1
|
Andrés AM, Dennis MY, Kretzschmar WW, Cannons JL, Lee-Lin SQ, Hurle B, Schwartzberg PL, Williamson SH, Bustamante CD, Nielsen R, Clark AG, Green ED. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. PLoS Genet 2010; 6:e1001157. [PMID: 20976248 PMCID: PMC2954825 DOI: 10.1371/journal.pgen.1001157] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/13/2010] [Indexed: 11/18/2022] Open
Abstract
A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection. It has long been known that the extremely high levels of genetic diversity present in the major histocompatibility locus (MHC) are due to balancing selection, a type of natural selection that maintains advantageous genetic diversity in populations. The MHC encodes for molecules required for a type of antigen presentation that mediates detection of infected and cancerous cells by the immune system; the genetic diversity of the MHC thus ensures an adequate response to the wide variety of pathogens that humans encounter. Here, we show that other genes involved in the same antigen-presentation pathway are also subject to balancing selection in humans. Specifically, we show that balancing selection acts to maintain two forms of the endoplasmic reticulum aminopeptidase 2 gene (ERAP2), which encodes a protein also involved in antigen presentation. Although the two ERAP2 forms are present in a similar frequency (close to 0.5), they are associated with differences with respect to the levels of MHC molecules on the cell surface of immune cells. In summary, our findings show that natural selection maintains variants of ERAP2 that affect immune surveillance; they also establish ERAP2 as one of the few examples of balancing selection in humans where the selected variant, its functional consequences, and its influence in interpersonal diversity are known.
Collapse
|
Research Support, N.I.H., Intramural |
15 |
191 |
2
|
Hurle B, Ignatova E, Massironi SM, Mashimo T, Rios X, Thalmann I, Thalmann R, Ornitz DM. Non-syndromic vestibular disorder with otoconial agenesis in tilted/mergulhador mice caused by mutations in otopetrin 1. Hum Mol Genet 2003; 12:777-89. [PMID: 12651873 DOI: 10.1093/hmg/ddg087] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Otoconia are biominerals within the utricle and saccule of the inner ear that are critical for the perception of gravity and linear acceleration. The classical mouse mutant tilted (tlt) and a new allele, mergulhador (mlh), are recessive mutations that affect balance by impairing otoconial morphogenesis without causing collateral deafness. The mechanisms governing otoconial biosynthesis are not known. Here we show that tlt and mlh are mutant alleles of a novel gene (Otopetrin 1, Otop1), encoding a multi-transmembrane domain protein that is expressed in the macula of the developing otocyst. Both mutants carry single point mutations leading to non-conservative amino acid substitutions that affect two putative transmembrane (TM) domains (tlt, Ala(151)-->Glu in TM3; mlh, Leu(408)-->Gln in TM8). Otop1 and Otop1-like paralogues, Otop2 and Otop3, define a new gene family with homology to the C. elegans and D. melanoganster DUF270 genes.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Caenorhabditis elegans
- Cell Membrane/metabolism
- DNA Primers/chemistry
- DNA, Complementary/metabolism
- Drosophila melanogaster
- Ear, Inner/embryology
- Ear, Inner/metabolism
- Genes, Recessive
- Haplotypes
- Humans
- Immunohistochemistry
- In Situ Hybridization
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Models, Genetic
- Molecular Sequence Data
- Multigene Family
- Mutation
- Physical Chromosome Mapping
- Point Mutation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Transcription, Genetic
- Vestibular Diseases/genetics
- Vestibular Diseases/pathology
Collapse
|
|
22 |
91 |
3
|
Hurle B, Citrin T, Jenkins JF, Kaphingst KA, Lamb N, Roseman JE, Bonham VL. What does it mean to be genomically literate?: National Human Genome Research Institute Meeting Report. Genet Med 2013; 15:658-63. [PMID: 23448722 PMCID: PMC4115323 DOI: 10.1038/gim.2013.14] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/22/2013] [Indexed: 01/20/2023] Open
Abstract
Genomic discoveries will increasingly advance the science of medicine. Limited genomic literacy may adversely impact the public's understanding and use of the power of genetics and genomics in health care and public health. In November 2011, a meeting was held by the National Human Genome Research Institute to examine the challenge of achieving genomic literacy for the general public, from kindergarten to grade 12 to adult education. The role of the media in disseminating scientific messages and in perpetuating or reducing misconceptions was also discussed. Workshop participants agreed that genomic literacy will be achieved only through active engagement between genomics experts and the varied constituencies that comprise the public. This report summarizes the background, content, and outcomes from this meeting, including recommendations for a research agenda to inform decisions about how to advance genomic literacy in our society.
Collapse
|
Congress |
12 |
88 |
4
|
Hughes I, Blasiole B, Huss D, Warchol ME, Rath NP, Hurle B, Ignatova E, Dickman JD, Thalmann R, Levenson R, Ornitz DM. Otopetrin 1 is required for otolith formation in the zebrafish Danio rerio. Dev Biol 2004; 276:391-402. [PMID: 15581873 PMCID: PMC2522322 DOI: 10.1016/j.ydbio.2004.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 08/30/2004] [Accepted: 09/02/2004] [Indexed: 11/23/2022]
Abstract
Orientation with respect to gravity is essential for the survival of complex organisms. The gravity receptor is one of the phylogenetically oldest sensory systems, and special adaptations that enhance sensitivity to gravity are highly conserved. The fish inner ear contains three large extracellular biomineral particles, otoliths, which have evolved to transduce the force of gravity into neuronal signals. Mammalian ears contain thousands of small particles called otoconia that serve a similar function. Loss or displacement of these structures can be lethal for fish and is responsible for benign paroxysmal positional vertigo (BPPV) in humans. The distinct morphologies of otoconial particles and otoliths suggest divergent developmental mechanisms. Mutations in a novel gene Otopetrin 1 (Otop1), encoding multi-transmembrane domain protein, result in nonsyndromic otoconial agenesis and a severe balance disorder in mice. Here we show that the zebrafish, Danio rerio, contains a highly conserved gene, otop1, that is essential for otolith formation. Morpholino-mediated knockdown of zebrafish Otop1 leads to otolith agenesis without affecting the sensory epithelium or other structures within the inner ear. Despite lack of otoliths in early development, otolith formation partially recovers in some fish after 2 days. However, the otoliths are malformed, misplaced, lack an organic matrix, and often consist of inorganic calcite crystals. These studies demonstrate that Otop1 has an essential and conserved role in the timing of formation and the size and shape of the developing otolith.
Collapse
|
research-article |
21 |
81 |
5
|
Hurle B, Swanson W, NISC Comparative Sequencing Program, Green ED. Comparative sequence analyses reveal rapid and divergent evolutionary changes of the WFDC locus in the primate lineage. Genome Res 2007; 17:276-86. [PMID: 17267810 PMCID: PMC1800918 DOI: 10.1101/gr.6004607] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The initial comparison of the human and chimpanzee genome sequences revealed 16 genomic regions with an unusually high density of rapidly evolving genes. One such region is the whey acidic protein (WAP) four-disulfide core domain locus (or WFDC locus), which contains 14 WFDC genes organized in two subloci on human chromosome 20q13. WAP protease inhibitors have roles in innate immunity and/or the regulation of a group of endogenous proteolytic enzymes called kallikreins. In human, the centromeric WFDC sublocus also contains the rapidly evolving seminal genes, semenogelin 1 and 2 (SEMG1 and SEMG2). The rate of SEMG2 evolution in primates has been proposed to correlate with female promiscuity and semen coagulation, perhaps related to post-copulatory sperm competition. We mapped and sequenced the centromeric WFDC sublocus in 12 primate species that collectively represent four different mating systems. Our analyses reveal a 130-kb region with a notably complex evolutionary history that has included nested duplications, deletions, and significant interspecies divergence of both coding and noncoding sequences; together, this has led to striking differences of this region among primates and between primates and rodents. Further, this region contains six closely linked genes (WFDC12, PI3, SEMG1, SEMG2, SLPI, and MATN4) that show strong patterns of adaptive selection, although an unambiguous correlation between gene mutation rates and mating systems could not be established.
Collapse
|
Research Support, N.I.H., Intramural |
18 |
59 |
6
|
Hughes I, Binkley J, Hurle B, Green ED, Sidow A, Ornitz DM. Identification of the Otopetrin Domain, a conserved domain in vertebrate otopetrins and invertebrate otopetrin-like family members. BMC Evol Biol 2008; 8:41. [PMID: 18254951 PMCID: PMC2268672 DOI: 10.1186/1471-2148-8-41] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 02/06/2008] [Indexed: 11/30/2022] Open
Abstract
Background Otopetrin 1 (Otop1) encodes a multi-transmembrane domain protein with no homology to known transporters, channels, exchangers, or receptors. Otop1 is necessary for the formation of otoconia and otoliths, calcium carbonate biominerals within the inner ear of mammals and teleost fish that are required for the detection of linear acceleration and gravity. Vertebrate Otop1 and its paralogues Otop2 and Otop3 define a new gene family with homology to the invertebrate Domain of Unknown Function 270 genes (DUF270; pfam03189). Results Multi-species comparison of the predicted primary sequences and predicted secondary structures of 62 vertebrate otopetrin, and arthropod and nematode DUF270 proteins, has established that the genes encoding these proteins constitute a single family that we renamed the Otopetrin Domain Protein (ODP) gene family. Signature features of ODP proteins are three "Otopetrin Domains" that are highly conserved between vertebrates, arthropods and nematodes, and a highly constrained predicted loop structure. Conclusion Our studies suggest a refined topologic model for ODP insertion into the lipid bilayer of 12 transmembrane domains, and highlight conserved amino-acid residues that will aid in the biochemical examination of ODP family function. The high degree of sequence and structural similarity of the ODP proteins may suggest a conserved role in the intracellular trafficking of calcium and the formation of biominerals.
Collapse
|
Research Support, N.I.H., Intramural |
17 |
21 |
7
|
Ferreira Z, Seixas S, Andrés AM, Kretzschmar WW, Mullikin JC, Cherukuri PF, Cruz P, Swanson WJ, Clark AG, Green ED, Hurle B. Reproduction and immunity-driven natural selection in the human WFDC locus. Mol Biol Evol 2013; 30:938-50. [PMID: 23292442 DOI: 10.1093/molbev/mss329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The whey acidic protein (WAP) four-disulfide core domain (WFDC) locus located on human chromosome 20q13 spans 19 genes with WAP and/or Kunitz domains. These genes participate in antimicrobial, immune, and tissue homoeostasis activities. Neighboring SEMG genes encode seminal proteins Semenogelin 1 and 2 (SEMG1 and SEMG2). WFDC and SEMG genes have a strikingly high rate of amino acid replacement (dN/dS), indicative of responses to adaptive pressures during vertebrate evolution. To better understand the selection pressures acting on WFDC genes in human populations, we resequenced 18 genes and 54 noncoding segments in 71 European (CEU), African (YRI), and Asian (CHB + JPT) individuals. Overall, we identified 484 single-nucleotide polymorphisms (SNPs), including 65 coding variants (of which 49 are nonsynonymous differences). Using classic neutrality tests, we confirmed the signature of short-term balancing selection on WFDC8 in Europeans and a signature of positive selection spanning genes PI3, SEMG1, SEMG2, and SLPI. Associated with the latter signal, we identified an unusually homogeneous-derived 100-kb haplotype with a frequency of 88% in Asian populations. A putative candidate variant targeted by selection is Thr56Ser in SEMG1, which may alter the proteolytic profile of SEMG1 and antimicrobial activities of semen. All the well-characterized genes residing in the WDFC locus encode proteins that appear to have a role in immunity and/or fertility, two processes that are often associated with adaptive evolution. This study provides further evidence that the WFDC and SEMG loci have been under strong adaptive pressure within the short timescale of modern humans.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
16 |
8
|
Hurle B, Marques-Bonet T, Antonacci F, Hughes I, Ryan JF, Eichler EE, Ornitz DM, Green ED. Lineage-specific evolution of the vertebrate Otopetrin gene family revealed by comparative genomic analyses. BMC Evol Biol 2011; 11:23. [PMID: 21261979 PMCID: PMC3038909 DOI: 10.1186/1471-2148-11-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 01/24/2011] [Indexed: 11/19/2022] Open
Abstract
Background Mutations in the Otopetrin 1 gene (Otop1) in mice and fish produce an unusual bilateral vestibular pathology that involves the absence of otoconia without hearing impairment. The encoded protein, Otop1, is the only functionally characterized member of the Otopetrin Domain Protein (ODP) family; the extended sequence and structural preservation of ODP proteins in metazoans suggest a conserved functional role. Here, we use the tools of sequence- and cytogenetic-based comparative genomics to study the Otop1 and the Otop2-Otop3 genes and to establish their genomic context in 25 vertebrates. We extend our evolutionary study to include the gene mutated in Usher syndrome (USH) subtype 1G (Ush1g), both because of the head-to-tail clustering of Ush1g with Otop2 and because Otop1 and Ush1g mutations result in inner ear phenotypes. Results We established that OTOP1 is the boundary gene of an inversion polymorphism on human chromosome 4p16 that originated in the common human-chimpanzee lineage more than 6 million years ago. Other lineage-specific evolutionary events included a three-fold expansion of the Otop genes in Xenopus tropicalis and of Ush1g in teleostei fish. The tight physical linkage between Otop2 and Ush1g is conserved in all vertebrates. To further understand the functional organization of the Ushg1-Otop2 locus, we deduced a putative map of binding sites for CCCTC-binding factor (CTCF), a mammalian insulator transcription factor, from genome-wide chromatin immunoprecipitation-sequencing (ChIP-seq) data in mouse and human embryonic stem (ES) cells combined with detection of CTCF-binding motifs. Conclusions The results presented here clarify the evolutionary history of the vertebrate Otop and Ush1g families, and establish a framework for studying the possible interaction(s) of Ush1g and Otop in developmental pathways.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
13 |
9
|
Pompeia C, Hurle B, Belyantseva IA, Noben-Trauth K, Beisel K, Gao J, Buchoff P, Wistow G, Kachar B. Gene expression profile of the mouse organ of Corti at the onset of hearing. Genomics 2005; 83:1000-11. [PMID: 15177554 DOI: 10.1016/j.ygeno.2004.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 01/25/2004] [Indexed: 10/26/2022]
Abstract
We describe the generation of an expressed sequence tag (EST) database of the mouse organ of Corti (OC). Over 20,000 independent clones were isolated, analyzed, and grouped into 8690 unique gene clusters. A large pool of novel genes unique to the OC was identified. Sequence alignments frequently revealed alternatively spliced forms of known genes potentially relevant in the OC function. We have also electronically mapped a subset of OC mouse ESTs to several syntenic regions associated with human autosomal and recessive deafness, which may prove useful for the identification of new positional candidates for these human diseases. The EST dataset is available as an interactive Web-based public database at. This resource provides both a view of the profile of gene expression in the OC at the onset of hearing and a tool to identify novel genes of importance in hearing.
Collapse
|
Journal Article |
20 |
11 |
10
|
Marques PI, Bernardino R, Fernandes T, NISC Comparative Sequencing Program, Green ED, Hurle B, Quesada V, Seixas S. Birth-and-death of KLK3 and KLK2 in primates: evolution driven by reproductive biology. Genome Biol Evol 2013. [PMID: 23204305 PMCID: PMC3542562 DOI: 10.1093/gbe/evs111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The kallikrein (KLK) gene family comprises the largest uninterrupted locus of serine proteases in the human genome and represents a notable case for studying the evolutionary fate of duplicated genes. In primates, a recent duplication event gave rise to KLK2 and KLK3, both encoding essential proteins for the cascade of seminal plasma liquefaction. We reconstructed the evolutionary history of KLK2 and KLK3 by comparative analysis of the orthologous sequences from 22 primate species, calculated d(N)/d(S) ratios, and addressed the hypothesis of coevolution with their substrates, the semenogelins (SEMG1 and SEMG2). Our findings support the placement of the KLK2-KLK3 duplication in the Catarrhini ancestor and unveil the frequent loss of KLK2 throughout primate evolution by different genomic mechanisms, including unequal crossing-over, deletions, and pseudogenization. We provide evidences for an adaptive evolution of KLK3 toward an expanded enzymatic spectrum, with an effect on the hydrolysis of semen coagulum. Furthermore, we found associations between mating system, the number of SEMG repeat units, and the number of functional KLK2 and KLK3, suggesting complex evolutionary dynamics shaped by reproductive biology.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
9 |
11
|
Hurle B, Lane K, Kenney J, Tarantino LM, Bucan M, Brownstein BH, Ornitz DM. Physical mapping of the mouse tilted locus identifies an association between human deafness loci DFNA6/14 and vestibular system development. Genomics 2001; 77:189-99. [PMID: 11597144 DOI: 10.1006/geno.2001.6632] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tilted (tlt) mouse carries a recessive mutation causing vestibular dysfunction. The defect in tlt homozygous mice is limited to the utricle and saccule of the inner ear, which completely lack otoconia. Genetic mapping of tlt placed it in a region orthologous with human 4p16.3-p15 that contains two loci, DFNA6 and DFNA14, responsible for autosomal dominant, nonsyndromic hereditary hearing impairment. To identify a possible relationship between tlt in mice and DFNA6 and DFNA14 in humans, we have refined the mouse genetic map, assembled a BAC contig spanning the tlt locus, and developed a comprehensive comparative map between mouse and human. We have determined the position of tlt relative to 17 mouse chromosome 5 genes with orthologous loci in the human 4p16.3-p15 region. This analysis identified an inversion between the mouse and human genomes that places tlt and DFNA6/14 in close proximity.
Collapse
|
|
24 |
9 |
12
|
Tarantino LM, Feiner L, Alavizadeh A, Wiltshire T, Hurle B, Ornitz DM, Webber AL, Raper J, Lengeling A, Rowe LB, Bucan M. A high-resolution radiation hybrid map of the proximal portion of mouse chromosome 5. Genomics 2000; 66:55-64. [PMID: 10843805 DOI: 10.1006/geno.2000.6183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Radiation hybrid (RH) mapping of the mouse genome provides a useful tool in the integration of existing genetic and physical maps, as well as in the ongoing effort to generate a dense map of expressed sequence tags. To facilitate functional analysis of mouse Chromosome 5, we have constructed a high-resolution RH map spanning 75 cM of the chromosome. During the course of these studies, we have developed RHBase, an RH data management program that provides data storage and an interface to several RH mapping programs and databases. We have typed 95 markers on the T31 RH panel and generated an integrated map, pooling data from several sources. The integrated RH map ranges from the most proximal marker, D5Mit331 (Chromosome Committee offset, 3 cM), to D5Mit326, 74.5 cM distal on our genetic map (Chromosome Committee offset, 80 cM), and consists of 138 markers, including 89 simple sequence length polymorphic markers, 11 sequence-tagged sites generated from BAC end sequence, and 38 gene loci, and represents average coverage of approximately one locus per 0.5 cM with some regions more densely mapped. In addition to the RH mapping of markers and genes previously localized on mouse Chromosome 5, this RH map places the alpha-4 GABA(A) receptor subunit gene (Gabra4) in the central portion of the chromosome, in the vicinity of the cluster of three other GABA(A) receptor subunit genes (Gabrg1-Gabra2-Gabrb1). Our mapping effort has also defined a new cluster of four genes in the semaphorin gene family (Sema3a, Sema3c, Sema3d, and Sema3e) and the Wolfram syndrome gene (Wfs1) in this region of the chromosome.
Collapse
|
|
25 |
7 |
13
|
Ferreira Z, Hurle B, Rocha J, Seixas S. Differing evolutionary histories of WFDC8 (short-term balancing) in Europeans and SPINT4 (incomplete selective sweep) in Africans. Mol Biol Evol 2011; 28:2811-22. [PMID: 21536719 DOI: 10.1093/molbev/msr106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The whey acidic protein four-disulfide core (WFDC) gene cluster on human chromosome 20q13, harbors 15 small serine protease inhibitor genes with roles in innate immunity, reproduction, and regulation of endogenous proteases kallikreins. The WFDC cluster has emerged as a prime example of rapid diversification and adaptive evolution in primates. This study sought a better understanding of the evolutionary history of WFDC genes in humans and focused on exploring the adaptive selection signatures found in populations of European (Utah residents with ancestry from northern and western Europe [CEU]) and African (Yoruba from Ibadan, in Nigeria [YRI]) ancestry in a genome-wide scan for putative targets of recent adaptive selection. Our approach included resequencing coding and noncoding regions of WFDC6, EPPIN, and WFDC8 in 20 CEU and of SPINT4 in 20 YRI individuals. We generated 302 kb and 60 kb of high-quality sequence data from CEU and of YRI populations, respectively, enabling the identification of 72 single nucleotide polymorphisms. Using classic neutrality tests, empirical and haplotype-based analysis, we pinpointed WFDC8 and SPINT4 as the likely targets of short-term balancing selection in the CEU population, and recent positive selection (incomplete selective sweep) in the YRI population. Putative candidate variants targeted by selection include 44A (rs7273669A) for WFDC8, which may downregulate gene expression by abolishing the binding site of two transcription factors; and a haplotype configuration [Ser73+98A] (rs6017667A-rs6032474A) for SPINT4, which may simultaneously affect protein function and gene regulation. We propose that the evolution of WFDC8 and SPINT4 has been shaped by complex selective scenarios due to the interdependence of variant fitness and ecological variables.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
7 |
14
|
Robbins SM, Daulton CR, Hurle B, Easter C. The NHGRI Short Course in Genomics: energizing genetics and genomics education in classrooms through direct engagement between educators and scientists. Genet Med 2020; 23:222-229. [PMID: 32929231 PMCID: PMC7796976 DOI: 10.1038/s41436-020-00962-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose: The National Human Genome Research Institute (NHGRI) at the National Institutes of Health (NIH) recognizes an urgent need for educator resources on cutting-edge scientific topics due to increased public interest in genetics and genomics. We developed a Short Course in Genomics (“Short Course”) to inspire new teaching materials through collaborative course development sessions and lectures, to expand access to cutting-edge scientific information, and to provide a framework to consider when crafting new coursework related to scientific education. Methods: We compared publicly available participant data from 2015 to 2019 to data from the National Center for Education Statistics to assess our progress in serving diverse educator and student populations. We also evaluated course agendas and interviewed participants and instructors. Results: Middle School, High School, Community College, and Tribal College course attendees from the last five years were more likely to teach students from diverse communities underrepresented in STEM. Both attendees and Short Course instructors emphasized the importance of bidirectional learning through interactive curriculum development. Conclusions: This course has the potential to facilitate the engagement of educators and students at all levels, recruit and maintain a diverse STEM workforce, and improve genomic literacy and future health decision-making.
Collapse
|
Research Support, N.I.H., Intramural |
5 |
3 |
15
|
Ferreira Z, Hurle B, Andrés AM, Kretzschmar WW, Mullikin JC, Cherukuri PF, Cruz P, Gonder MK, Stone AC, Tishkoff S, Swanson WJ, Green ED, Clark AG, Seixas S. Sequence diversity of Pan troglodytes subspecies and the impact of WFDC6 selective constraints in reproductive immunity. Genome Biol Evol 2013; 5:2512-23. [PMID: 24356879 PMCID: PMC3879984 DOI: 10.1093/gbe/evt198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent efforts have attempted to describe the population structure of common chimpanzee, focusing on four subspecies: Pan troglodytes verus, P. t. ellioti, P. t. troglodytes, and P. t. schweinfurthii. However, few studies have pursued the effects of natural selection in shaping their response to pathogens and reproduction. Whey acidic protein (WAP) four-disulfide core domain (WFDC) genes and neighboring semenogelin (SEMG) genes encode proteins with combined roles in immunity and fertility. They display a strikingly high rate of amino acid replacement (dN/dS), indicative of adaptive pressures during primate evolution. In human populations, three signals of selection at the WFDC locus were described, possibly influencing the proteolytic profile and antimicrobial activities of the male reproductive tract. To evaluate the patterns of genomic variation and selection at the WFDC locus in chimpanzees, we sequenced 17 WFDC genes and 47 autosomal pseudogenes in 68 chimpanzees (15 P. t. troglodytes, 22 P. t. verus, and 31 P. t. ellioti). We found a clear differentiation of P. t. verus and estimated the divergence of P. t. troglodytes and P. t. ellioti subspecies in 0.173 Myr; further, at the WFDC locus we identified a signature of strong selective constraints common to the three subspecies in WFDC6—a recent paralog of the epididymal protease inhibitor EPPIN. Overall, chimpanzees and humans do not display similar footprints of selection across the WFDC locus, possibly due to different selective pressures between the two species related to immune response and reproductive biology.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
1 |
16
|
Ornitz DM, Kim E, Hughes I, Hurle B, Lundberg Y, Warchol M. From the tilted mouse to the otopetrin gene family: Molecular insights into the development of the vestibular mechanosensory system. Dev Biol 2008. [DOI: 10.1016/j.ydbio.2008.05.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
|
17 |
|