1
|
Kreutz B, Yau DM, Nance M, Tanabe S, Tesmer JJG, Kozasa T. A new approach to producing functional G alpha subunits yields the activated and deactivated structures of G alpha(12/13) proteins. Biochemistry 2006; 45:167-74. [PMID: 16388592 PMCID: PMC2688741 DOI: 10.1021/bi051729t] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The oncogenic G(12/13) subfamily of heterotrimeric G proteins transduces extracellular signals that regulate the actin cytoskeleton, cell cycle progression, and gene transcription. Previously, structural analyses of fully functional G alpha(12/13) subunits have been hindered by insufficient amounts of homogeneous, functional protein. Herein, we report that substitution of the N-terminal helix of G alpha(i1) for the corresponding region of G alpha12 or G alpha13 generated soluble chimeric subunits (G alpha(i/12) and G alpha(i/13)) that could be purified in sufficient amounts for crystallographic studies. Each chimera bound guanine nucleotides, G betagamma subunits, and effector proteins and exhibited GAP responses to p115RhoGEF and leukemia-associated RhoGEF. Like their wild-type counterparts, G alpha(i/13), but not G alpha(i/12), stimulated the activity of p115RhoGEF. Crystal structures of the G alpha(i/12) x GDP x AlF4(-) and G alpha(i/13) x GDP complexes were determined using diffraction data extending to 2.9 and 2.0 A, respectively. These structures reveal not only the native structural features of G alpha12 and G alpha13 subunits, which are expected to be important for their interactions with GPCRs and effectors such as G alpha-regulated RhoGEFs, but also novel conformational changes that are likely coupled to GTP hydrolysis in the G alpha(12/13) class of heterotrimeric G proteins.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
56 |
2
|
Nance MR, Kreutz B, Tesmer VM, Sterne-Marr R, Kozasa T, Tesmer JJG. Structural and functional analysis of the regulator of G protein signaling 2-gαq complex. Structure 2013; 21:438-48. [PMID: 23434405 DOI: 10.1016/j.str.2012.12.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/20/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
The heterotrimeric G protein Gαq is a key regulator of blood pressure, and excess Gαq signaling leads to hypertension. A specific inhibitor of Gαq is the GTPase activating protein (GAP) known as regulator of G protein signaling 2 (RGS2). The molecular basis for how Gαq/11 subunits serve as substrates for RGS proteins and how RGS2 mandates its selectivity for Gαq is poorly understood. In crystal structures of the RGS2-Gαq complex, RGS2 docks to Gαq in a different orientation from that observed in RGS-Gαi/o complexes. Despite its unique pose, RGS2 maintains canonical interactions with the switch regions of Gαq in part because its α6 helix adopts a distinct conformation. We show that RGS2 forms extensive interactions with the α-helical domain of Gαq that contribute to binding affinity and GAP potency. RGS subfamilies that do not serve as GAPs for Gαq are unlikely to form analogous stabilizing interactions.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
53 |
3
|
Komarova YA, Huang F, Geyer M, Daneshjou N, Garcia A, Idalino L, Kreutz B, Mehta D, Malik AB. VE-cadherin signaling induces EB3 phosphorylation to suppress microtubule growth and assemble adherens junctions. Mol Cell 2012; 48:914-25. [PMID: 23159740 DOI: 10.1016/j.molcel.2012.10.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/23/2012] [Accepted: 10/09/2012] [Indexed: 11/28/2022]
Abstract
Vascular endothelial (VE)-cadherin homophilic adhesion controls endothelial barrier permeability through assembly of adherens junctions (AJs). We observed that loss of VE-cadherin-mediated adhesion induced the activation of Src and phospholipase C (PLC)γ2, which mediated Ca(2+) release from endoplasmic reticulum (ER) stores, resulting in activation of calcineurin (CaN), a Ca(2+)-dependent phosphatase. Downregulation of CaN activity induced phosphorylation of serine 162 in end binding (EB) protein 3. This phospho-switch was required to destabilize the EB3 dimer, suppress microtubule (MT) growth, and assemble AJs. The phospho-defective S162A EB3 mutant, in contrast, induced MT growth in confluent endothelial monolayers and disassembled AJs. Thus, VE-cadherin outside-in signaling regulates cytosolic Ca(2+) homeostasis and EB3 phosphorylation, which are required for assembly of AJs. These results identify a pivotal function of VE-cadherin homophilic interaction in modulating endothelial barrier through the tuning of MT dynamics.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
43 |
4
|
Tanabe S, Kreutz B, Suzuki N, Kozasa T. Regulation of RGS-RhoGEFs by Galpha12 and Galpha13 proteins. Methods Enzymol 2005; 390:285-94. [PMID: 15488184 DOI: 10.1016/s0076-6879(04)90018-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Three mammalian Rho guanine nucleotide exchange factors (RhoGEFs), leukemia-associated RhoGEF (LARG), p115RhoGEF, and PDZ-RhoGEF, contain regulator of G-protein signaling (RGS) domains within their amino-terminal regions. These RhoGEFs link signals from heterotrimeric G12/13 protein-coupled receptors to Rho GTPase activation, leading to various cellular responses, such as actin reorganization and gene expression. The activity of these RhoGEFs is regulated by Galpha12/13 through their RGS domains. Because RhoGEFs stimulate guanine nucleotide exchange by Rho GTPases, RhoGEF activation can be measured by monitoring GTP binding to or GDP dissociation from Rho GTPases. This article describes methods used to perform reconstitution assays to measure the activity of RhoGEFs regulated by Galpha12/13.
Collapse
|
Journal Article |
20 |
36 |
5
|
Kreutz B, Götz F. Construction of Staphylococcus plasmid vector pCA43 conferring resistance to chloramphenicol, arsenate, arsenite and antimony. Gene X 1984; 31:301-4. [PMID: 6098534 DOI: 10.1016/0378-1119(84)90226-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The arsenate (Asa), arsenite (Asi) and antimony (III) (Amo) resistance region of the Staphylococcus xylosus 29.5-kb plasmid pSX267 has been recloned in S. carnosus using the chloramphenicol resistance (CmR) plasmid pC194. In several deletion steps we constructed a 5.9-kb plasmid, pCA43, which confers resistance to Cm, Asa, Asi and Amo salts. pCA43 possesses unique sites for the restriction endonucleases PvuII, StuI, BamHI, AvaII, HindIII, PstI, XbaI and BclI. Insertional inactivation was achieved with StuI (affecting Cm resistance), BamHI (affecting only Asa resistance), AvaII, HindIII and PstI (affecting Asa, Asi and Amo resistances). Plasmid stability was tested and found to be high after DNA insertion into the BamHI or HindIII sites.
Collapse
|
|
41 |
32 |
6
|
Johnson EN, Seasholtz TM, Waheed AA, Kreutz B, Suzuki N, Kozasa T, Jones TLZ, Brown JH, Druey KM. RGS16 inhibits signalling through the G alpha 13-Rho axis. Nat Cell Biol 2003; 5:1095-103. [PMID: 14634662 DOI: 10.1038/ncb1065] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Accepted: 09/30/2003] [Indexed: 11/09/2022]
Abstract
G alpha 13 stimulates the guanine nucleotide exchange factors (GEFs) for Rho, such as p115Rho-GEF. Activated Rho induces numerous cellular responses, including actin polymerization, serum response element (SRE)-dependent gene transcription and transformation. p115Rho-GEF contains a Regulator of G protein Signalling domain (RGS box) that confers GTPase activating protein (GAP) activity towards G alpha 12 and G alpha 13 (ref. 3). In contrast, classical RGS proteins (such as RGS16 and RGS4) exhibit RGS domain-dependent GAP activity on G alpha i and G alpha q, but not G alpha 12 or G alpha 13 (ref 4). Here, we show that RGS16 inhibits G alpha 13-mediated, RhoA-dependent reversal of stellation and SRE activation. The RGS16 amino terminus binds G alpha 13 directly, resulting in translocation of G alpha 13 to detergent-resistant membranes (DRMs) and reduced p115Rho-GEF binding. RGS4 does not bind G alpha 13 or attenuate G alpha 13-dependent responses, and neither RGS16 nor RGS4 affects G alpha 12-mediated signalling. These results elucidate a new mechanism whereby a classical RGS protein regulates G alpha 13-mediated signal transduction independently of the RGS box.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
32 |
7
|
Kreutz B, Hajicek N, Yau DM, Nakamura S, Kozasa T. Distinct regions of Galpha13 participate in its regulatory interactions with RGS homology domain-containing RhoGEFs. Cell Signal 2007; 19:1681-9. [PMID: 17449226 DOI: 10.1016/j.cellsig.2007.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 03/06/2007] [Accepted: 03/07/2007] [Indexed: 11/26/2022]
Abstract
Galpha12 and Galpha13 transduce signals from G protein-coupled receptors to RhoA through RhoGEFs containing an RGS homology (RH) domain, such as p115 RhoGEF or leukemia-associated RhoGEF (LARG). The RH domain of p115 RhoGEF or LARG binds with high affinity to active forms of Galpha12 and Galpha13 and confers specific GTPase-activating protein (GAP) activity, with faster GAP responses detected in Galpha13 than in Galpha12. At the same time, Galpha13, but not Galpha12, directly stimulates the RhoGEF activity of p115 RhoGEF or nonphosphorylated LARG in reconstitution assays. In order to better understand the molecular mechanism by which Galpha13 regulates RhoGEF activity through interaction with RH-RhoGEFs, we sought to identify the region(s) of Galpha13 involved in either the GAP response or RhoGEF activation. For this purpose, we generated chimeras between Galpha12 and Galpha13 subunits and characterized their biochemical activities. In both cell-based and reconstitution assays of RhoA activation, we found that replacing the carboxyl-terminal region of Galpha12 (residues 267-379) with that of Galpha13 (residues 264-377) conferred gain-of-function to the resulting chimeric subunit, Galpha12C13. The inverse chimera, Galpha13C12, exhibited basal RhoA activation which was similar to Galpha12. In contrast to GEF assays, GAP assays showed that Galpha12C13 or Galpha13C12 chimeras responded to the GAP activity of p115 RhoGEF or LARG in a manner similar to Galpha12 or Galpha13, respectively. We conclude from these results that the carboxyl-terminal region of Galpha13 (residues 264-377) is essential for its RhoGEF stimulating activity, whereas the amino-terminal alpha helical and switch regions of Galpha12 and Galpha13 are responsible for their differential GAP responses to the RH domain.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
26 |
8
|
Shen B, Estevez B, Xu Z, Kreutz B, Karginov A, Bai Y, Qian F, Norifumi U, Mosher D, Du X. The interaction of Gα13 with integrin β1 mediates cell migration by dynamic regulation of RhoA. Mol Biol Cell 2015; 26:3658-70. [PMID: 26310447 PMCID: PMC4603935 DOI: 10.1091/mbc.e15-05-0274] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/11/2015] [Indexed: 12/13/2022] Open
Abstract
Heterotrimeric G protein Gα13 is known to transmit G protein-coupled receptor (GPCR) signals leading to activation of RhoA and plays a role in cell migration. The mechanism underlying the role of Gα13 in cell migration, however, remains unclear. Recently we found that Gα13 interacts with the cytoplasmic domain of integrin β3 subunits in platelets via a conserved ExE motif. Here we show that a similar direct interaction between Gα13 and the cytoplasmic domain of the integrin β1 subunit plays a critical role in β1-dependent cell migration. Point mutation of either glutamic acid in the Gα13-binding (767)EKE motif in β1 or treatment with a peptide derived from the Gα13-binding sequence of β1 abolished Gα13-β1 interaction and inhibited β1 integrin-dependent cell spreading and migration. We further show that the Gα13-β1 interaction mediates β1 integrin-dependent Src activation and transient RhoA inhibition during initial cell adhesion, which is in contrast to the role of Gα13 in mediating GPCR-dependent RhoA activation. These data indicate that Gα13 plays dynamic roles in both stimulating RhoA via a GPCR pathway and inhibiting RhoA via an integrin signaling pathway. This dynamic regulation of RhoA activity is critical for cell migration on β1 integrin ligands.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
23 |
9
|
Nakamura S, Kreutz B, Tanabe S, Suzuki N, Kozasa T. Critical role of lysine 204 in switch I region of Galpha13 for regulation of p115RhoGEF and leukemia-associated RhoGEF. Mol Pharmacol 2004; 66:1029-1034. [PMID: 15258251 DOI: 10.1124/mol.104.002287] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Heterotrimeric G proteins of the G12 family regulate the Rho GTPase through RhoGEFs that contain an amino-terminal regulator of G protein signaling (RGS) domain (RGS-RhoGEFs). Direct regulation of the activity of RGS-RhoGEFs p115 or leukemia-associated RhoGEF (LARG) by Galpha13 has previously been demonstrated. However, the precise biochemical mechanism by which Galpha13 stimulates the RhoGEF activity of these proteins has not yet been well understood. Based on the crystal structure of Galphai1 in complex with RGS4, we mutated the Galpha13 residue lysine 204 to alanine (Galpha13K204A) and characterized the effect of this mutation in its regulation of RGS-RhoGEFs p115 or LARG. Compared with wild-type Galpha13, Galpha13K204A induced much less serum-response factor activation when expressed in HeLa cells. Recombinant Galpha13K204A exhibits normal function in terms of nucleotide binding, basal GTP hydrolysis, and formation of heterotrimer with betagamma. We found that lysine 204 of Galpha13 is important for interaction with the RGS domain of p115 or LARG and for the GTPase-activating protein activity of these proteins. In addition, the K204A mutation of Galpha13 impaired its regulation of the RhoGEF activity of p115 or LARG. We conclude that lysine 204 of Galpha13 is important for interaction with RGS-RhoGEFs and is critically involved in the regulation of their activity.
Collapse
|
|
21 |
16 |
10
|
Sandbo N, Qin Y, Taurin S, Hogarth DK, Kreutz B, Dulin NO. Regulation of serum response factor-dependent gene expression by proteasome inhibitors. Mol Pharmacol 2005; 67:789-97. [PMID: 15550677 DOI: 10.1124/mol.104.006874] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serum response factor (SRF) is activated by contractile and hypertrophic agonists, such as endothelin-1 (ET1) to stimulate expression of cytoskeletal proteins in vascular smooth muscle cells (VSMCs). While studying the regulation of smooth muscle alpha-actin (SMA) expression at the level of protein stability, we discovered that inhibition of proteasome-dependent protein degradation by N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG132) or lactacystin (LC) did not enhance the levels of SMA, but, unexpectedly, attenuated SMA expression in response to ET1, without affecting the viability of VSMCs. Down-regulation of SMA protein by MG132 or LC occurred at the level of SMA transcription and via the inhibition of SRF activity. By contrast, MG132 and LC potentiated the activity of activator protein-1 transcription factor. Regulation of SRF by MG132 was not related to inhibition of nuclear factor-kappaB, an established target of proteasome inhibitors, and was not mediated by protein kinase A, a powerful regulator of SRF activity. Signaling studies indicate that inhibition of ET1-induced SRF activity by MG132 occurs at the level downstream of heterotrimeric G proteins Gq/11 and G13, of small GTPase RhoA, and of actin dynamics but at the level of SRF-DNA binding. MG132 treatment did not result in ubiquitination or accumulation of SRF. By contrast, the levels of c-Jun were rapidly increased upon incubation of cells with MG132, and ectopic overexpression of c-Jun mimicked the effect of MG132 on SRF activity. Together, these data suggest that inhibition of proteasome results in down-regulation of SMA expression via up-regulation of c-Jun and repression of SRF activity at the level of DNA binding.
Collapse
|
|
20 |
16 |
11
|
Gan X, Wang C, Patel M, Kreutz B, Zhou M, Kozasa T, Wu D. Different Raf protein kinases mediate different signaling pathways to stimulate E3 ligase RFFL gene expression in cell migration regulation. J Biol Chem 2013; 288:33978-33984. [PMID: 24114843 DOI: 10.1074/jbc.m113.477406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously characterized a Gα12-specific signaling pathway that stimulates the transcription of the E3 ligase RFFL via the protein kinase ARAF and ERK. This pathway leads to persistent PKC activation and is important for sustaining fibroblast migration. However, questions remain regarding how Gα12 specifically activates ARAF, which transcription factor is involved in Gα12-mediated RFFL expression, and whether RFFL is important for cell migration stimulated by other signaling mechanisms that can activate ERK. In this study, we show that replacement of the Gα12 residue Arg-264 with Gln, which is the corresponding Gα13 residue, abrogates the ability of Gα12 to interact with or activate ARAF. We also show that Gα12 can no longer interact with and activate an ARAF mutant with its C-terminal sequence downstream of the kinase domain being replaced with the corresponding CRAF sequence. These results explain why Gα12, but not Gα13, specifically activates ARAF but not CRAF. Together with our finding that recombinant Gα12 is sufficient for stimulating the kinase activity of ARAF, this study reveals an ARAF activation mechanism that is different from that of CRAF. In addition, we show that this Gα12-ARAF-ERK pathway stimulates RFFL transcription through the transcription factor c-Myc. We further demonstrate that EGF, which signals through CRAF, and an activated BRAF mutant also activate PKC and stimulate cell migration through up-regulating RFFL expression. Thus, RFFL-mediated PKC activation has a broad significance in cell migration regulation.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
12 |
12
|
Hajicek N, Kreutz B, Yau D, Nakamura S, Kozasa T. Localization of the RhoGEF Effector Activating Surface of Gα
13
to its Carboxy Terminus. FASEB J 2006. [DOI: 10.1096/fasebj.20.4.a257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
19 |
|
13
|
Shen B, Estevez B, Kreutz B, Karginov A, Mosher D, Bai Y, Qian F, Norifumi U, Du X. Abstract 397: The Interaction of Integrin beta1 to Galpha13 Mediates RhoA Inhibition and Cell Migration. Arterioscler Thromb Vasc Biol 2015. [DOI: 10.1161/atvb.35.suppl_1.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
Integrin-dependent cell migration is critically important in many physiological and pathological processes such as angiogenesis, inflammation, wound healing, and atherosclerosis. However, the underlying signaling mechanisms remain unclear.
Hypothesis:
We have recently shown that Ga13 directly interacts with the cytoplasmic domain of integrin b3 subunits in platelets and is a proximal mechanism of integrin outside-in signaling. We further showed that the binding site for Ga13 requires a conserved ExE motif also present in b1 integrins important in adhesion and migration of nearly all vascular cells. We hypothesize that the direct binding of Ga13 to the ExE motif in integrin b1 plays an important role in mediates b1-dependent cell migration.
Results:
To specifically study the role of b1 integrin in cell migration, we compared cell migration of GD25 cells that are deficient in integrin b1 subunit with cells that re-constitute b1 expression using a scratch wound healing assay and a transwell migration assay. Cell migration was abolished in b1-deficient cells, indicating a critical role for b1 in these assays. To study whether Ga13-integrin interaction is important in cell migration, we constructed b1 mutants that were deficient in binding to Ga13 by mutating the critically important glutamic acid residues to alanine. Co-immunoprecipitation experiments indicate the ExE to alanine mutants abolished Ga13-integrin interaction. The b1-dependent cell migration is dramatically inhibited in the ExE to alanine mutant b1-expressing cells. Importantly, a small peptide based on the ExE motif similarly inhibited cell migration. Furthermore, Ga13 binding-deficient b1 mutant cells showed diminished b1 integrin-dependent Src activation and accelerated RhoA activation during cell spreading on fibronectin, suggesting that the integrin-dependent transient inhibition of RhoA was abolished.
Conclusions:
Ga13 mediates integrin-dependent cell migration by direct binding to the ExE motif of integrin b1 and mediating c-Src activation and RhoA inhibition.
Collapse
|
|
10 |
|
14
|
Israeli E, Okura H, Kreutz B, Piktel R, Hadji A, Tu B, Lin Z, Hawksworth DJ, Tieman BC, Strobel CJ, Ziemann R, Leary TP, Muerhoff AS, Hemken PM. Development of a new automated IL-6 immunoassay. J Immunol Methods 2022; 504:113262. [PMID: 35341761 DOI: 10.1016/j.jim.2022.113262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Quantitative detection of interleukin-6 (IL-6) in serum and plasma can help monitor immune responses and the development of acute inflammation to guide patient management. We developed an IL-6 immunoassay for use with the automated ARCHITECT system for detecting an increase in the inflammatory response. METHODS Immunized mouse sera were tested and selected B-cells were harvested for fusion with myeloma cells. A panel of monoclonal antibodies were produced, from which capture and detection monoclonal antibodies for the prototype IL-6 immunoassay were selected and screened on the ARCHITECT instrument. The antibody pair that most effectively captured and detected IL-6 was selected to develop a prototype IL-6 immunoassay. Calibrator and panel preparations using an internal recombinant IL-6 standard were compared to serum panels prepared with the IL-6 International Standard 89/548. Assay specificity and spike recovery were determined, and assay sensitivity was compared with the Roche EUA Elecsys IL-6 assay run on the cobas analyzer. RESULTS Twenty-one antibodies in 441 antibody pairs were screened. The prototype IL-6 assay showed high sensitivity with an estimated limit of detection of 0.317 pg/mL and limit of quantitation of <1.27. Spike recovery was 90%-110% in serum and plasma. The internal recombinant human IL-6 calibrator showed excellent stability for 63 days at 2-8 °C. The prototype IL-6 immunoassay was specific for IL-6, exhibited no cross reactivity to related cytokines and interleukins, and was 10-fold more sensitive than the Elecsys IL-6 assay. CONCLUSIONS The prototype ARCHITECT IL-6 automated immunoassay is a reliable and robust method for the quantitative determination of IL-6 in human serum and plasma.
Collapse
|
|
3 |
|
15
|
Geyer M, Huang F, Daneshjou N, Garcia A, Kreutz B, Mehta D, Malik AB, Komarova Y. VE‐cadherin Signaling Induces EB3 Phosphorylation to Suppress Microtubule Growth and Stabilize Adherens Junctions. FASEB J 2012. [DOI: 10.1096/fasebj.26.1_supplement.lb677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
13 |
|
16
|
Kawano T, Kreutz B, Yau DM, Kozasa T. Activation of PLCβ by Gαi1/Gαq chimeras expressed by Sf9‐bacurovirus system. FASEB J 2006. [DOI: 10.1096/fasebj.20.5.a918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
19 |
|
17
|
Kreutz B, Chanthavong D, Santarsiero B, Kozasa T. The 2.7‐Å crystal structure of Gα12 in complex with a regulator of G protein signaling homology (RH) domain (843.1). FASEB J 2014. [DOI: 10.1096/fasebj.28.1_supplement.843.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
11 |
|