1
|
Miyashita EM, Yang B, Lam KM, Crawford DH, Thorley-Lawson DA. A novel form of Epstein-Barr virus latency in normal B cells in vivo. Cell 1995; 80:593-601. [PMID: 7532548 DOI: 10.1016/0092-8674(95)90513-8] [Citation(s) in RCA: 1227] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have developed a PCR assay that can detect a single Epstein-Barr virus (EBV) genome in the presence of 10(6) uninfected cells. Using this assay, we demonstrate that EBV persists, in the peripheral blood of all seropositive individuals tested, in CD19+, CD23-, and CD80 (B7)- B cells. We further show that the virus in these cells is latent, but readily reactivated to produce infectious immortalizing virus; therefore, these cells represent a true site of latent persistence. EBV was not significantly detected in monocytes or T cells. The frequency of infected cells in nine healthy donors varied from 23 to 625 per 10(7) B cells, but was relatively stable for each individual over the course of 2 years. We conclude that the EBV-infected cells in vivo are B cells with a nonactivated phenotype. This represents a novel form of latency in normal B cells.
Collapse
|
Comparative Study |
30 |
1227 |
2
|
Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J Biol Chem 1998; 273:4296-9. [PMID: 9468475 DOI: 10.1074/jbc.273.8.4296] [Citation(s) in RCA: 475] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Water channel aquaporin-1 (AQP1) is strongly expressed in kidney in proximal tubule and descending limb of Henle epithelia and in vasa recta endothelia. The grossly normal phenotype in human subjects deficient in AQP1 (Colton null blood group) and in AQP4 knockout mice has suggested that aquaporins (other than the vasopressin-regulated water channel AQP2) may not be important in mammalian physiology. We have generated transgenic mice lacking detectable AQP1 by targeted gene disruption. In kidney proximal tubule membrane vesicles from knockout mice, osmotic water permeability was reduced 8-fold compared with vesicles from wild-type mice. Although the knockout mice were grossly normal in terms of survival, physical appearance, and organ morphology, they became severely dehydrated and lethargic after water deprivation for 36 h. Body weight decreased by 35 +/- 2%, serum osmolality increased to >500 mOsm, and urinary osmolality (657 +/- 59 mOsm) did not change from that before water deprivation. In contrast, wild-type and heterozygous mice remained active after water deprivation, body weight decreased by 20-22%, serum osmolality remained normal (310-330 mOsm), and urine osmolality rose to >2500 mOsm. Urine [Na+] in water-deprived knockout mice was <10 mM, and urine osmolality was not increased by the V2 agonist DDAVP. The results suggest that AQP1 knockout mice are unable to create a hypertonic medullary interstitium by countercurrent multiplication. AQP1 is thus required for the formation of a concentrated urine by the kidney.
Collapse
|
|
27 |
475 |
3
|
Price MP, Lewin GR, McIlwrath SL, Cheng C, Xie J, Heppenstall PA, Stucky CL, Mannsfeldt AG, Brennan TJ, Drummond HA, Qiao J, Benson CJ, Tarr DE, Hrstka RF, Yang B, Williamson RA, Welsh MJ. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 2000; 407:1007-11. [PMID: 11069180 DOI: 10.1038/35039512] [Citation(s) in RCA: 385] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Of the vertebrate senses, touch is the least understood at the molecular level The ion channels that form the core of the mechanosensory complex and confer touch sensitivity remain unknown. However, the similarity of the brain sodium channel 1 (BNC1) to nematode proteins involved in mechanotransduction indicated that it might be a part of such a mechanosensor. Here we show that disrupting the mouse BNC1 gene markedly reduces the sensitivity of a specific component of mechanosensation: low-threshold rapidly adapting mechanoreceptors. In rodent hairy skin these mechanoreceptors are excited by hair movement. Consistent with this function, we found BNC1 in the lanceolate nerve endings that lie adjacent to and surround the hair follicle. Although BNC1 has been proposed to have a role in pH sensing, the acid-evoked current in cultured sensory neurons and the response of acid-stimulated nociceptors were normal in BNC1 null mice. These data identify the BNC1 channel as essential for the normal detection of light touch and indicate that BNC1 may be a central component of a mechanosensory complex.
Collapse
|
|
25 |
385 |
4
|
Clements JL, Yang B, Ross-Barta SE, Eliason SL, Hrstka RF, Williamson RA, Koretzky GA. Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science 1998; 281:416-9. [PMID: 9665885 DOI: 10.1126/science.281.5375.416] [Citation(s) in RCA: 352] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The leukocyte-specific adapter molecule SLP-76 (Src homology 2 domain-containing leukocyte protein of 76 kilodaltons) is rapidly phosphorylated on tyrosine residues after receptor ligation in several hematopoietically derived cell types. Mice made deficient for SLP-76 expression contained no peripheral T cells as a result of an early block in thymopoiesis. Macrophage and natural killer cell compartments were intact in SLP-76-deficient mice, despite SLP-76 expression in these lineages in wild-type mice. Thus, the SLP-76 adapter protein is required for normal thymocyte development and plays a crucial role in translating signals mediated by pre-T cell receptors into distal biochemical events.
Collapse
|
|
27 |
352 |
5
|
Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J Clin Invest 1997; 100:957-62. [PMID: 9276712 PMCID: PMC508270 DOI: 10.1172/jci231] [Citation(s) in RCA: 348] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aquaporin-4 (AQP4) is a mercurial-insensitive, water-selective channel that is expressed in astroglia and basolateral plasma membranes of epithelia in the kidney collecting duct, airways, stomach, and colon. A targeting vector for homologous recombination was constructed using a 7-kb SacI AQP4 genomic fragment in which part of the exon 1 coding sequence was deleted. Analysis of 164 live births from AQP4[+/-] matings showed 41 [+/+], 83 [+/-], and 40 [-/-] genotypes. The [-/-] mice expressed small amounts of a truncated AQP4 transcript and lacked detectable AQP4 protein by immunoblot analysis and immunocytochemistry. Water permeability in an AQP4-enriched brain vesicle fraction in [+/+] mice was high and mercurial insensitive, and was decreased by 14-fold in [-/-] mice. AQP4 deletion did not affect growth or tissue morphology at the light microscopic level. Northern blot analysis showed that tissue-specific expression of AQPs 1, 2, 3, and 5 was not affected by AQP4 deletion. Maximum urine osmolality after a 36-h water deprivation was (in mosM, n = 15) [+/+] 3,342+/-209, [+/-] 3, 225+/-167, and [-/-] 2,616+/-229 (P < 0.025), whereas urine osmolalities before water deprivation did not differ among the genotypes. Rotorod analysis of 35- 38-d-old mice revealed no differences in neuromuscular function (performance time in s, n = 8): [+/+] 297+/-25, [+/-] 322+/-28, [-/-] 288+/-37. These results indicate that AQP4 deletion in CD1 mice has little or no effect on development, survival, growth, and neuromuscular function, but produces a small defect in urinary concentrating ability consistent with its expression in the medullary collecting duct.
Collapse
|
research-article |
28 |
348 |
6
|
Schafer KJ, Yang B, DiMauro LF, Kulander KC. Above threshold ionization beyond the high harmonic cutoff. PHYSICAL REVIEW LETTERS 1993; 70:1599-1602. [PMID: 10053336 DOI: 10.1103/physrevlett.70.1599] [Citation(s) in RCA: 342] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
|
32 |
342 |
7
|
Yang B, Verkman AS. Water and glycerol permeabilities of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J Biol Chem 1997; 272:16140-6. [PMID: 9195910 DOI: 10.1074/jbc.272.26.16140] [Citation(s) in RCA: 311] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The goal of this study was to compare single channel water and glycerol permeabilities of mammalian aquaporins (AQP) 1-5 and the major intrinsic protein of lens fiber (MIP). Each of the six cloned cDNAs from rat was left untagged or was epitope-tagged with c-Myc or FLAG at either the N or C terminus so that results would not depend on epitope identity or location. The constructs were expressed in Xenopus oocytes for measurement of osmotic water permeability (Pf), [3H]glycerol uptake, and protein expression. Each of the 30 epitope-tagged constructs was expressed strongly at the oocyte plasma membrane. The 10-min uptake of [3H]glycerol was increased significantly (range of 4.5-8-fold over control) in oocytes expressing untagged AQP3 (GLIP) and each of the four tagged AQP3 constructs; [3H]glycerol uptake was not increased in oocytes expressing AQP1, AQP2, AQP4, AQP5, or MIP. In oocytes microinjected with 5 ng of cRNA, average Pf values (in cm/s x 10(-3)) were 0.67 +/- 0.06 (control), 19 +/- 2 (AQP1), 10 +/- 1 (AQP2), 8 +/- 2 (AQP3), 29 +/- 1 (AQP4), 10 +/- 1 (AQP5), and 1.3 +/- 0.2 (MIP), and they were relatively insensitive to the presence, identity, or location of the epitope tag. Pf values were not affected by protein kinase A or C activation. After normalization for plasma membrane expression by immunoprecipitation of microdissected plasma membranes, single channel water permeabilities (pf, referenced to the AQP1 pf of 6 x 10(-14) cm3/s) were (in cm3/s x 10(-14)) 3.3 +/- 0.2 (AQP2), 2.1 +/- 0.3 (AQP3), 24 +/- 0.6 (AQP4), 5.0 +/- 0.4 (AQP5), and 0.25 +/- 0.05 (MIP); pf values were insensitive to epitope identity and location. These results indicate very different intrinsic water permeabilities for the mammalian aquaporin homologs, with the pf value for AQP4 remarkably higher than those for the others. The pf values establish limits on aquaporin tissue densities required for physiological function and suggest significant structural and functional differences among the aquaporins.
Collapse
|
|
28 |
311 |
8
|
Huang WM, Yang B, Zhao Y, Ding Z. Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/b922943d] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
15 |
307 |
9
|
Yang B, Yang BL, Savani RC, Turley EA. Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and link protein. EMBO J 1994; 13:286-96. [PMID: 7508860 PMCID: PMC394807 DOI: 10.1002/j.1460-2075.1994.tb06261.x] [Citation(s) in RCA: 289] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We have previously identified two hyaluronan (HA) binding domains in the HA receptor, RHAMM, that occur near the carboxyl-terminus of this protein. We show here that these two HA binding domains are the only HA binding regions in RHAMM, and that they contribute approximately equally to the HA binding ability of this receptor. Mutation of domain II using recombinant polypeptides of RHAMM demonstrates that K423 and R431, spaced seven amino acids apart, are critical for HA binding activity. Domain I contains two sets of two basic amino acids, each spaced seven residues apart, and mutation of these basic amino acids reduced their binding to HA--Sepharose. These results predict that two basic amino acids flanking a seven amino acid stretch [hereafter called B(X7)B] are minimally required for HA binding activity. To assess whether this motif predicts HA binding in the intact RHAMM protein, we mutated all basic amino acids in domains I and II that form part of these motifs using site-directed mutagenesis and prepared fusion protein from the mutated cDNA. The altered RHAMM protein did not bind HA, confirming that the basic amino acids and their spacing are critical for binding. A specific requirement for arginine or lysine residues was identified since mutation of K430, R431 and K432 to histidine residues abolished binding. Clustering of basic amino acids either within or at either end of the motif enhanced HA binding activity while the occurrence of acidic residues between the basic amino acids reduced binding. The B(X7)B motif, in which B is either R or K and X7 contains no acidic residues and at least one basic amino acid, was found in all HA binding proteins molecularly characterized to date. Recombinant techniques were used to generate chimeric proteins containing either the B(X7)B motifs present in CD44 or link protein, with the amino-terminus of RHAMM (amino acids 1-238) that does not bind HA. All chimeric proteins containing the motif bound HA in transblot analyses. Site-directed mutations of these motifs in CD44 sequences abolished HA binding. Collectively, these results predict that the motif of B(X7)B as a minimal binding requirement for HA in RHAMM, CD44 and link protein, and occurs in all HA binding proteins described to date.
Collapse
|
|
31 |
289 |
10
|
Ma T, Song Y, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci U S A 2000; 97:4386-91. [PMID: 10737773 PMCID: PMC18251 DOI: 10.1073/pnas.080499597] [Citation(s) in RCA: 286] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/1999] [Indexed: 11/18/2022] Open
Abstract
Aquaporin-3 (AQP3) is a water channel expressed at the basolateral plasma membrane of kidney collecting-duct epithelial cells. The mouse AQP3 cDNA was isolated and encodes a 292-amino acid water/glycerol-transporting glycoprotein expressed in kidney, large airways, eye, urinary bladder, skin, and gastrointestinal tract. The mouse AQP3 gene was analyzed, and AQP3 null mice were generated by targeted gene disruption. The growth and phenotype of AQP3 null mice were grossly normal except for polyuria. AQP3 deletion had little effect on AQP1 or AQP4 protein expression but decreased AQP2 protein expression particularly in renal cortex. Fluid consumption in AQP3 null mice was more than 10-fold greater than that in wild-type litter mates, and urine osmolality (<275 milliosmol) was much lower than in wild-type mice (>1,200 milliosmol). After 1-desamino-8-d-arginine-vasopressin administration or water deprivation, the AQP3 null mice were able to concentrate their urine partially to approximately 30% of that in wild-type mice. Osmotic water permeability of cortical collecting-duct basolateral membrane, measured by a spatial filtering optics method, was >3-fold reduced by AQP3 deletion. To test the hypothesis that the residual concentrating ability of AQP3 null mice was due to the inner medullary collecting-duct water channel AQP4, AQP3/AQP4 double-knockout mice were generated. The double-knockout mice had greater impairment of urinary-concentrating ability than did the AQP3 single-knockout mice. Our findings establish a form of nephrogenic diabetes insipidus produced by impaired water permeability in collecting-duct basolateral membrane. Basolateral membrane aquaporins may thus provide blood-accessible targets for drug discovery of aquaretic inhibitors.
Collapse
|
research-article |
25 |
286 |
11
|
Knopp RH, Gitter H, Truitt T, Bays H, Manion CV, Lipka LJ, LeBeaut AP, Suresh R, Yang B, Veltri EP. Effects of ezetimibe, a new cholesterol absorption inhibitor, on plasma lipids in patients with primary hypercholesterolemia. Eur Heart J 2003; 24:729-41. [PMID: 12713767 DOI: 10.1016/s0195-668x(02)00807-2] [Citation(s) in RCA: 279] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIMS This randomized, double-blind, placebo-controlled, parallel-group study evaluated the safety and efficacy of ezetimibe 10 mg/day in patients with primary hypercholesterolemia. METHODS AND RESULTS Following dietary stabilization, a 2-12-week washout period, and a 4-week, single-blind, placebo lead-in period, 827 patients with baseline low-density lipoprotein cholesterol (LDL-C) > or =3.36 mmol/l (130 mg/dl) to < or =6.47 mmol/l (250 mg/dl) and triglycerides < or =3.95 mmol/l (350 mg/dl) were randomized 3:1 to receive ezetimibe 10 mg or placebo orally once daily in the morning for 12 weeks. The primary efficacy endpoint was percentage reduction in direct plasma LDL-C. Ezetimibe reduced direct LDL-C by a mean of 17.7% from baseline to endpoint, compared with an increase of 0.8% with placebo (P<0.01). Response to ezetimibe was generally consistent across all subgroups analyzed. Ezetimibe also significantly improved levels of plasma total cholesterol, apolipoprotein B, high-density lipoprotein(2)-cholesterol and lipoprotein(a), and elicited a trend toward lower triglyceride levels. Ezetimibe did not alter the serum concentrations of lipid-soluble vitamins or significantly affect baseline or stimulated cortisol production. Ezetimibe was well tolerated, with a safety profile similar to that of placebo. CONCLUSIONS Ezetimibe, which significantly reduces LDL-C and favorably affects other lipid variables, may provide a well tolerated and effective new option for lipid management in the future.
Collapse
|
Clinical Trial |
22 |
279 |
12
|
Quon KC, Yang B, Domian IJ, Shapiro L, Marczynski GT. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc Natl Acad Sci U S A 1998; 95:120-5. [PMID: 9419339 PMCID: PMC18146 DOI: 10.1073/pnas.95.1.120] [Citation(s) in RCA: 265] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Caulobacter crescentus divides asymmetrically generating two distinct cell types at each cell division: a stalked cell competent for DNA replication, and a swarmer cell that is unable to initiate DNA replication until it differentiates into a stalked cell later in the cell cycle. The CtrA protein, a member of the response regulator family of the two-component signal transduction system, controls multiple cell cycle processes in Caulobacter and is present in swarmer cells but absent from stalked cells. We report that CtrA binds five sites within the chromosome replication origin in vitro. These sites overlap an essential DnaA box and a promoter in the origin that is essential for replication initiation. Analysis of mutant alleles of ctrA and point mutations in one of the CtrA binding sites in the origin demonstrate that CtrA represses replication in vivo. CtrA-mediated repression at the origin thus restricts replication to the stalked cell type. Thus, the direct coupling of chromosome replication with the cell cycle is mediated by the ubiquitous two-component signaling proteins.
Collapse
|
research-article |
27 |
265 |
13
|
Yang B, Gonzalez L, Prekeris R, Steegmaier M, Advani RJ, Scheller RH. SNARE interactions are not selective. Implications for membrane fusion specificity. J Biol Chem 1999; 274:5649-53. [PMID: 10026182 DOI: 10.1074/jbc.274.9.5649] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SNARE hypothesis proposes that membrane trafficking specificity is mediated by preferential high affinity interactions between particular v (vesicle membrane)- and t (target membrane)-SNARE combinations. The specificity of interactions among a diverse set of SNAREs, however, is unknown. We have tested the SNARE hypothesis by analyzing potential SNARE complexes between five proteins of the vesicle-associated membrane protein (VAMP) family, three members of the synaptosome-associated protein-25 (SNAP-25) family and three members of the syntaxin family. All of the 21 combinations of SNAREs tested formed stable complexes. Sixteen were resistant to SDS denaturation, and most complexes thermally denatured between 70 and 90 degreesC. These results suggest that the specificity of membrane fusion is not encoded by the interactions between SNAREs.
Collapse
|
|
26 |
253 |
14
|
Jung D, Yang B, Meyer J, Chamberlain JS, Campbell KP. Identification and characterization of the dystrophin anchoring site on beta-dystroglycan. J Biol Chem 1995; 270:27305-10. [PMID: 7592992 DOI: 10.1074/jbc.270.45.27305] [Citation(s) in RCA: 246] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dystrophin, the product of the Duchenne muscular dystrophy gene, is tightly associated with the sarcolemmal membrane to a large glycoprotein complex. One function of the dystrophin-glycoprotein complex is to link the cytoskeleton to the extracellular matrix in skeletal muscle. However, the molecular interactions of dystrophin with the membrane components of the dystrophin-glycoprotein complex are still elusive. Here, we demonstrate and characterize a specific interaction between beta-dystroglycan and dystrophin. We show that skeletal muscle and brain dystrophin as well as brain dystrophin isoforms specifically bind to beta-dystroglycan. To localize and characterize the dystrophin and beta-dystroglycan interaction domains, we reconstituted the interaction in vitro using dystrophin fusion proteins and in vitro translated beta-dystroglycan. We demonstrated that the 15 C-terminal amino acids of beta-dystroglycan constituted a unique binding site for the second half of the hinge 4 and the cysteine-rich domain of dystrophin (amino acids 3054-3271). This dystrophin binding site is located in a proline-rich environment of beta-dystroglycan within amino acids 880-895. The identification of the interaction sites in dystrophin and beta-dystroglycan provides further insight into the structure and the molecular organization of the dystrophin-glycoprotein complex at the sarcolemma membrane and will be helpful for studying the pathogenesis of Duchenne muscular dystrophy.
Collapse
|
|
30 |
246 |
15
|
Yang B, Graham L, Dikalov S, Mason RP, Falck JR, Liao JK, Zeldin DC. Overexpression of cytochrome P450 CYP2J2 protects against hypoxia-reoxygenation injury in cultured bovine aortic endothelial cells. Mol Pharmacol 2001; 60:310-20. [PMID: 11455018 DOI: 10.1124/mol.60.2.310] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP2J2 is abundant in human heart and its arachidonic acid metabolites, the epoxyeicosatrienoic acids (EETs), have potent vasodilatory, antiinflammatory and cardioprotective properties. This study was designed to examine the role of CYP2J2 in hypoxia-reoxygenation-induced injury in cultured bovine aortic endothelial cells (BAECs). Early passage BAECs were exposed to 24-h hypoxia followed by 4-h reoxygenation (HR). HR resulted in cell injury, as indicated by significant increases in lactate dehydrogenase (LDH) release and trypan blue stained cells (p < 0.01) and was associated with a decrease in CYP2J2 protein expression. Transfection of BAECs with the CYP2J2 cDNA resulted in increased CYP2J2 expression and arachidonic acid epoxygenase activity, compared with cells transfected with an irrelevant green fluorescent protein (GFP) cDNA. HR induced significant injury in GFP-transfected BAECs, as indicated by increases in LDH release and trypan blue-stained cells (p < 0.01); however, the HR-induced injury was markedly attenuated in CYP2J2-transfected cells (p < 0.01). HR increased cellular 8-iso-prostaglandin F(2alpha) (p < 0.05), and decreased eNOS expression, L-arginine uptake and conversion, and nitrite production (p < 0.01) in GFP-transfected BAECs. CYP2J2 transfection attenuated the HR-induced increase in 8-iso-prostaglandin F(2alpha) (p < 0.05) and decreased the amount of extracellular superoxide detected by cytochrome c reduction under normoxic conditions (p < 0.05) but did not significantly affect HR-induced decreases in eNOS expression, L-arginine uptake and conversion, and nitrite production. Treatment of BAECs with synthetic EETs and/or epoxide hydrolase inhibitors also showed protective effects against HR injury (p < 0.05). These observations suggest: (1) HR results in endothelial injury and decreased CYP2J2 expression; (2) transfection with the CYP2J2 cDNA protects against HR injury; and (3) the cytoprotective effects of CYP2J2 may be mediated, at least in part, by antioxidant effects.
Collapse
|
|
24 |
242 |
16
|
Bays HE, Moore PB, Drehobl MA, Rosenblatt S, Toth PD, Dujovne CA, Knopp RH, Lipka LJ, Lebeaut AP, Yang B, Mellars LE, Cuffie-Jackson C, Veltri EP. Effectiveness and tolerability of ezetimibe in patients with primary hypercholesterolemia: pooled analysis of two phase II studies. Clin Ther 2001; 23:1209-30. [PMID: 11558859 DOI: 10.1016/s0149-2918(01)80102-8] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Ezetimibe (SCH 58235) is a novel cholesterol absorption inhibitor that selectively and potently blocks intestinal absorption of dietary and biliary cholesterol. OBJECTIVE Data from 2 multicenter, placebo-controlled, double-blind, randomized, parallel-group, 12-week studies of ezetimibe were pooled to evaluate the drug's effect on lipid parameters in patients with primary hypercholesterolemia. METHODS After dietary stabilization (National Cholesterol Education Program Step I diet or a stricter diet), washout of lipid-altering drugs, and a 6-week placebo lead-in period, patients with baseline plasma low-density lipoprotein cholesterol (LDL-C) levels > or = 130 and < or = 250 mg/dL and plasma triglyceride (TG) levels < or = 300 mg/dL were randomized to receive either ezetimibe 0.25, 1, 5, or 10 mg, or placebo administered once daily before the morning meal in study A (dose-response study) or ezetimibe 5 or 10 mg or placebo administered once daily before the morning meal or at bedtime in study B (dose-regimen study). RESULTS A total of 432 patients were included in this pooled analysis, 243 in study A and 189 in study B. The 5- and 10-mg doses of ezetimibe significantly reduced LDL-C levels by 15.7% and 18.5%, respectively (P < 0.01 vs placebo) and significantly increased high-density lipoprotein cholesterol (hDL-C) levels by 2.9% and 3.5%, respectively (P < 0.05 vs placebo). A reduction in plasma TG levels was observed (P = NS). With the 10-mg dose of ezetimibe, 67.8% of patients achieved > or = 15% reduction in plasma LDL-C levels, and 22.0% achieved > or = 25% reduction. With the 5-mg dose, 54.0% of patients achieved > or = 15% reduction in plasma LDL-C levels, and 15.3% achieved > or = 25% reduction. The decrease in plasma LDL-C levels was significantly greater with ezetimibe 10 mg compared with ezetimibe 5 mg (P < 0.05). Ezetimibe was well tolerated, with an adverse event profile similar to that of placebo. CONCLUSIONS In these two 12-week studies, ezetimibe significantly decreased plasma LDL-C levels and increased plasma HDL-C levels, with a tolerability profile similar to that of placebo.
Collapse
|
Clinical Trial |
24 |
240 |
17
|
Hall CL, Yang B, Yang X, Zhang S, Turley M, Samuel S, Lange LA, Wang C, Curpen GD, Savani RC, Greenberg AH, Turley EA. Overexpression of the hyaluronan receptor RHAMM is transforming and is also required for H-ras transformation. Cell 1995; 82:19-26. [PMID: 7541721 DOI: 10.1016/0092-8674(95)90048-9] [Citation(s) in RCA: 224] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Overexpression of the RHAMM gene by transfection into fibroblasts is transforming and causes spontaneous metastases in the lung. H-ras-transformed fibrosarcomas transfected with a dominant suppressor mutant of RHAMM exhibit a so-called revertant phenotype and are completely nontumorigenic and nonmetastatic. Conversely, fibroblasts stably expressing low levels of RHAMM as a result of antisense transfection are resistant to ras transformation. Collectively, these results indicate that RHAMM acts downstream of ras. The loss of functional RHAMM ablates signaling within focal adhesions, in particular changes in focal adhesion kinase phosphorylation, and as a result these focal adhesions are unable to turn over in response to hyaluronan. These results provide evidence of the oncogenic potential of a novel extracellular matrix receptor and establish a functional link between transformation by ras and signaling within focal adhesions that are required for transformation by this oncogene.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Cell Adhesion
- Cell Adhesion Molecules/physiology
- Cell Movement
- Cell Transformation, Neoplastic
- Fibroblasts
- Fibrosarcoma/pathology
- Focal Adhesion Kinase 1
- Focal Adhesion Protein-Tyrosine Kinases
- Gene Expression
- Genes, ras/physiology
- Hyaluronan Receptors
- Lung/metabolism
- Mice
- Molecular Sequence Data
- Phosphorylation
- Protein-Tyrosine Kinases/physiology
- RNA, Antisense
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Lymphocyte Homing/biosynthesis
- Receptors, Lymphocyte Homing/genetics
- Receptors, Lymphocyte Homing/physiology
- Signal Transduction
- Suppression, Genetic
- Transfection
- Tumor Cells, Cultured
- Tyrosine/metabolism
Collapse
|
|
30 |
224 |
18
|
Miyashita EM, Yang B, Babcock GJ, Thorley-Lawson DA. Identification of the site of Epstein-Barr virus persistence in vivo as a resting B cell. J Virol 1997; 71:4882-91. [PMID: 9188550 PMCID: PMC191718 DOI: 10.1128/jvi.71.7.4882-4891.1997] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Epstein-Barr (EBV) is a powerful immortalizing virus for human B lymphocytes in vitro and is associated with several human neoplasias in vivo. Previously, we have shown that the majority of EBV-infected cells in the peripheral blood of healthy, persistently infected individuals do not express the activated phenotype, e.g., high levels of cell surface CD23 and CD80 (B7), characteristically expressed on in vitro-immortalized cells. Here, we show that > or = 90% of the CD23-, virus-infected cells in the peripheral blood are in G0 and therefore resting. The remaining cells may be G1 arrested, but we were unable to detect a significant number of cells traversing the S-G2-M stages of the cell cycle. The mRNA for LMP2A, but not EBNA1 originating from Qp, was readily detected in this population, and these cells appear competent in the processing and presentation of antigen by class I major histocompatibility complex. We propose that these resting B cells are the site of long-term latent persistence for EBV. We further propose that the persistence of the virus in a resting B7- B cell provides an important mechanism to escape immunosurveillance. The demonstration that EBV can persist latently in a resting B cell means that the immortalizing functions of EBV can be down regulated in a normal B cell. This conclusion has important implications for understanding and controlling EBV-associated neoplasia.
Collapse
|
research-article |
28 |
221 |
19
|
Yang B, Jung D, Motto D, Meyer J, Koretzky G, Campbell KP. SH3 domain-mediated interaction of dystroglycan and Grb2. J Biol Chem 1995; 270:11711-4. [PMID: 7744812 DOI: 10.1074/jbc.270.20.11711] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dystroglycan is a novel laminin receptor that links the extracellular matrix and sarcolemma in skeletal muscle. The dystroglycan complex containing alpha- and beta-dystroglycan also serves as an agrin receptor in muscle, where it may regulate agrin-induced acetylcholine receptor clustering at the neuromuscular junction. beta-Dystroglycan has now been expressed in vitro and shown to directly interact with Grb2, an adapter protein involved in signal transduction and cytoskeletal organization. Protein binding assays with two Grb2 mutants, Grb2/P49L and Grb2/G203R, which correspond to the loss-of-function mutants in the Caenorhabditis elegans sem-5, demonstrated that the dystroglycan-Grb2 association is through beta-dystroglycan C-terminal proline-rich domains and Grb2 Src homology 3 domains. Affinity chromatography has also shown endogenous skeletal muscle Grb2 interacts with beta-dystroglycan. Immunoprecipitation experiments have demonstrated that Grb2 associates with alpha/beta-dystroglycan in vivo in both skeletal muscle and brain. The specific dystroglycan-Grb2 interaction may play an important role in extracellular matrix-mediated signal transduction and/or cytoskeleton organization in skeletal muscle that may be essential for muscle cell viability.
Collapse
|
|
30 |
200 |
20
|
Yang B, Kirby S, Lewis J, Detloff PJ, Maeda N, Smithies O. A mouse model for beta 0-thalassemia. Proc Natl Acad Sci U S A 1995; 92:11608-12. [PMID: 8524813 PMCID: PMC40451 DOI: 10.1073/pnas.92.25.11608] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have used a "plug and socket" targeting technique to generate a mouse model of beta 0-thalassemia in which both the b1 and b2 adult globin genes have been deleted. Mice homozygous for this deletion (Hbbth-3/Hbbth-3) die perinatally, similar to the most severe form of Cooley anemia in humans. Mice heterozygous for the deletion appear normal, but their hematologic indices show characteristics typical of severe thalassemia, including dramatically decreased hematocrit, hemoglobin, red blood cell counts, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration, as well as dramatically increased reticulocyte counts, serum bilirubin concentrations, and red cell distribution widths. Tissue and organ damage typical of beta-thalassemia, such as bone deformities and splenic enlargement due to increased hematopoiesis, are also seen in the heterozygous animals, as is spontaneous iron overload in the spleen, liver, and kidneys. The mice homozygous for the b1 and b2 deletions should be of great value in developing therapies for the treatment of thalassemias in utero. The heterozygous animals will be useful for studying the pathophysiology of thalassemias and have the potential of generating a model of sickle cell anemia when mated with appropriate transgenic animals.
Collapse
|
research-article |
30 |
197 |
21
|
McDonald FJ, Yang B, Hrstka RF, Drummond HA, Tarr DE, McCray PB, Stokes JB, Welsh MJ, Williamson RA. Disruption of the beta subunit of the epithelial Na+ channel in mice: hyperkalemia and neonatal death associated with a pseudohypoaldosteronism phenotype. Proc Natl Acad Sci U S A 1999; 96:1727-31. [PMID: 9990092 PMCID: PMC15575 DOI: 10.1073/pnas.96.4.1727] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/1998] [Indexed: 11/18/2022] Open
Abstract
The epithelial Na+ channel (ENaC) is composed of three homologous subunits: alpha, beta and gamma. We used gene targeting to disrupt the beta subunit gene of ENaC in mice. The betaENaC-deficient mice showed normal prenatal development but died within 2 days after birth, most likely of hyperkalemia. In the -/- mice, we found an increased urine Na+ concentration despite hyponatremia and a decreased urine K+ concentration despite hyperkalemia. Moreover, serum aldosterone levels were increased. In contrast to alphaENaC-deficient mice, which die because of defective lung liquid clearance, neonatal betaENaC deficient mice did not die of respiratory failure and showed only a small increase in wet lung weight that had little, if any, adverse physiologic consequence. The results indicate that, in vivo, the beta subunit is required for ENaC function in the renal collecting duct, but, in contrast to the alpha subunit, the beta subunit is not required for the transition from a liquid-filled to an air-filled lung. The phenotype of the betaENaC-deficient mice is similar to that of humans with pseudohypoaldosteronism type 1 and may provide a useful model to study the pathogenesis and treatment of this disorder.
Collapse
|
research-article |
26 |
197 |
22
|
Yang B, Kotani A, Arai K, Kusu F. Estimation of the antioxidant activities of flavonoids from their oxidation potentials. ANAL SCI 2001; 17:599-604. [PMID: 11708139 DOI: 10.2116/analsci.17.599] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A simple electrochemical method for estimating the antioxidant activity (AA) of flavonoids has been developed. The proposed method is based on a measurement of the half-wave potential (E1/2) of the first oxidation wave of flavonoids by using flow-through column electrolysis. At the same time, the lipid peroxidation (LPO) inhibiting effects of these flavonoids were determined. A quantitative structure-activity relationship was obtained to describe the AA of flavonoids: IC50(microM) = 30.36 + 151.50 E1/2 (V) -12.63 log P (r = 0.852), where IC50 represents the concentration for 50% inhibition of LPO, and P represents the octanol/water partition coefficient. This method is expected to be useful for the quick screening of flavonoid antioxidants, and evaluating the AA of flavonoid-containing foods and medicinal plants.
Collapse
|
|
24 |
194 |
23
|
Abstract
Air-abrasion seems to be mandatory for durable resin bonding to zirconia ceramic. Air-abrasion might compromise the ceramic strength by creating surface defects. Therefore, omitting air-abrasion or using reduced air-pressure seems desirable. We tested the null hypotheses that omitting air-abrasion or using reduced air-pressure does not affect zirconia ceramic bonding independent of using primers. Three mechanical surface conditions (polished, air-abraded at 0.05 or at 0.25 MPa) and 4 priming conditions were tested. After different surface conditioning, zirconia ceramic specimens were bonded, and tensile bond strengths were evaluated after water storage for 3 days or for 150 days with additional 37,500 thermal cyclings for artificial aging. Omitting air-abrasion resulted in debonding during artificial aging independent of using primers. The combination of air-abrasion and priming improved long-term resin bonding to zirconia ceramic significantly. With low-pressure air-abrasion, surface roughness was reduced without affecting long-term bond strength, provided that adequate adhesive primers were applied.
Collapse
|
|
16 |
193 |
24
|
Aung MM, Griffin G, Huffman JW, Wu M, Keel C, Yang B, Showalter VM, Abood ME, Martin BR. Influence of the N-1 alkyl chain length of cannabimimetic indoles upon CB(1) and CB(2) receptor binding. Drug Alcohol Depend 2000; 60:133-40. [PMID: 10940540 DOI: 10.1016/s0376-8716(99)00152-0] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The N-1 alkyl side chain of the aminoalkylindole analogues (AAI) has been implicated as one of a three-point interaction with the cannabinoid CB(1) receptor. In this study, the morpholinoethyl of WIN 55,212-2 was replaced with carbon chains of varying lengths ranging from a methyl to heptyl group. Additional groups were added to the naphthoyl and the C2 positions of the molecule. These structural changes revealed that high affinity binding to the CB(1) and CB(2) receptors requires an alkyl chain length of at least three carbons with optimum binding to both receptors occurring with a five carbon side chain. An alkyl chain of 3-6 carbons is sufficient for high affinity binding; however, extension of the chain to a heptyl group results in a dramatic decrease in binding at both receptors. The unique structure of the cannabimimetic indoles provides a useful tool to define the ligand-receptor interaction at both cannabinoid receptors and to refine proposed pharmacophore models.
Collapse
|
|
25 |
192 |
25
|
Ibraghimov-Beskrovnaya O, Milatovich A, Ozcelik T, Yang B, Koepnick K, Francke U, Campbell KP. Human dystroglycan: skeletal muscle cDNA, genomic structure, origin of tissue specific isoforms and chromosomal localization. Hum Mol Genet 1993; 2:1651-7. [PMID: 8268918 DOI: 10.1093/hmg/2.10.1651] [Citation(s) in RCA: 189] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Dystroglycan is a novel laminin binding component of the dystrophin-glycoprotein complex which provides a linkage between the subsarcolemmal cytoskeleton and the extracellular matrix. Here we report the cDNA and genomic structure of human dystroglycan. The human dystroglycan is encoded by a single gene (DAG1) mapped to chromosome 3 band p21. The coding sequence is organized into two exons, separated by a large intron. The predicted amino acid sequence of human and rabbit dystroglycan are 93% identical with predicted glycosylation sites being conserved. Human dystroglycan is expressed in a variety of fetal and adult tissues. Our data suggest that muscle and non-muscle isoforms of dystroglycan differ by carbohydrate moieties but not protein sequence. Therefore, we hypothesize that variable glycosylation of the conserved protein core might modulate laminin binding. The relationship of dystroglycan to human diseases is discussed.
Collapse
|
|
32 |
189 |