1
|
Ho CY, López B, Coelho-Filho OR, Lakdawala NK, Cirino AL, Jarolim P, Kwong R, González A, Colan SD, Seidman JG, Díez J, Seidman CE. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med 2010; 363:552-63. [PMID: 20818890 PMCID: PMC3049917 DOI: 10.1056/nejmoa1002659] [Citation(s) in RCA: 506] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Myocardial fibrosis is a hallmark of hypertrophic cardiomyopathy and a proposed substrate for arrhythmias and heart failure. In animal models, profibrotic genetic pathways are activated early, before hypertrophic remodeling. Data showing early profibrotic responses to sarcomere-gene mutations in patients with hypertrophic cardiomyopathy are lacking. METHODS We used echocardiography, cardiac magnetic resonance imaging (MRI), and serum biomarkers of collagen metabolism, hemodynamic stress, and myocardial injury to evaluate subjects with hypertrophic cardiomyopathy and a confirmed genotype. RESULTS The study involved 38 subjects with pathogenic sarcomere mutations and overt hypertrophic cardiomyopathy, 39 subjects with mutations but no left ventricular hypertrophy, and 30 controls who did not have mutations. Levels of serum C-terminal propeptide of type I procollagen (PICP) were significantly higher in mutation carriers without left ventricular hypertrophy and in subjects with overt hypertrophic cardiomyopathy than in controls (31% and 69% higher, respectively; P<0.001). The ratio of PICP to C-terminal telopeptide of type I collagen was increased only in subjects with overt hypertrophic cardiomyopathy, suggesting that collagen synthesis exceeds degradation. Cardiac MRI studies showed late gadolinium enhancement, indicating myocardial fibrosis, in 71% of subjects with overt hypertrophic cardiomyopathy but in none of the mutation carriers without left ventricular hypertrophy. CONCLUSIONS Elevated levels of serum PICP indicated increased myocardial collagen synthesis in sarcomere-mutation carriers without overt disease. This profibrotic state preceded the development of left ventricular hypertrophy or fibrosis visible on MRI. (Funded by the National Institutes of Health and others.)
Collapse
|
Research Support, N.I.H., Extramural |
15 |
506 |
2
|
Díez J, Querejeta R, López B, González A, Larman M, Martínez Ubago JL. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation 2002; 105:2512-7. [PMID: 12034658 DOI: 10.1161/01.cir.0000017264.66561.3d] [Citation(s) in RCA: 476] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study was designed to investigate whether myocardial collagen content is related to myocardial stiffness in patients with essential hypertension. METHODS AND RESULTS The study was performed in 34 patients with hypertensive heart disease. Nineteen of these patients were also evaluated after 12 months of treatment with losartan. Transvenous endomyocardial biopsies of the interventricular septum were performed to quantify collagen volume fraction (CVF). Left ventricular (LV) chamber stiffness (K(LV)) was determined from the deceleration time of the early mitral filling wave as measured by Doppler echocardiography. Histological analysis at baseline revealed the presence of 2 subgroups of patients: 8 with severe fibrosis and 26 with nonsevere fibrosis. Values of CVF and K(LV) were significantly higher in the 2 subgroups of hypertensives than in normotensives. In addition, compared with patients with nonsevere fibrosis, patients with severe fibrosis exhibited significantly increased values of CVF and K(LV). After treatment, CVF and K(LV) decreased significantly in patients with severe fibrosis (n=7). None of these parameters changed significantly after treatment in patients with nonsevere fibrosis (n=12). CVF was directly correlated with K(LV) (r=0.415, P<0.02) in all hypertensives. CONCLUSIONS These findings show a strong association between myocardial collagen content and LV chamber stiffness in patients with essential hypertension. Our results also suggest that the ability of losartan to induce regression of severe myocardial fibrosis is associated with diminution of myocardial stiffness in hypertensive patients.
Collapse
|
Clinical Trial |
23 |
476 |
3
|
López B, Aguilar D, Orozco H, Burger M, Espitia C, Ritacco V, Barrera L, Kremer K, Hernandez-Pando R, Huygen K, van Soolingen D. A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin Exp Immunol 2003; 133:30-7. [PMID: 12823275 PMCID: PMC1808750 DOI: 10.1046/j.1365-2249.2003.02171.x] [Citation(s) in RCA: 337] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the last decade, an unprecedented genetic diversity has been disclosed among Mycobacterium tuberculosis strains found worldwide. However, well-conserved genotypes seem to prevail in areas with high incidence of tuberculosis. As this may be related to selective advantages, such as advanced mechanisms to circumvent [M. bovis Bacille Calmette-Guerin (BCG)-induced] host defence mechanisms, we investigated the influence of strain diversity on the course of experimental disease. Twelve M. tuberculosis strains, representing four major genotype families found worldwide today, and the laboratory strain H37Rv were each used to infect BALB/c mice by direct intratracheal injection. Compared with H37Rv, infections with Beijng strains were characterized by extensive pneumonia, early but ephemeral tumour necrosis factor-alpha (TNF-alpha) and inducible isoform of nitric oxide synthetase (iNOS) expression, and significantly higher earlier mortality. Conversely, Canetti strains induced limited pneumonia, sustained TNF-alpha and iNOS expression in lungs, and almost 100% survival. Strains of the Somali and the Haarlem genotype families displayed less homogeneous, intermediate rates of survival. Previous BCG vaccination protected less effectively against infection with Beijing strains than against the H37Rv strain. In conclusion, genetically different M. tuberculosis strains evoked markedly different immunopathological events. Bacteria with the Beijing genotype, highly prevalent in Asia and the former USSR, elicited a non-protective immune response in mice and were the most virulent. Future immunological research, particularly on candidate vaccines, should include a broad spectrum of M. tuberculosis genotypes rather than a few laboratory strains.
Collapse
|
research-article |
22 |
337 |
4
|
Querejeta R, López B, González A, Sánchez E, Larman M, Martínez Ubago JL, Díez J. Increased collagen type I synthesis in patients with heart failure of hypertensive origin: relation to myocardial fibrosis. Circulation 2004; 110:1263-8. [PMID: 15313958 DOI: 10.1161/01.cir.0000140973.60992.9a] [Citation(s) in RCA: 331] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND We investigated whether increased collagen type I synthesis and deposition contribute to enhancement of myocardial fibrosis and deterioration of cardiac function in patients with hypertensive heart disease (HHD). METHODS AND RESULTS We studied 65 hypertensives with left ventricular hypertrophy subdivided into 2 groups: 34 patients without heart failure (HF) and 31 patients with HF. Transvenous endomyocardial biopsies of the interventricular septum were performed to quantify the amount of fibrotic tissue and the extent of collagen type I deposition. The carboxy-terminal propeptide of procollagen type I (PIP), an index of collagen type I synthesis, was measured by radioimmunoassay in serum samples from the coronary sinus and the antecubital vein. Compared with normotensives, the amount of collagen tissue, the extent of collagen type I deposition, and coronary and peripheral PIP were increased (P<0.01) in the 2 groups of hypertensives. These parameters were also increased (P<0.01) in HF hypertensives compared with non-HF hypertensives. Coronary PIP was higher (P<0.01) than peripheral PIP in hypertensives but not in normotensives. The amount of collagen tissue was inversely correlated with the ejection fraction and directly correlated with both coronary and peripheral PIP in all hypertensives. CONCLUSIONS These findings suggest that an excess of cardiac collagen type I synthesis and deposition may be involved in the enhancement of myocardial fibrosis that accompanies the development of HF in HHD. In addition, our data show that the heart secretes PIP via the coronary sinus into the peripheral circulation in patients with HHD. Thus, PIP determined in peripheral blood can be a useful marker of myocardial fibrosis in these patients.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
331 |
5
|
Treibel TA, Kozor R, Schofield R, Benedetti G, Fontana M, Bhuva AN, Sheikh A, López B, González A, Manisty C, Lloyd G, Kellman P, Díez J, Moon JC. Reverse Myocardial Remodeling Following Valve Replacement in Patients With Aortic Stenosis. J Am Coll Cardiol 2018; 71:860-871. [PMID: 29471937 PMCID: PMC5821681 DOI: 10.1016/j.jacc.2017.12.035] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Left ventricular (LV) hypertrophy, a key process in human cardiac disease, results from cellular (hypertrophy) and extracellular matrix expansion (interstitial fibrosis). OBJECTIVES This study sought to investigate whether human myocardial interstitial fibrosis in aortic stenosis (AS) is plastic and can regress. METHODS Patients with symptomatic, severe AS (n = 181; aortic valve area index 0.4 ± 0.1 cm2/m2) were assessed pre-aortic valve replacement (AVR) by echocardiography (AS severity, diastology), cardiovascular magnetic resonance (CMR) (for volumes, function, and focal or diffuse fibrosis), biomarkers (N-terminal pro-B-type natriuretic peptide and high-sensitivity troponin T), and the 6-min walk test. CMR was used to measure the extracellular volume fraction (ECV), thereby deriving matrix volume (LV mass × ECV) and cell volume (LV mass × [1 - ECV]). Biopsy excluded occult bystander disease. Assessment was repeated at 1 year post-AVR. RESULTS At 1 year post-AVR in 116 pacemaker-free survivors (age 70 ± 10 years; 54% male), mean valve gradient had improved (48 ± 16 mm Hg to 12 ± 6 mm Hg; p < 0.001), and indexed LV mass had regressed by 19% (88 ± 26 g/m2 to 71 ± 19 g/m2; p < 0.001). Focal fibrosis by CMR late gadolinium enhancement did not change, but ECV increased (28.2 ± 2.9% to 29.9 ± 4.0%; p < 0.001): this was the result of a 16% reduction in matrix volume (25 ± 9 ml/m2 to 21 ± 7 ml/m2; p < 0.001) but a proportionally greater 22% reduction in cell volume (64 ± 18 ml/m2 to 50 ± 13 ml/m2; p < 0.001). These changes were accompanied by improvement in diastolic function, N-terminal pro-B-type natriuretic peptide, 6-min walk test results, and New York Heart Association functional class. CONCLUSIONS Post-AVR, focal fibrosis does not resolve, but diffuse fibrosis and myocardial cellular hypertrophy regress. Regression is accompanied by structural and functional improvements suggesting that human diffuse fibrosis is plastic, measurable by CMR and a potential therapeutic target. (Regression of Myocardial Fibrosis After Aortic Valve Replacement; NCT02174471).
Collapse
|
Observational Study |
7 |
268 |
6
|
Kuznetsova T, Herbots L, López B, Jin Y, Richart T, Thijs L, González A, Herregods MC, Fagard RH, Díez J, Staessen JA. Prevalence of left ventricular diastolic dysfunction in a general population. Circ Heart Fail 2009; 2:105-12. [PMID: 19808325 DOI: 10.1161/circheartfailure.108.822627] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Because the process of myocardial remodelling starts before the onset of symptoms, recent heart failure (HF) guidelines place special emphasis on the detection of subclinical left ventricular (LV) systolic and diastolic dysfunction and the timely identification of risk factors for HF. Our goal was to describe the prevalence and determinants (risk factors) of LV diastolic dysfunction in a general population and to compare the amino terminal probrain natriuretic peptide level across groups with and without diastolic dysfunction. METHODS AND RESULTS In a randomly recruited population sample (n=539; 50.5% women; mean age, 52.5 years), we measured early and late diastolic peak velocities of mitral inflow (E and A), pulmonary vein flow by pulsed-wave Doppler, and the mitral annular velocities (Ea and Aa) at 4 sites by tissue Doppler imaging. A healthy subsample of 239 subjects (mean age, 43.7 years) provided age-specific cutoff limits for normal E/A and E/Ea ratios and the differences in duration between the mitral A and the reverse pulmonary vein flows during atrial systole (DeltaAd-ARd). The number of subjects in diastolic dysfunction groups 1 (impaired relaxation), 2 (elevated LV end-diastolic filling pressure), and 3 (elevated E/Ea and abnormally low E/A) were 53 (9.8%), 76 (14.1%), and 18 (3.4%), respectively. We used Delta(Ad<ARd+10) to confirm possible elevation of LV filling pressures in group 2. Compared with subjects with normal diastolic function (n=392, 72.7%), group 1 (209 versus 251 pmol/L; P=0.015) and group 2 (209 versus 275 pmol/L; P=0.0003) but not group 3 (209 versus 224 pmol/L; P=0.65) had a significantly higher adjusted NT-probrain natriuretic peptide. Higher age, body mass index, heart rate, systolic blood pressure, serum insulin, and creatinine were significantly associated with a higher risk of LV diastolic dysfunction. CONCLUSIONS The overall prevalence of LV diastolic dysfunction in a random sample of a general population, as estimated from echocardiographic measurements, was as high as 27.3%.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
247 |
7
|
Querejeta R, Varo N, López B, Larman M, Artiñano E, Etayo JC, Martínez Ubago JL, Gutierrez-Stampa M, Emparanza JI, Gil MJ, Monreal I, Mindán JP, Díez J. Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation 2000; 101:1729-35. [PMID: 10758057 DOI: 10.1161/01.cir.101.14.1729] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND This study was designed to investigate whether the serum concentration of the carboxy-terminal propeptide of procollagen type I (PIP), a marker of collagen type I synthesis, is related to myocardial fibrosis in hypertensive patients. METHODS AND RESULTS The study was performed in 26 patients with essential hypertension in which ischemic cardiomyopathy was excluded after a complete medical workup. Right septal endomyocardial biopsies were performed in hypertensive patients to quantify collagen content. Collagen volume fraction (CVF) was determined on picrosirius red-stained sections with an automated image analysis system. The serum concentration of PIP was measured by specific radioimmunoassay. Compared with normotensives, both serum PIP and CVF were increased (P<0.001) in hypertensives. A direct correlation was found between CVF and serum PIP (r=0.471, P<0.02) in all hypertensives. Histological analysis revealed the presence of 2 subgroups of patients: 8 with severe fibrosis and 18 with nonsevere fibrosis. Serum PIP was higher (P<0.05) in patients with severe fibrosis than in patients with nonsevere fibrosis. Using receiver operating characteristic curves, we observed that a cutoff of 127 microg/L for PIP provided 78% specificity and 75% sensitivity for predicting severe fibrosis with a relative risk of 4.80 (95% CI, 1.19 to 19.30). CONCLUSIONS These results show a strong correlation between myocardial collagen content and the serum concentration of PIP in essential hypertension. Although preliminary, these findings suggest that the determination of PIP may be an easy and reliable method for the screening and diagnosis of severe myocardial fibrosis associated with arterial hypertension.
Collapse
|
|
25 |
244 |
8
|
Hamdani N, Franssen C, Lourenço A, Falcão-Pires I, Fontoura D, Leite S, Plettig L, López B, Ottenheijm CA, Becher PM, González A, Tschöpe C, Díez J, Linke WA, Leite-Moreira AF, Paulus WJ. Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model. Circ Heart Fail 2013; 6:1239-49. [PMID: 24014826 DOI: 10.1161/circheartfailure.113.000539] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Obesity and diabetes mellitus are important metabolic risk factors and frequent comorbidities in heart failure with preserved ejection fraction. They contribute to myocardial diastolic dysfunction (DD) through collagen deposition or titin modification. The relative importance for myocardial DD of collagen deposition and titin modification was investigated in obese, diabetic ZSF1 rats after heart failure with preserved ejection fraction development at 20 weeks. METHODS AND RESULTS Four groups of rats (Wistar-Kyoto, n=11; lean ZSF1, n=11; obese ZSF1, n=11, and obese ZSF1 with high-fat diet, n=11) were followed up for 20 weeks with repeat metabolic, renal, and echocardiographic evaluations and hemodynamically assessed at euthanization. Myocardial collagen, collagen cross-linking, titin isoforms, and phosphorylation were also determined. Resting tension (Fpassive)-sarcomere length relations were obtained in small muscle strips before and after KCl-KI treatment, which unanchors titin and allows contributions of titin and extracellular matrix to Fpassive to be discerned. At 20 weeks, the lean ZSF1 group was hypertensive, whereas both obese ZSF1 groups were hypertensive and diabetic. Only the obese ZSF1 groups had developed heart failure with preserved ejection fraction, which was evident from increased lung weight, preserved left ventricular ejection fraction, and left ventricular DD. The underlying myocardial DD was obvious from high muscle strip stiffness, which was largely (±80%) attributable to titin hypophosphorylation. The latter occurred specifically at the S3991 site of the elastic N2Bus segment and at the S12884 site of the PEVK segment. CONCLUSIONS Obese ZSF1 rats developed heart failure with preserved ejection fraction during a 20-week time span. Titin hypophosphorylation importantly contributed to the underlying myocardial DD.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
239 |
9
|
Abstract
Three experiments examined the role of attention in explaining dyadic (child-adult) and triadic (child-adult-object) joint attention difficulties in autism. Experiments 1 and 2 investigated children's ability to orient to an adult's attention bid and to follow the direction of a human or nonhuman cue. Experiment 3 tested ability to disengage and shift attention to objects. Results showed autism-specific difficulties at both dyadic and triadic levels. Children with autism were less responsive than developmentally delayed controls in orienting to attention bids and in following a human head-turn cue yet had no difficulty in shifting attention and were faster overall in orienting to targets. Results suggest a specific developmental delay in which children with autism rely on the presence of objects in the visual field to guide action. The relation between this problem and autistic children's difficulties with human communicative signals is discussed.
Collapse
|
|
25 |
199 |
10
|
López B, González A, Hermida N, Valencia F, de Teresa E, Díez J. Role of lysyl oxidase in myocardial fibrosis: from basic science to clinical aspects. Am J Physiol Heart Circ Physiol 2010; 299:H1-9. [PMID: 20472764 DOI: 10.1152/ajpheart.00335.2010] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because of its dynamic nature, the composition and structure of the myocardial collagen network can be reversibly modified to adapt to transient cardiac injuries. In response to persistent injury, however, irreversible, maladaptive changes of the network occur leading to fibrosis, mostly characterized by the excessive interstitial and perivascular deposition of collagen types I and III fibers. It is now becoming apparent that myocardial fibrosis directly contributes to adverse myocardial remodeling and the resulting alterations of left ventricular (LV) anatomy and function present in the major types of cardiac diseases. The enzyme lysyl oxidase (LOX) is a copper-dependent extracellular enzyme that catalyzes lysine-derived cross-links in collagen and elastin. LOX-mediated cross-linking of collagen types I and III fibrils leads to the formation of stiff collagen types I and III fibers and their subsequent tissue deposition. Evidence from experimental and clinical studies shows that the excess of LOX is associated with an increased collagen cross-linking and stiffness. It is thus conceivable that LOX upregulation and/or overactivity could underlie myocardial fibrosis and altered LV mechanics and contribute to the compromise of LV function in cardiac diseases. This review will consider the molecular aspects related to the regulation and actions of LOX, namely, in the context of collagen synthesis. In addition, it will address the information related to the role of myocardial LOX in heart failure and the potential benefits of controlling its expression and function.
Collapse
|
Review |
15 |
190 |
11
|
López B, González A, Ravassa S, Beaumont J, Moreno MU, San José G, Querejeta R, Díez J. Circulating Biomarkers of Myocardial Fibrosis: The Need for a Reappraisal. J Am Coll Cardiol 2015; 65:2449-56. [PMID: 26046739 DOI: 10.1016/j.jacc.2015.04.026] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/17/2015] [Accepted: 04/18/2015] [Indexed: 01/16/2023]
Abstract
Myocardial fibrosis impairs cardiac function, in addition to facilitating arrhythmias and ischemia, and thus influences the evolution and outcome of cardiac diseases. Its assessment is therefore clinically relevant. Although tissue biopsy is the gold standard for the diagnosis of myocardial fibrosis, a number of circulating biomarkers have been proposed for the noninvasive assessment of this lesion. A review of the published clinical data available on these biomarkers shows that most of them lack proof that they actually reflect the myocardial accumulation of fibrous tissue. In this "call to action" article, we propose that this absence of proof may lead to misinterpretations when considering the incremental value provided by the biomarkers with respect to traditional diagnostic tools in the clinical handling of patients. We thus argue that strategies are needed to more strictly validate whether a given circulating biomarker actually reflects histologically proven myocardial fibrosis before it is applied clinically.
Collapse
|
Review |
10 |
189 |
12
|
López B, Querejeta R, González A, Sánchez E, Larman M, Díez J. Effects of loop diuretics on myocardial fibrosis and collagen type I turnover in chronic heart failure. J Am Coll Cardiol 2004; 43:2028-35. [PMID: 15172408 DOI: 10.1016/j.jacc.2003.12.052] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 12/18/2003] [Accepted: 12/23/2003] [Indexed: 10/26/2022]
Abstract
OBJECTIVES This individually randomized, open-label, parallel-group pilot study was designed to test the hypothesis that the ability of loop diuretics to interfere with cardiac fibrosis in chronic heart failure (CHF) may be different between compounds. BACKGROUND The apparent mortality and cardiac benefits seen in studies comparing torasemide with furosemide in CHF suggest that torasemide may have beneficial effects beyond diuresis (e.g., on the process of cardiac fibrosis). METHODS Patients with New York Heart Association functional class II to IV CHF received diuretic therapy with either 10 to 20 mg/day oral torasemide (n = 19) or 20 to 40 mg/day oral furosemide (n = 17), in addition to their existing standard CHF therapy for eight months. At baseline and after eight months, right septal endomyocardial biopsies were obtained to quantify collagen volume fraction (CVF) with an automated image analysis system. Serum carboxy-terminal peptide of procollagen type I (PIP) and serum carboxy-terminal telopeptide of collagen type I (CITP), indexes of collagen type I synthesis and degradation, respectively, were measured by specific radioimmunoassays. RESULTS In torasemide-treated patients, CVF decreased from 7.96 +/- 0.54% to 4.48 +/- 0.26% (p < 0.01), and PIP decreased from 143 +/- 7 to 111 +/- 3 microg/l (p < 0.01). Neither CVF nor PIP changed significantly in furosemide-treated patients. In all patients, CVF was directly correlated with PIP (r = 0.88, p < 0.001) before and after treatment. No changes in CITP were observed with treatment in either group. CONCLUSIONS These findings suggest that loop diuretics possess different abilities to reverse myocardial fibrosis and reduce collagen type I synthesis in patients with CHF.
Collapse
|
|
21 |
189 |
13
|
Ho CY, Abbasi SA, Neilan TG, Shah RV, Chen Y, Heydari B, Cirino AL, Lakdawala NK, Orav EJ, González A, López B, Díez J, Jerosch-Herold M, Kwong RY. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ Cardiovasc Imaging 2013; 6:415-22. [PMID: 23549607 DOI: 10.1161/circimaging.112.000333] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Myocardial fibrosis is a hallmark of hypertrophic cardiomyopathy (HCM) and a potential substrate for arrhythmias and heart failure. Sarcomere mutations seem to induce profibrotic changes before left ventricular hypertrophy (LVH) develops. To further evaluate these processes, we used cardiac magnetic resonance with T1 measurements on a genotyped HCM population to quantify myocardial extracellular volume (ECV). METHODS AND RESULTS Sarcomere mutation carriers with LVH (G+/LVH+, n=37) and without LVH (G+/LVH-, n=29), patients with HCM without mutations (sarcomere-negative HCM, n=11), and healthy controls (n=11) underwent contrast cardiac magnetic resonance, measuring T1 times pre- and postgadolinium infusion. Concurrent echocardiography and serum biomarkers of collagen synthesis, hemodynamic stress, and myocardial injury were also available in a subset. Compared with controls, ECV was increased in patients with overt HCM, as well as G+/LVH- mutation carriers (ECV=0.36±0.01, 0.33±0.01, 0.27±0.01 in G+/LVH+, G+/LVH-, controls, respectively; P≤0.001 for all comparisons). ECV correlated with N-terminal probrain natriuretic peptide levels (r=0.58; P<0.001) and global E' velocity (r=-0.48; P<0.001). Late gadolinium enhancement was present in >60% of overt patients with HCM but absent from G+/LVH- subjects. Both ECV and late gadolinium enhancement were more extensive in sarcomeric HCM than sarcomere-negative HCM. CONCLUSIONS Myocardial ECV is increased in HCM sarcomere mutation carriers even in the absence of LVH. These data provide additional support that fibrotic remodeling is triggered early in disease pathogenesis. Quantifying ECV may help characterize the development of myocardial fibrosis in HCM and ultimately assist in developing novel disease-modifying therapy, targeting interstitial fibrosis.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
179 |
14
|
Yang J, Savvatis K, Kang JS, Fan P, Zhong H, Schwartz K, Barry V, Mikels-Vigdal A, Karpinski S, Kornyeyev D, Adamkewicz J, Feng X, Zhou Q, Shang C, Kumar P, Phan D, Kasner M, López B, Diez J, Wright KC, Kovacs RL, Chen PS, Quertermous T, Smith V, Yao L, Tschöpe C, Chang CP. Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat Commun 2016; 7:13710. [PMID: 27966531 PMCID: PMC5171850 DOI: 10.1038/ncomms13710] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/26/2016] [Indexed: 01/14/2023] Open
Abstract
Interstitial fibrosis plays a key role in the development and progression of heart failure. Here, we show that an enzyme that crosslinks collagen—Lysyl oxidase-like 2 (Loxl2)—is essential for interstitial fibrosis and mechanical dysfunction of pathologically stressed hearts. In mice, cardiac stress activates fibroblasts to express and secrete Loxl2 into the interstitium, triggering fibrosis, systolic and diastolic dysfunction of stressed hearts. Antibody-mediated inhibition or genetic disruption of Loxl2 greatly reduces stress-induced cardiac fibrosis and chamber dilatation, improving systolic and diastolic functions. Loxl2 stimulates cardiac fibroblasts through PI3K/AKT to produce TGF-β2, promoting fibroblast-to-myofibroblast transformation; Loxl2 also acts downstream of TGF-β2 to stimulate myofibroblast migration. In diseased human hearts, LOXL2 is upregulated in cardiac interstitium; its levels correlate with collagen crosslinking and cardiac dysfunction. LOXL2 is also elevated in the serum of heart failure (HF) patients, correlating with other HF biomarkers, suggesting a conserved LOXL2-mediated mechanism of human HF.
Lysyl oxidase-like 2 (LOXL2) is an enzyme that promotes scaffolding of extracellular matrix proteins. Here the authors show that LOXL2 is crucial for pressure-overload induced cardiac fibrosis, and that antibody-mediated inhibition or genetic disruption of Loxl2 in mice shows therapeutic potential for treatment of cardiac fibrosis.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
177 |
15
|
Treibel TA, López B, González A, Menacho K, Schofield RS, Ravassa S, Fontana M, White SK, DiSalvo C, Roberts N, Ashworth MT, Díez J, Moon JC. Reappraising myocardial fibrosis in severe aortic stenosis: an invasive and non-invasive study in 133 patients. Eur Heart J 2019; 39:699-709. [PMID: 29020257 PMCID: PMC5888951 DOI: 10.1093/eurheartj/ehx353] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022] Open
Abstract
Aims To investigate myocardial fibrosis (MF) in a large series of severe aortic stenosis (AS) patients using invasive biopsy and non-invasive imaging. Methods and results One hundred thirty-three patients with severe, symptomatic AS accepted for surgical aortic valve replacement underwent cardiovascular magnetic resonance (CMR) with late gadolinium enhancement (LGE) and extracellular volume fraction (ECV) quantification. Intra-operative left ventricular (LV) biopsies were performed by needle or scalpel, yielding tissue with (n = 53) and without endocardium (n = 80), and compared with 10 controls. Myocardial fibrosis occurred in three patterns: (i) thickened endocardium with a fibrotic layer; (ii) microscopic scars, with a subendomyocardial predominance; and (iii) diffuse interstitial fibrosis. Collagen volume fraction (CVF) was elevated (P < 0.001) compared with controls, and higher (P < 0.001) in endocardium-containing samples with a decreasing CVF gradient from the subendocardium (P = 0.001). Late gadolinium enhancement correlated with CVF (P < 0.001) but not ECV. Both LGE and ECV correlated independently (P < 0.001) with N-terminal pro-brain natriuretic peptide and high-sensitivity-troponin T. High ECV was also associated with worse LV remodelling, left ventricular ejection fraction and functional capacity. Combining high ECV and LGE better identified patients with more adverse LV remodelling, blood biomarkers and histological parameters, and worse functional capacity than each parameter alone. Conclusion Myocardial fibrosis in severe AS is complex, but three main patterns exist: endocardial fibrosis, microscars (mainly in the subendomyocardium), and diffuse interstitial fibrosis. Neither histological CVF nor the CMR parameters ECV and LGE capture fibrosis in its totality. A combined, multi-parametric approach with ECV and LGE allows best stratification of AS patients according to the response of the myocardial collagen matrix. ![]()
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
175 |
16
|
|
Research Support, Non-U.S. Gov't |
15 |
174 |
17
|
López B, González A, Querejeta R, Larman M, Díez J. Alterations in the Pattern of Collagen Deposition May Contribute to the Deterioration of Systolic Function in Hypertensive Patients With Heart Failure. J Am Coll Cardiol 2006; 48:89-96. [PMID: 16814653 DOI: 10.1016/j.jacc.2006.01.077] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 12/23/2005] [Accepted: 01/16/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVES We sought to assess the distribution of collagen deposits and collagen degradation in hypertensive patients with either systolic heart failure (SHF) or diastolic heart failure (DHF). BACKGROUND Increased collagen synthesis and deposition have been described in the myocardium of heart failure (HF) hypertensive patients. METHODS We studied 39 HF hypertensive patients subdivided into two groups: 16 with SHF and 23 with DHF. Endomyocardial biopsies were performed to quantify mysial (i.e., perimysial plus endomysial) and perivascular and scar-related collagen volume fraction (CVF). Matrix metalloproteinase (MMP)-1 and its tissue inhibitor matrix metalloproteinase (TIMP)-1 were analyzed in cardiac samples by Western blot and immunohistochemistry, and in blood samples by enzyme-linked immunosorbent assay. RESULTS Mysial CVF was lower in SHF hypertensive patients than in normotensive (p < 0.05) and DHF hypertensive patients (p < 0.01). Perivascular and scar-related CVF was higher (p < 0.05) in the two groups of hypertensive patients than in normotensive subjects, and in SHF hypertensive compared with DHF hypertensive patients. The MMP-1:TIMP-1 ratio was increased (p < 0.05) in tissue and serum samples from the SHF hypertensive group compared with the other two groups of subjects. The MMP-1 expression was increased (p < 0.01) in the interstitium and cardiomyocytes of SHF hypertensive patients compared with DHF hypertensive and normotensive subjects. The serum MMP-1:TIMP-1 ratio was inversely correlated with ejection fraction (r = -0.510, p < 0.001) and directly correlated with left ventricular end-diastolic diameter (r = 0.549, p < 0.001) in all subjects. CONCLUSIONS These findings show that the pattern of collagen deposits and the balance of the MMP-1/TIMP-1 system are different in the myocardium of SHF and DHF hypertensive patients. It is proposed that excessive degradation of mysial collagen may be related to the compromise of systolic function in HF hypertensive patients.
Collapse
|
|
19 |
173 |
18
|
López B, Querejeta R, Varo N, González A, Larman M, Martínez Ubago JL, Díez J. Usefulness of serum carboxy-terminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation 2001; 104:286-91. [PMID: 11457746 DOI: 10.1161/01.cir.104.3.286] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We investigated whether serum concentration of carboxy-terminal propeptide of procollagen type I (PIP), a marker of collagen type I synthesis, can be used to assess the ability of antihypertensive treatment to regress myocardial fibrosis in hypertensive patients. METHODS AND RESULTS The study was performed in 37 patients with essential hypertension and hypertensive heart disease. After randomization, 21 patients were assigned to losartan and 16 patients to amlodipine treatment. At baseline and after 12 months, right septal endomyocardial biopsies were performed to quantify collagen volume fraction (CVF) on picrosirius red-stained sections with an automated image-analysis system. Serum PIP was measured by specific radioimmunoassay. Nineteen patients in the losartan group and 11 in the amlodipine group finished the study. Time-course changes in blood pressure during treatment were similar in the 2 groups of patients. In losartan-treated patients, CVF decreased from 5.65+/-2.03% to 3.96+/-1.46% (P<0.01) and PIP from 127+/-30 to 99+/-26 microgram/L (P<0.01). Neither CVF or PIP changed significantly in amlodipine-treated patients. CVF was directly correlated with PIP (r=0.44, P<0.001) in all hypertensives before and after treatment. CONCLUSIONS These findings suggest that the ability of antihypertensive treatment to regress fibrosis in hypertensives with biopsy-proven myocardial fibrosis is independent of its antihypertensive efficacy. Our data also suggest that blockade of the angiotensin II type 1 receptor is associated with inhibition of collagen type I synthesis and regression of myocardial fibrosis in hypertensives. Thus, determination of serum PIP may be useful to assess the cardioreparative properties of antihypertensive treatment in hypertensives.
Collapse
|
Clinical Trial |
24 |
171 |
19
|
López B, Querejeta R, González A, Larman M, Díez J. Collagen cross-linking but not collagen amount associates with elevated filling pressures in hypertensive patients with stage C heart failure: potential role of lysyl oxidase. Hypertension 2012; 60:677-83. [PMID: 22824984 DOI: 10.1161/hypertensionaha.112.196113] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated whether the quality of myocardial collagen associates with elevated left-sided filling pressures in 38 hypertensive patients with stage C chronic heart failure. Filling pressures were assessed invasively measuring pulmonary capillary wedge pressure. Left ventricular chamber stiffness constant was calculated from the deceleration time of the early mitral filling wave. The fraction of myocardial volume occupied by total collagen tissue and collagen type I fibers was assessed histomorphologically. The degree of collagen cross-linking (CCL), which determines the formation of insoluble stiff collagen, was assessed by colorimetric and enzymatic procedures. The expression of lysyl oxidase (LOX), which regulates CCL, was assessed by Western blot. Compared with patients with normal pulmonary capillary wedge pressure (≤12 mm Hg; n=16), patients with elevated pulmonary capillary wedge pressure (>12 mm Hg; n=22) exhibited increases of left ventricular chamber stiffness constant, fraction of myocardial volume occupied by total collagen tissue, fraction of myocardial volume occupied by collagen type I fibers, CCL, insoluble stiff collagen, and LOX. Pulmonary capillary wedge pressure was correlated with left ventricular chamber stiffness constant (r=0.639; P<0.001), insoluble stiff collagen (r=0.474; P<0.005), CCL (r=0.625; P<0.001), and LOX (r=0.410; P<0.05) in all of the patients but not with fraction of myocardial volume occupied by total collagen tissue or fraction of myocardial volume occupied by collagen type I fibers. In addition, CCL was correlated with insoluble stiff collagen (r=0.612; P<0.005), LOX (r=0.538; P<0.01), left ventricular chamber stiffness constant (r=0.535; P<0.005), peak filling rate (r=-0.343; P<0.05), ejection fraction (r=-0.430; P<0.01), and amino-terminal propeptide of brain natriuretic peptide (r=0.421; P<0.05) in all of the patients. These associations were independent of confounding factors. These findings indicate that, in hypertensive patients with stage C heart failure, it is only the quality of collagen (ie, degree of cross-linking) that associates with elevated filling pressures. It is suggested that LOX-mediated excessive CCL facilitates the increase in left ventricular stiffness with the resulting elevation of filling pressures in these patients.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
152 |
20
|
López B, Querejeta R, González A, Beaumont J, Larman M, Díez J. Impact of treatment on myocardial lysyl oxidase expression and collagen cross-linking in patients with heart failure. Hypertension 2008; 53:236-42. [PMID: 19075089 DOI: 10.1161/hypertensionaha.108.125278] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The aim of this study was to investigate whether torasemide modifies collagen cross-linking in the failing human heart. We analyzed the degree of cross-linking and the expression of the enzyme lysyl oxidase, which regulates cross-linking, in the myocardium of patients with chronic heart failure at baseline and after 8 months of treatment with either torasemide or furosemide in addition to their standard heart failure therapy. Whereas lysyl oxidase protein expression was very scarce in normal hearts, it was highly expressed in failing hearts. Cross-linking was increased (P<0.001) in heart failure patients compared with normal hearts. These 2 parameters decreased (P=0.021 and P=0.034) in torasemide-treated patients and remained unchanged in furosemide-treated patients. In addition, more (P=0.009) patients showed normalization of left ventricular chamber stiffness in the torasemide subgroup than in the furosemide subgroup after treatment. Lysyl oxidase expression correlated with cross-linking (r=0.661; P<0.001), and cross-linking correlated with left ventricular chamber stiffness (r=0.452; P=0.002) in all patients. These findings show for the first time that lysyl oxidase overexpression is associated with enhanced collagen cross-linking in the failing human heart. In addition, we report that the ability of torasemide to correct both lysyl oxidase overexpression and enhanced collagen cross-linking results in normalization of left ventricular chamber stiffness in patients with heart failure. Lysyl oxidase may thus represent a target for reduction of stiff collagen and improvement of left ventricular mechanical properties in heart failure patients.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
125 |
21
|
Ho CY, Lakdawala NK, Cirino AL, Lipshultz SE, Sparks E, Abbasi SA, Kwong RY, Antman EM, Semsarian C, González A, López B, Diez J, Orav EJ, Colan SD, Seidman CE. Diltiazem treatment for pre-clinical hypertrophic cardiomyopathy sarcomere mutation carriers: a pilot randomized trial to modify disease expression. JACC. HEART FAILURE 2015; 3:180-8. [PMID: 25543971 PMCID: PMC4323670 DOI: 10.1016/j.jchf.2014.08.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/18/2014] [Accepted: 08/22/2014] [Indexed: 01/14/2023]
Abstract
OBJECTIVES The study sought to assess the safety, feasibility, and effect of diltiazem as disease-modifying therapy for at-risk hypertrophic cardiomyopathy (HCM) mutation carriers. BACKGROUND HCM is caused by sarcomere mutations and characterized by left ventricular hypertrophy (LVH) with increased risk of heart failure and sudden death. HCM typically cannot be diagnosed early in life, although subtle phenotypes are present. Animal studies indicate that intracellular calcium handling is altered before LVH develops. Furthermore, early treatment with diltiazem appeared to attenuate disease emergence. METHODS In a pilot, double-blind trial, we randomly assigned 38 sarcomere mutation carriers without LVH (mean 15.8 years of age) to therapy with diltiazem 360 mg/day (or 5 mg/kg/day) or placebo. Treatment duration ranged from 12 to 42 months (median 25 months). Study procedures included electrocardiography, echocardiography, cardiac magnetic resonance imaging, and serum biomarker measurement. RESULTS Diltiazem was not associated with serious adverse events. Heart rate and blood pressure did not differ significantly between groups. However, mean left ventricular (LV) end-diastolic diameter improved toward normal in the diltiazem group but decreased further in controls (change in z-scores, +0.6 vs. -0.5; p < 0.001). Mean LV thickness-to-dimension ratio was stable in the diltiazem group but increased in controls (-0.02 vs. +0.15; p = 0.04). Among MYBPC3 mutation carriers, LV wall thickness and mass, diastolic filling, and cardiac troponin I levels improved in those taking diltiazem compared with controls. Four participants developed overt HCM, 2 in each treatment group. CONCLUSIONS Pre-clinical administration of diltiazem is safe and may improve early LV remodeling in HCM. This novel strategy merits further exploration. (Treatment of Preclinical Hypertrophic Cardiomyopathy With Diltiazem; NCT00319982).
Collapse
|
Multicenter Study |
10 |
125 |
22
|
González A, Ravassa S, López B, Moreno MU, Beaumont J, San José G, Querejeta R, Bayés-Genís A, Díez J. Myocardial Remodeling in Hypertension. Hypertension 2019; 72:549-558. [PMID: 30354762 DOI: 10.1161/hypertensionaha.118.11125] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
Review |
6 |
117 |
23
|
Díez J, González A, López B, Querejeta R. Mechanisms of disease: pathologic structural remodeling is more than adaptive hypertrophy in hypertensive heart disease. ACTA ACUST UNITED AC 2006; 2:209-16. [PMID: 16265485 DOI: 10.1038/ncpcardio0158] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 03/01/2005] [Indexed: 02/08/2023]
Abstract
Changes in the composition of cardiac tissue develop in arterial hypertension and lead to structural remodeling of the myocardium. Structural remodeling is the consequence of a number of pathologic processes, mediated by mechanical, neurohormonal and cytokine routes, occurring in the cardiomyocyte and the noncardiomyocyte compartments of the heart. One of these processes is related to the disruption of the equilibrium between the synthesis and degradation of collagen type I and III molecules, which results in an excessive accumulation of collagen type I and III fibers in the interstitium and the perivascular regions of the myocardium. The clinical relevance of ventricular fibrosis is that it might contribute to the increased cardiac risk of patients with hypertensive heart disease. This review focuses on the mechanisms of hypertensive ventricular fibrosis and its clinical consequences. In addition, we discuss the noninvasive methods for the diagnosis of cardiac fibrosis and the therapeutic strategies aimed to promote its reduction.
Collapse
|
Review |
19 |
116 |
24
|
López B, González A, Varo N, Laviades C, Querejeta R, Díez J. Biochemical assessment of myocardial fibrosis in hypertensive heart disease. Hypertension 2001; 38:1222-6. [PMID: 11711527 DOI: 10.1161/hy1101.098549] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fibrous tissue accumulation is an integral feature of the adverse structural remodeling of cardiac tissue seen with hypertensive heart disease. Given the importance of fibrous tissue in leading to myocardial dysfunction and failure, noninvasive monitoring of myocardial fibrosis by use of serological markers of collagen turnover could prove a clinically useful tool, particularly given the potential for cardioprotective and cardioreparative pharmacological strategies. An emerging experimental and clinical experience holds promise for the use of radioimmunoassays of various serological markers of fibrillar collagen type I and type III turnover in arterial hypertension. More specifically, the measurement of serum concentrations of procollagen type I C-terminal propeptide (a peptide that is cleaved from procollagen type I during the synthesis of fibril-forming collagen type I) may provide indirect diagnostic information on both the extent of myocardial fibrosis and the ability of antihypertensive treatment to diminish collagen type I synthesis and reduce myocardial fibrosis. This approach represents an exciting and innovative strategy, and available data set the stage for larger trials, in which noninvasive measures of fibrosis in hypertensive heart disease could prove useful.
Collapse
|
Review |
24 |
113 |
25
|
Ciulla MM, Paliotti R, Esposito A, Dìez J, López B, Dahlöf B, Nicholls MG, Smith RD, Gilles L, Magrini F, Zanchetti A. Different effects of antihypertensive therapies based on losartan or atenolol on ultrasound and biochemical markers of myocardial fibrosis: results of a randomized trial. Circulation 2004; 110:552-7. [PMID: 15277331 DOI: 10.1161/01.cir.0000137118.47943.5c] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND In hypertensive left ventricular hypertrophy (LVH), myocardial texture is altered by a disproportionate increase in fibrosis, but there is insufficient clinical evidence whether antihypertensive therapy or individual agents can induce regression of myocardial fibrosis. METHODS AND RESULTS We compared the effects of an angiotensin II receptor antagonist with a beta-blocker on myocardial collagen volume (assessed by echoreflectivity and serum collagen markers) in 219 hypertensive patients with echocardiographically documented LVH. Patients were allocated randomly to receive losartan 50 to 100 mg/d (n=111) or atenolol 50 to 100 mg/d (n=99) with or without hydrochlorothiazide 12.5 to 25 mg/d for 36 weeks. Echoreflectivity analysis was conducted on ultrasound tracings of the midapex septum with specifically designed and validated software. A color histogram of reflecting echoes was obtained, and its spread (broadband [BB], previously shown to correlate directly with collagen volume fraction on endomyocardial biopsies) was used as the primary outcome measure. Mean color scale and serum markers of collagen synthesis (PIP, PIIIP) or degradation (CITP) were secondary outcome variables. Echoreflectivity analysis proved feasible in 106 patients (losartan 52, atenolol 54). Losartan reduced BB over 36 weeks (from 114.5 to 104.3 color levels, P<0.02), whereas atenolol treatment was associated with an increase in BB (from 109.0 to 113.6 color levels, P=NS), the difference between treatments being -12.8 color levels (95% CI -23.6 to -2.0, P=0.02). Secondary end points (mean color scale and collagen markers) also changed in the direction of decreased collagen in patients receiving losartan, but differences between groups were not statistically significant. CONCLUSIONS In hypertensive patients with LVH, losartan decreases myocardial collagen content, whereas atenolol does not. The difference between the 2 treatments is statistically significant.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
109 |