18 inhibited autophagic flux, as evidenced by increased autophagosome but decreased autolysosome formation. Furthermore, proteomic analysis demonstrated downregulation of cathepsin D (CTSD), the lysosomal protease in ECDD-S18-treated HNSCC cells, concurrent with suppressed cell migration. ECDD-S18 also decreased expression of mesenchymal markers, suggesting inhibition of epithelial-mesenchymal transition (EMT). Importantly, cotreatment with ECDD-S18 and cisplatin enhanced the reduction in cell viability. Collectively, our results indicated that the anticancer activity of ECDD-S18 partly stems from its ability to disrupt lysosomal acidification and inhibit autophagy via targeted inhibition of V-ATPase. These findings underscore the therapeutic promise of ECDD-S18 in HNSCC treatment, either alone or in combination with existing drugs, while mitigating toxicity to normal cells.
Collapse
|
|
1 |
|
16
|
Arcan SKC, Yatip P, Munyoo B, Maningas MBB, Soowannayan C, Guzman JPMD. Attenuating Vibrio harveyi Virulence Through Quorum Sensing Interference Using Piperine: An In Vitro and In Silico Approach. JOURNAL OF FISH DISEASES 2025; 48:e14094. [PMID: 39907168 DOI: 10.1111/jfd.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Aquaculture diseases caused by pathogens such as Vibrio spp., amplified by the emergence of antibiotic resistance, threaten the aquaculture industry. Due to its critical role in regulating the expression of genes related to antibiotic resistance and virulence, quorum sensing (QS) was proved to be an ideal target in disease control. In this study, we investigated the effects of the alkaloid piperine on the QS system of a fish pathogenic Vibrio harveyi strain. In vitro assays showed that piperine inhibits biofilm formation of V. harveyi without affecting their growth. Moreover, piperine specifically reduced QS activity in V. harveyi, as evident in the inhibition of biofilm and bioluminescence, likely through the AI-2 pathway. Molecular docking simulations showed significant binding energies between piperine and QS proteins-LuxP, LuxQ, LuxR and LuxS-revealing competitive inhibitory effects against LuxP, LuxR, and LuxS, and non-competitive interactions with LuxQ. This study demonstrated the effects of piperine against V. harveyi and elucidated its mechanism of action against V. harveyi QS, implying its potential application in aquaculture systems.
Collapse
|
|
1 |
|