1
|
Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC, Aebersold R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol 2018; 14:e8126. [PMID: 30104418 PMCID: PMC6088389 DOI: 10.15252/msb.20178126] [Citation(s) in RCA: 686] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 01/16/2023] Open
Abstract
Many research questions in fields such as personalized medicine, drug screens or systems biology depend on obtaining consistent and quantitatively accurate proteomics data from many samples. SWATH-MS is a specific variant of data-independent acquisition (DIA) methods and is emerging as a technology that combines deep proteome coverage capabilities with quantitative consistency and accuracy. In a SWATH-MS measurement, all ionized peptides of a given sample that fall within a specified mass range are fragmented in a systematic and unbiased fashion using rather large precursor isolation windows. To analyse SWATH-MS data, a strategy based on peptide-centric scoring has been established, which typically requires prior knowledge about the chromatographic and mass spectrometric behaviour of peptides of interest in the form of spectral libraries and peptide query parameters. This tutorial provides guidelines on how to set up and plan a SWATH-MS experiment, how to perform the mass spectrometric measurement and how to analyse SWATH-MS data using peptide-centric scoring. Furthermore, concepts on how to improve SWATH-MS data acquisition, potential trade-offs of parameter settings and alternative data analysis strategies are discussed.
Collapse
|
Review |
7 |
686 |
2
|
Collins BC, Hunter CL, Liu Y, Schilling B, Rosenberger G, Bader SL, Chan DW, Gibson BW, Gingras AC, Held JM, Hirayama-Kurogi M, Hou G, Krisp C, Larsen B, Lin L, Liu S, Molloy MP, Moritz RL, Ohtsuki S, Schlapbach R, Selevsek N, Thomas SN, Tzeng SC, Zhang H, Aebersold R. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat Commun 2017; 8:291. [PMID: 28827567 PMCID: PMC5566333 DOI: 10.1038/s41467-017-00249-5] [Citation(s) in RCA: 393] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/12/2017] [Indexed: 01/15/2023] Open
Abstract
Quantitative proteomics employing mass spectrometry is an indispensable tool in life science research. Targeted proteomics has emerged as a powerful approach for reproducible quantification but is limited in the number of proteins quantified. SWATH-mass spectrometry consists of data-independent acquisition and a targeted data analysis strategy that aims to maintain the favorable quantitative characteristics (accuracy, sensitivity, and selectivity) of targeted proteomics at large scale. While previous SWATH-mass spectrometry studies have shown high intra-lab reproducibility, this has not been evaluated between labs. In this multi-laboratory evaluation study including 11 sites worldwide, we demonstrate that using SWATH-mass spectrometry data acquisition we can consistently detect and reproducibly quantify >4000 proteins from HEK293 cells. Using synthetic peptide dilution series, we show that the sensitivity, dynamic range and reproducibility established with SWATH-mass spectrometry are uniformly achieved. This study demonstrates that the acquisition of reproducible quantitative proteomics data by multiple labs is achievable, and broadly serves to increase confidence in SWATH-mass spectrometry data acquisition as a reproducible method for large-scale protein quantification.SWATH-mass spectrometry consists of a data-independent acquisition and a targeted data analysis strategy that aims to maintain the favorable quantitative characteristics on the scale of thousands of proteins. Here, using data generated by eleven groups worldwide, the authors show that SWATH-MS is capable of generating highly reproducible data across different laboratories.
Collapse
|
Multicenter Study |
8 |
393 |
3
|
Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ. The carbonate environment in bone mineral: a resolution-enhanced Fourier Transform Infrared Spectroscopy Study. Calcif Tissue Int 1989; 45:157-64. [PMID: 2505907 DOI: 10.1007/bf02556059] [Citation(s) in RCA: 351] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The environment of carbonate ions in bones of different species (rat, rabbit, chicken, cow, human) was investigated by Fourier Transform Infrared Spectroscopy (FTIR) associated with a self-deconvolution technique. The carbonate bands in the v2 CO3(2-) domain show three components which were identified by using synthetic standards and different properties of the apatitic structure (ionic affinity for crystallographic locations, ionic exchange). The major component at 871 cm-1 is due to carbonate ions located in PO4(3-) sites (type B carbonate). A band at 878 cm-1 was exclusively assigned to carbonate ions substituting for OH-ions in the apatitic structure (type A carbonate). A band at 866 cm-1 not previously observed was shown to correspond to a labile carbonate environment. The intensity ratio of type A to type B carbonate appears remarkably constant in all bone samples. The 866 cm-1 carbonate band varies in its relative intensity in different species.
Collapse
|
|
36 |
351 |
4
|
Rosenberger G, Koh CC, Guo T, Röst HL, Kouvonen P, Collins BC, Heusel M, Liu Y, Caron E, Vichalkovski A, Faini M, Schubert OT, Faridi P, Ebhardt HA, Matondo M, Lam H, Bader SL, Campbell DS, Deutsch EW, Moritz RL, Tate S, Aebersold R. A repository of assays to quantify 10,000 human proteins by SWATH-MS. Sci Data 2014; 1:140031. [PMID: 25977788 PMCID: PMC4322573 DOI: 10.1038/sdata.2014.31] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/06/2014] [Indexed: 12/30/2022] Open
Abstract
Mass spectrometry is the method of choice for deep and reliable exploration of the (human) proteome. Targeted mass spectrometry reliably detects and quantifies pre-determined sets of proteins in a complex biological matrix and is used in studies that rely on the quantitatively accurate and reproducible measurement of proteins across multiple samples. It requires the one-time, a priori generation of a specific measurement assay for each targeted protein. SWATH-MS is a mass spectrometric method that combines data-independent acquisition (DIA) and targeted data analysis and vastly extends the throughput of proteins that can be targeted in a sample compared to selected reaction monitoring (SRM). Here we present a compendium of highly specific assays covering more than 10,000 human proteins and enabling their targeted analysis in SWATH-MS datasets acquired from research or clinical specimens. This resource supports the confident detection and quantification of 50.9% of all human proteins annotated by UniProtKB/Swiss-Prot and is therefore expected to find wide application in basic and clinical research. Data are available via ProteomeXchange (PXD000953-954) and SWATHAtlas (SAL00016-35).
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
315 |
5
|
Rey C, Renugopalakrishnan V, Collins B, Glimcher MJ. Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging. Calcif Tissue Int 1991; 49:251-8. [PMID: 1760769 DOI: 10.1007/bf02556214] [Citation(s) in RCA: 296] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The environment of CO3(2-) ions in the bone mineral of chickens of different ages and in bone fractions of different density have been investigated by resolution-enhanced Fourier Transform Infrared (FTIR) Spectroscopy. Three carbonate bands appear in the upsilon 2 CO3 domain at 878, 871, and 866 cm-1, which may be assigned to three different locations of the ion in the mineral: in monovalent anionic sites of the apatitic structure (878 cm-1), in trivalent anionic sites (871 cm-1), and in unstable location (866 cm-1) probably in perturbed regions of the crystals. The distribution of the carbonate ions among these locations was estimated by comparing the intensities of the corresponding FTIR spectral bands. The intensity ratio of the 878 and 871 cm-1 bands remains remarkably constant in whole bone as well as in the fractions obtained by density centrifugation. On the contrary, the intensity ratio of the 866 cm-1 to the 871 cm-1 band was found to vary directly and decreased with the age of the animal. In bone of the same age, the relative content of the unstable carbonate ion was found to be highest in the most abundant density centrifugation fraction. A resolution factor of the CO3(2-) band (CO3 RF) was calculated from the FTIR spectra which was shown to be very sensitive to the degree of crystallinity of the mineral. The crystallinity was found to improve rapidly with the age of the animal. The CO3 RF in the bone samples obtained by density centrifugation from bone of the same animal was found to be essentially constant.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
34 |
296 |
6
|
Fagan JJ, Collins B, Barnes L, D'Amico F, Myers EN, Johnson JT. Perineural invasion in squamous cell carcinoma of the head and neck. ARCHIVES OF OTOLARYNGOLOGY--HEAD & NECK SURGERY 1998; 124:637-40. [PMID: 9639472 DOI: 10.1001/archotol.124.6.637] [Citation(s) in RCA: 285] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To determine if perineural invasion (PNI) of small nerves affects the outcome of patients with squamous cell carcinoma (SCC) of the upper aerodigestive tract. DESIGN Retrospective clinicopathological study of patients with at least 2 years of follow-up and with negative margins and no prior, synchronous, or metachronous SCC. SETTING Academic otolaryngology department. PATIENTS One hundred forty-two patients who had SCC of the oral cavity, oropharynx and hypopharynx, or larynx resected between 1981 and 1991. INTERVENTION Surgery with or without adjuvant therapy. MAIN OUTCOME MEASURES Local recurrence was examined with respect to PNI, nerve diameter, and microvascular or microlymphatic invasion. Perineural invasion was correlated with lymph node metastasis, extracapsular spread, and survival. RESULTS Perineural invasion of nerves less than 1 mm in diameter was present in 74 patients, lymphatic invasion in 53, and vascular invasion in 9. Perineural invasion was significantly associated with local recurrence (23% for PNI vs 9% for no PNI; P=. 02), and disease-specific mortality (54% mortality for PNI vs 25% for no PNI; P<.001). With extralaryngeal tumors, PNI was associated with nodal metastasis (73% vs 46%; P=.03). Perineural invasion was not associated with extracapsular spread (P=.47). Microvascular invasion, lymphatic invasion, and nerve diameter were not significantly related to local recurrence. CONCLUSIONS Perineural invasion of small nerves is associated with an increased risk of local recurrence and cervical metastasis and is, independent of extracapsular spread, a predictor of survival for patients with SCC of the upper aerodigestive tract.
Collapse
|
|
27 |
285 |
7
|
Liu Y, Buil A, Collins BC, Gillet LCJ, Blum LC, Cheng LY, Vitek O, Mouritsen J, Lachance G, Spector TD, Dermitzakis ET, Aebersold R. Quantitative variability of 342 plasma proteins in a human twin population. Mol Syst Biol 2015; 11:786. [PMID: 25652787 PMCID: PMC4358658 DOI: 10.15252/msb.20145728] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The degree and the origins of quantitative variability of most human plasma proteins are largely unknown. Because the twin study design provides a natural opportunity to estimate the relative contribution of heritability and environment to different traits in human population, we applied here the highly accurate and reproducible SWATH mass spectrometry technique to quantify 1,904 peptides defining 342 unique plasma proteins in 232 plasma samples collected longitudinally from pairs of monozygotic and dizygotic twins at intervals of 2–7 years, and proportioned the observed total quantitative variability to its root causes, genes, and environmental and longitudinal factors. The data indicate that different proteins show vastly different patterns of abundance variability among humans and that genetic control and longitudinal variation affect protein levels and biological processes to different degrees. The data further strongly suggest that the plasma concentrations of clinical biomarkers need to be calibrated against genetic and temporal factors. Moreover, we identified 13 cis-SNPs significantly influencing the level of specific plasma proteins. These results therefore have immediate implications for the effective design of blood-based biomarker studies.
Collapse
|
Twin Study |
10 |
258 |
8
|
Rey C, Shimizu M, Collins B, Glimcher MJ. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the upsilon 4 PO4 domain. Calcif Tissue Int 1990; 46:384-94. [PMID: 2364326 DOI: 10.1007/bf02554969] [Citation(s) in RCA: 243] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to investigate the possible existence in biological and poorly crystalline synthetic apatites of local atomic organizations different from that of apatite, resolution-enhanced, Fourier transform infrared spectroscopy studies were carried out on chicken bone, pig enamel, and poorly crystalline synthetic apatites containing carbonate and HPO4(2-) groups. The spectra obtained were compared to those of synthetic well crystallized apatites (stoichiometric hydroxyapatite, HPO4(2-)-containing apatite, type B carbonate apatite) and nonapatitic calcium phosphates which have been suggested as precursors of the apatitic phase [octacalcium phosphate (OCP), brushite, and beta tricalcium phosphate and whitlockite]. The spectra of bone and enamel, as well as poorly crystalline, synthetic apatite in the upsilon 4 PO4 domain, exhibit, in addition to the three apatitic bands, three absorption bands that were shown to be independent of the organic matrix. Two low-wave number bands at 520-530 and 540-550 cm-1 are assigned to HPO4(2-). Reference to known calcium phosphates shows that bands in this domain also exist in HPO4(2-)-containing apatite, brushite, and OCP. However, the lack of specific absorption bands prevents a clear identification of these HPO4(2-) environments. The third absorption band (610-615 cm-1) is not related to HPO4(2-) or OH- ions. It appears to be due to a labile PO4(3-) environment which could not be identified with any phosphate environment existing in our reference samples, and thus seems specific of poorly crystalline apatites. Correlation of the variations in band intensities show that 610-615 cm-1 band is related to an absorption band at 560 cm-1 superimposed on an apatite band. All the nonapatitic phosphate environments were shown to decrease during aging of enamel, bone, and synthetic apatites. Moreover, EDTA etching show that the labile PO4(3-) environment exhibited a heterogeneous distribution in the insoluble precipitate.
Collapse
|
|
35 |
243 |
9
|
Rey C, Shimizu M, Collins B, Glimcher MJ. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the nu3PO4 domain. Calcif Tissue Int 1991; 49:383-8. [PMID: 1818762 DOI: 10.1007/bf02555847] [Citation(s) in RCA: 228] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Resolution-enhanced Fourier Transform Infrared (FTIR) spectra of early mineral deposits in enamel and bone show bands at 1020, 1100, 1110, 1125, and 1145 cm-1 in the nu3PO4 domain which do not belong to well crystallized stoichiometric hydroxyapatite. Bands at 1020 and 1100 cm-1 have been shown to occur in nonstoichiometric apatites containing HPO4(2-) ions and the weak band at 1145 cm-1 has been assigned to HPO4(2-) ions. Though the bands at 1110 and 1125 cm-1 have not been found in any well crystallized apatite, they are present in newly precipitated apatite. These latter bands disappear progressively during maturation in biological as well as synthetic samples, and partial dissolution of synthetic apatites shows that they belong to species that exhibit an inhomogeneous distribution in the mineral, and that are the first to be solubilized. Comparison of the FTIR spectra of biological apatites with those of synthetic, nonapatitic-containing phosphate minerals shows that the presence of these bands does not arise from nonapatitic, well-defined phases; they are due to the local environment of phosphate ions which may possibly be loosely related or perhaps unrelated to the phosphate groups present in the well-crystallized nonapatitic calcium phosphates. Resolution-enhanced FTIR affords a very precise characterization of the mineral phases which may be very useful in characterizing pathological deposits of Ca-P mineral phases.
Collapse
|
|
34 |
228 |
10
|
Raben N, Danon M, Gilbert AL, Dwivedi S, Collins B, Thurberg BL, Mattaliano RJ, Nagaraju K, Plotz PH. Enzyme replacement therapy in the mouse model of Pompe disease. Mol Genet Metab 2003; 80:159-69. [PMID: 14567965 DOI: 10.1016/j.ymgme.2003.08.022] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Deficiency of acid alpha-glucosidase (GAA) results in widespread cellular deposition of lysosomal glycogen manifesting as myopathy and cardiomyopathy. When GAA-/- mice were treated with rhGAA (20 mg/kg/week for up to 5 months), skeletal muscle cells took up little enzyme compared to liver and heart. Glycogen reduction was less than 50%, and some fibers showed little or no glycogen clearance. A dose of 100 mg/kg/week resulted in approximately 75% glycogen clearance in skeletal muscle. The enzyme reduced cardiac glycogen to undetectable levels at either dose. Skeletal muscle fibers with residual glycogen showed immunoreactivity for LAMP-1/LAMP-2, indicating that undigested glycogen remained in proliferating lysosomes. Glycogen clearance was more pronounced in type 1 fibers, and histochemical analysis suggested an increased mannose-6-phosphate receptor immunoreactivity in these fibers. Differential transport of enzyme into lysosomes may explain the strikingly uneven pattern of glycogen removal. Autophagic vacuoles, a feature of both the mouse model and the human disease, persisted despite glycogen clearance. In some groups a modest glycogen reduction was accompanied by improved muscle strength. These studies suggest that enzyme replacement therapy, although at much higher doses than in other lysosomal diseases, has the potential to reverse cardiac pathology and to reduce the glycogen level in skeletal muscle.
Collapse
|
|
22 |
162 |
11
|
Schubert OT, Ludwig C, Kogadeeva M, Zimmermann M, Rosenberger G, Gengenbacher M, Gillet LC, Collins BC, Röst HL, Kaufmann SHE, Sauer U, Aebersold R. Absolute Proteome Composition and Dynamics during Dormancy and Resuscitation of Mycobacterium tuberculosis. Cell Host Microbe 2015; 18:96-108. [PMID: 26094805 DOI: 10.1016/j.chom.2015.06.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/20/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
Mycobacterium tuberculosis remains a health concern due to its ability to enter a non-replicative dormant state linked to drug resistance. Understanding transitions into and out of dormancy will inform therapeutic strategies. We implemented a universally applicable, label-free approach to estimate absolute cellular protein concentrations on a proteome-wide scale based on SWATH mass spectrometry. We applied this approach to examine proteomic reorganization of M. tuberculosis during exponential growth, hypoxia-induced dormancy, and resuscitation. The resulting data set covering >2,000 proteins reveals how protein biomass is distributed among cellular functions during these states. The stress-induced DosR regulon contributes 20% to cellular protein content during dormancy, whereas ribosomal proteins remain largely unchanged at 5%-7%. Absolute protein concentrations furthermore allow protein alterations to be translated into changes in maximal enzymatic reaction velocities, enhancing understanding of metabolic adaptations. Thus, global absolute protein measurements provide a quantitative description of microbial states, which can support the development of therapeutic interventions.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
161 |
12
|
Rosenberger G, Bludau I, Schmitt U, Heusel M, Hunter CL, Liu Y, MacCoss MJ, MacLean BX, Nesvizhskii AI, Pedrioli PGA, Reiter L, Röst HL, Tate S, Ting YS, Collins BC, Aebersold R. Statistical control of peptide and protein error rates in large-scale targeted data-independent acquisition analyses. Nat Methods 2017; 14:921-927. [PMID: 28825704 PMCID: PMC5581544 DOI: 10.1038/nmeth.4398] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 07/07/2017] [Indexed: 12/18/2022]
Abstract
Liquid chromatography coupled to tandem mass spectrometry is the main method for high-throughput identification and quantification of peptides and inferred proteins. Within this field, data-independent acquisition (DIA) combined with peptide-centric scoring, exemplified by SWATH-MS, emerged as a scalable method to achieve deep and consistent proteome coverage across large-scale datasets. Here we discuss the adaptation of statistical concepts developed for discovery proteomics based on spectrum-centric scoring to large-scale DIA experiments analyzed with peptide-centric scoring strategies and provide guidance on their application. We show that optimal tradeoffs between sensitivity and specificity require careful considerations of the relationship between proteins in the samples and proteins represented in the spectral library. We propose the application of a global analyte constraint to prevent accumulation of false positives across large-scale datasets. Furthermore, to increase the quality and reproducibility of published proteomic results, well-established confidence criteria should be reported for detected peptide queries, peptides and inferred proteins.
Collapse
|
Journal Article |
8 |
154 |
13
|
Liu Y, Chen J, Sethi A, Li QK, Chen L, Collins B, Gillet LCJ, Wollscheid B, Zhang H, Aebersold R. Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness. Mol Cell Proteomics 2014; 13:1753-68. [PMID: 24741114 PMCID: PMC4083113 DOI: 10.1074/mcp.m114.038273] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/04/2014] [Indexed: 12/31/2022] Open
Abstract
The identification of biomarkers indicating the level of aggressiveness of prostate cancer (PCa) will address the urgent clinical need to minimize the general overtreatment of patients with non-aggressive PCa, who account for the majority of PCa cases. Here, we isolated formerly N-linked glycopeptides from normal prostate (n = 10) and from non-aggressive (n = 24), aggressive (n = 16), and metastatic (n = 25) PCa tumor tissues and analyzed the samples using SWATH mass spectrometry, an emerging data-independent acquisition method that generates a single file containing fragment ion spectra of all ionized species of a sample. The resulting datasets were searched using a targeted data analysis strategy in which an a priori spectral reference library representing known N-glycosites of the human proteome was used to identify groups of signals in the SWATH mass spectrometry data. On average we identified 1430 N-glycosites from each sample. Out of those, 220 glycoproteins showed significant quantitative changes associated with diverse biological processes involved in PCa aggressiveness and metastasis and indicated functional relationships. Two glycoproteins, N-acylethanolamine acid amidase and protein tyrosine kinase 7, that were significantly associated with aggressive PCa in the initial sample cohort were further validated in an independent set of patient tissues using tissue microarray analysis. The results suggest that N-acylethanolamine acid amidase and protein tyrosine kinase 7 may be used as potential tissue biomarkers to avoid overtreatment of non-aggressive PCa.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
153 |
14
|
Meier F, Brunner AD, Frank M, Ha A, Bludau I, Voytik E, Kaspar-Schoenefeld S, Lubeck M, Raether O, Bache N, Aebersold R, Collins BC, Röst HL, Mann M. diaPASEF: parallel accumulation–serial fragmentation combined with data-independent acquisition. Nat Methods 2020; 17:1229-1236. [DOI: 10.1038/s41592-020-00998-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/15/2020] [Indexed: 01/30/2023]
|
|
5 |
139 |
15
|
Röst HL, Liu Y, D'Agostino G, Zanella M, Navarro P, Rosenberger G, Collins BC, Gillet L, Testa G, Malmström L, Aebersold R. TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics. Nat Methods 2016; 13:777-83. [PMID: 27479329 PMCID: PMC5008461 DOI: 10.1038/nmeth.3954] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 06/14/2016] [Indexed: 12/16/2022]
Abstract
Large scale, quantitative proteomic studies have become essential for the analysis of clinical cohorts, large perturbation experiments and systems biology studies. While next-generation mass spectrometric techniques such as SWATH-MS have substantially increased throughput and reproducibility, ensuring consistent quantification of thousands of peptide analytes across multiple LC-MS/MS runs remains a challenging and laborious manual process. To produce highly consistent and quantitatively accurate proteomics data matrices in an automated fashion, we have developed the TRIC software which utilizes fragment ion data to perform cross-run alignment, consistent peak-picking and quantification for high throughput targeted proteomics. TRIC uses a graph-based alignment strategy based on non-linear retention time correction to integrate peak elution information from all LC-MS/MS runs acquired in a study. When compared to state-of-the-art SWATH-MS data analysis, the algorithm was able to reduce the identification error by more than 3-fold at constant recall, while correcting for highly non-linear chromatographic effects. On a pulsed-SILAC experiment performed on human induced pluripotent stem (iPS) cells, TRIC was able to automatically align and quantify thousands of light and heavy isotopic peak groups and substantially increased the quantitative completeness and biological information in the data, providing insights into protein dynamics of iPS cells. Overall, this study demonstrates the importance of consistent quantification in highly challenging experimental setups, and proposes an algorithm to automate this task, constituting the last missing piece in a pipeline for automated analysis of massively parallel targeted proteomics datasets.
Collapse
|
Journal Article |
9 |
133 |
16
|
Willis MC, Collins BD, Zhang T, Green LS, Sebesta DP, Bell C, Kellogg E, Gill SC, Magallanez A, Knauer S, Bendele RA, Gill PS, Janjić N, Collins B. Liposome-anchored vascular endothelial growth factor aptamers. Bioconjug Chem 1998; 9:573-82. [PMID: 9736491 DOI: 10.1021/bc980002x] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nuclease-resistant aptamers identified from randomized nucleic acid libraries represent a novel class of drug candidates. Aptamers are synthesized chemically and therefore can be readily modified with functional groups that modulate their properties. We report here on the preparation, initial characterization, and functional properties of a nuclease-resistant vascular endothelial growth factor (VEGF) aptamer anchored in liposome bilayers through a lipid group on the aptamer. While the high-affinity binding to VEGF is maintained, the plasma residence time of the liposome-anchored aptamer is considerably improved compared with that of the free aptamer. The lipid group attachment and/or liposome anchoring leads to a dramatic improvement in inhibitory activity of the aptamer toward VEGF-induced endothelial cell proliferation in vitro and vascular permeability increase and angiogenesis in vivo.
Collapse
|
|
27 |
131 |
17
|
Chapin RE, Delaney J, Wang Y, Lanning L, Davis B, Collins B, Mintz N, Wolfe G. The effects of 4-nonylphenol in rats: a multigeneration reproduction study. Toxicol Sci 1999; 52:80-91. [PMID: 10568701 DOI: 10.1093/toxsci/52.1.80] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The alkylphenol breakdown products of alkylphenol ethoxylates have been shown in in vitro studies to be weakly estrogenic, but few in vivo data address this issue in mammals. Because estrogens have been found to be most potent during developmental/perinatal exposures, this study maximized developmental exposure to nonylphenol (NP) by treating 3.5 generations of Sprague-Dawley rats to NP in diet at 200, 650, and 2000 ppm to determine the range and severity of any toxicity. Dose rate was higher for younger rats; calculated dose ranges were 9-35, 30-100, and 100-350 mg/kg/d for the low (200NP), middle (650NP), and high (2000NP) dose groups, respectively. There were adult (F0, F1, F2) and postnatal day (pnd) 21 (F1, F2, F3) necropsies; the oldest F3 rats were killed on pnd 55-58. Body weight gain was reduced by 8-10% in the 650NP and 2000NP groups. Vaginal opening was accelerated by approximately 2 days (650NP) and approximately 6 days (2000NP) in F1, F2, and F3 generations. Uterine weights at pnd 21 were increased in 650NP (14%) and 2000NP (50%) F1 females, but not in other generations. Testis descent, anogenital distance, and preputial separation were not consistently changed. No consistent changes were seen in pup number, weight or viability, litter indices, or other functional reproductive measures. Relative ovary weight in F2 adults was decreased at 650NP and 2000NP by 12%; relative ovary was unchanged in other generations. Follicle counts were unchanged in F2 adults. Sperm indices, including CASA measures, were unchanged in F0 and F1 males. In F2 rats, epididymal sperm density was reduced by 8% and 13% at 650NP and 2000NP, respectively. Testicular spermatid count was reduced by 13% in 2000NP F2 males; testis and epididymis weights were unchanged. Erosion of gastric and duodenal mucosa was monitored grossly and microscopically, and never found. Kidney weights were increased in 650NP and 2000NP males, and renal medullary tubular dilatation and cyst formation were noted in all generations of males, and often at the lowest dose tested. These data show that NP had limited effects on the reproductive system in the presence of measurable nephrotoxicity. The F2 sperm effects are either statistical/biological "noise," or imply heretofore unknown pharmacokinetics or toxicodynamics. These sperm data should be interpreted cautiously until the findings are repeated.
Collapse
|
|
26 |
124 |
18
|
Baid S, Pascual M, Williams WW, Tolkoff-Rubin N, Johnson SM, Collins B, Chung RT, Delmonico FL, Cosimi AB, Colvin RB. Renal thrombotic microangiopathy associated with anticardiolipin antibodies in hepatitis C-positive renal allograft recipients. J Am Soc Nephrol 1999; 10:146-53. [PMID: 9890320 DOI: 10.1681/asn.v101146] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hepatitis C virus (HCV) infection has been associated with de novo or recurrent membranoproliferative glomerulonephritis and acute transplant glomerulopathy in transplanted kidneys. Recently, anticardiolipin antibodies (ACA) have been linked with chronic HCV infection. A few reports have suggested an association between ACA and renal allograft thrombosis. This study examines the clinical and pathologic features of HCV-positive renal allograft recipients at our institution. From 1990 to 1996, 379 kidney transplants were performed. We identified 18 recipients (4.8%) with HCV-positive serology pretransplant. Determination of IgG and IgM ACA was performed by enzyme-linked immunosorbent assay, using pretransplant sera. Among the 18 patients, five patients presented with biopsy-proven de novo renal thrombotic microangiopathy (RTMA), occurring 5 to 120 d (median, 14 d) after transplant. No differences in pretransplant characteristics were observed between patients with (n = 5) or without (n = 13) RTMA. All five patients had a positive ACA test (either IgG or IgM titer > 2 SD above normal), compared with only one of 13 patients without RTMA. The mean value for IgG ACA was significantly higher in the RTMA patients than in patients without RTMA (22.9 +/- 14.1 versus 6.9 +/- 4.9 IgG phospholipid units, P = 0.02); however, there were no significant differences in IgM ACA titers. Rheumatoid factor and complement C4 levels were normal in pretransplant sera of patients with RTMA. Patients with RTMA had their cyclosporine withdrawn (four of five) or the dose was decreased (one of five), and one of five underwent plasmapheresis. Four of five patients died within 5 yr after transplant, compared with no deaths in the other 13 patients. Finally, as a control group, seven HCV-negative renal allograft recipients who presented with RTMA/hemolytic uremic syndrome during the same time period were found to have normal ACA values (IgG or IgM). RTMA associated with ACA in HCV-positive renal allograft recipients may represent a new clinical entity. The occurrence of this syndrome may have deleterious consequences for patient and graft survival.
Collapse
|
Comparative Study |
26 |
123 |
19
|
Rey C, Renugopalakrishnan V, Shimizu M, Collins B, Glimcher MJ. A resolution-enhanced Fourier transform infrared spectroscopic study of the environment of the CO3(2-) ion in the mineral phase of enamel during its formation and maturation. Calcif Tissue Int 1991; 49:259-68. [PMID: 1760770 DOI: 10.1007/bf02556215] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A resolution-enhanced Fourier Transform Infrared (FTIR) Spectroscopic study of the CO3(2-) ion in pig enamel of increasing age and maturity has demonstrated the existence of four different, main carbonate locations. The major CO3(2-) site arises as a result of the substitution of CO3(2-) ions in the positions occupied by PO4(3-) ions in the apatitic lattice. In addition, two minor locations have been identified in positions in which the CO3(2-) ions substitute for OH- ions. The fourth carbonate group appears to be in an unstable location. Its concentration has been found to decrease with aging and maturation, during which there is a progressive increase in the amount of mineral deposited in the enamel. The distribution of the carbonate ions in the different apatitic sites varies randomly during the formation of the mineral phase in enamel and during its maturation. Although these changes have been shown to be related to changes in the composition of the mineral phase, a comparison of the parameters assessing the degree of crystallinity of the mineral phase from upsilon 2CO3(2-) and upsilon 4PO4(3-) infrared absorption data reveals a significant discrepancy related to the nonhomogeneous partition of the CO3(2-) ion in the mineral phase. After maximum mineralization is reached, the composition of the mature mineral phase is decidedly different than that of the initial mineral deposited; the changes affect principally the concentrations of Ca2+, OH-, and HPO4(2-) ions, but not the CO3(2-) ions.
Collapse
|
|
34 |
119 |
20
|
Teo G, Kim S, Tsou CC, Collins B, Gingras AC, Nesvizhskii AI, Choi H. mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry. J Proteomics 2015; 129:108-120. [PMID: 26381204 DOI: 10.1016/j.jprot.2015.09.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/05/2015] [Accepted: 09/08/2015] [Indexed: 01/10/2023]
Abstract
UNLABELLED Data independent acquisition (DIA) mass spectrometry is an emerging technique that offers more complete detection and quantification of peptides and proteins across multiple samples. DIA allows fragment-level quantification, which can be considered as repeated measurements of the abundance of the corresponding peptides and proteins in the downstream statistical analysis. However, few statistical approaches are available for aggregating these complex fragment-level data into peptide- or protein-level statistical summaries. In this work, we describe a software package, mapDIA, for statistical analysis of differential protein expression using DIA fragment-level intensities. The workflow consists of three major steps: intensity normalization, peptide/fragment selection, and statistical analysis. First, mapDIA offers normalization of fragment-level intensities by total intensity sums as well as a novel alternative normalization by local intensity sums in retention time space. Second, mapDIA removes outlier observations and selects peptides/fragments that preserve the major quantitative patterns across all samples for each protein. Last, using the selected fragments and peptides, mapDIA performs model-based statistical significance analysis of protein-level differential expression between specified groups of samples. Using a comprehensive set of simulation datasets, we show that mapDIA detects differentially expressed proteins with accurate control of the false discovery rates. We also describe the analysis procedure in detail using two recently published DIA datasets generated for 14-3-3β dynamic interaction network and prostate cancer glycoproteome. AVAILABILITY The software was written in C++ language and the source code is available for free through SourceForge website http://sourceforge.net/projects/mapdia/.This article is part of a Special Issue entitled: Computational Proteomics.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
113 |
21
|
Collins B, Mazzoni EO, Stanewsky R, Blau J. Drosophila CRYPTOCHROME is a circadian transcriptional repressor. Curr Biol 2006; 16:441-9. [PMID: 16527739 DOI: 10.1016/j.cub.2006.01.034] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 01/12/2006] [Accepted: 01/13/2006] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although most circadian clock components are conserved between Drosophila and mammals, the roles assigned to the CRYPTOCHROME (CRY) proteins are very different: Drosophila CRY functions as a circadian photoreceptor, whereas mammalian CRY proteins (mCRY1 and 2) are transcriptional repressors essential for molecular clock oscillations. RESULTS Here we demonstrate that Drosophila CRY also functions as a transcriptional repressor. We found that RNA levels of genes directly activated by the transcription factors CLOCK (CLK) and CYCLE (CYC) are derepressed in cry(b) mutant eyes. Conversely, while overexpression of CRY and PERIOD (PER) in the eye repressed CLK/CYC activity, neither PER nor CRY repressed individually. Drosophila CRY also repressed CLK/CYC activity in cell culture. Repression by CRY appears confined to peripheral clocks, since neither cry(b) mutants nor overexpression of PER and CRY together in pacemaker neurons significantly affected molecular or behavioral rhythms. Increasing CLK/CYC activity by removing two repressors, PER and CRY, led to ectopic expression of the timeless clock gene, similar to overexpression of Clk itself. CONCLUSIONS Drosophila CRY functions as a transcriptional repressor required for the oscillation of peripheral circadian clocks and for the correct specification of clock cells.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
107 |
22
|
Gökengin D, Doroudi F, Tohme J, Collins B, Madani N. HIV/AIDS: trends in the Middle East and North Africa region. Int J Infect Dis 2016; 44:66-73. [PMID: 26948920 DOI: 10.1016/j.ijid.2015.11.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/08/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES To give an overview of the HIV epidemic in the Middle East and North Africa (MENA) region. METHODS Articles on the MENA region were reviewed. RESULTS The MENA region comprises a geographically defined group of countries including both high-income, well-developed nations and low- and middle-income countries. While the annual number of new HIV infections in Sub-Saharan Africa has declined by 33% since 2005, new HIV infections in the MENA region have increased by 31% since 2001, which is the highest increase among all regions in the world. Moreover, the number of AIDS-related deaths in 2013 was estimated to be 15000, representing a 66% increase since 2005. However, the current prevalence of 0.1% is still among the lowest rates globally. There is substantial heterogeneity in HIV epidemic dynamics across MENA, and different risk contexts are present throughout the region. Despite unfavorable conditions, many countries in the region have put significant effort into scaling up their response to this growing epidemic, while in others the response to HIV is proving slower due to denial, stigma, and reluctance to address sensitive issues. CONCLUSIONS The HIV epidemic in the MENA region is still at a controllable level, and this opportunity should not be missed.
Collapse
|
Review |
9 |
100 |
23
|
Heusel M, Bludau I, Rosenberger G, Hafen R, Frank M, Banaei-Esfahani A, van Drogen A, Collins BC, Gstaiger M, Aebersold R. Complex-centric proteome profiling by SEC-SWATH-MS. Mol Syst Biol 2019; 15:e8438. [PMID: 30642884 PMCID: PMC6346213 DOI: 10.15252/msb.20188438] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Proteins are major effectors and regulators of biological processes that can elicit multiple functions depending on their interaction with other proteins. The organization of proteins into macromolecular complexes and their quantitative distribution across these complexes is, therefore, of great biological and clinical significance. In this paper, we describe an integrated experimental and computational technique to quantify hundreds of protein complexes in a single operation. The method consists of size exclusion chromatography (SEC) to fractionate native protein complexes, SWATH/DIA mass spectrometry to precisely quantify the proteins in each SEC fraction, and the computational framework CCprofiler to detect and quantify protein complexes by error‐controlled, complex‐centric analysis using prior information from generic protein interaction maps. Our analysis of the HEK293 cell line proteome delineates 462 complexes composed of 2,127 protein subunits. The technique identifies novel sub‐complexes and assembly intermediates of central regulatory complexes while assessing the quantitative subunit distribution across them. We make the toolset CCprofiler freely accessible and provide a web platform, SECexplorer, for custom exploration of the HEK293 proteome modularity.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
94 |
24
|
Liu Y, Hüttenhain R, Collins B, Aebersold R. Mass spectrometric protein maps for biomarker discovery and clinical research. Expert Rev Mol Diagn 2013; 13:811-25. [PMID: 24138574 PMCID: PMC3833812 DOI: 10.1586/14737159.2013.845089] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Among the wide range of proteomic technologies, targeted mass spectrometry (MS) has shown great potential for biomarker studies. To extend the degree of multiplexing achieved by selected reaction monitoring (SRM), we recently developed SWATH MS. SWATH MS is a variant of the emerging class of data-independent acquisition (DIA) methods and essentially converts the molecules in a physical sample into perpetually re-usable digital maps. The thus generated SWATH maps are then mined using a targeted data extraction strategy, allowing us to profile disease-related proteomes at a high degree of reproducibility. The successful application of both SRM and SWATH MS requires the a priori generation of reference spectral maps that provide coordinates for quantification. Herein, we demonstrate that the application of the mass spectrometric reference maps and the acquisition of personalized SWATH maps hold a particular promise for accelerating the current process of biomarker discovery.
Collapse
|
Review |
12 |
93 |
25
|
Rosenberger G, Liu Y, Röst HL, Ludwig C, Buil A, Bensimon A, Soste M, Spector TD, Dermitzakis ET, Collins BC, Malmström L, Aebersold R. Inference and quantification of peptidoforms in large sample cohorts by SWATH-MS. Nat Biotechnol 2017; 35:781-788. [PMID: 28604659 PMCID: PMC5593115 DOI: 10.1038/nbt.3908] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/22/2017] [Indexed: 01/01/2023]
Abstract
Consistent detection and quantification of protein post-translational modifications (PTMs) across sample cohorts is a prerequisite for functional analysis of biological processes. Data-independent acquisition (DIA) is a bottom-up mass spectrometry approach that provides complete information on precursor and fragment ions. However, owing to the convoluted structure of DIA data sets, confident, systematic identification and quantification of peptidoforms has remained challenging. Here, we present inference of peptidoforms (IPF), a fully automated algorithm that uses spectral libraries to query, validate and quantify peptidoforms in DIA data sets. The method was developed on data acquired by the DIA method SWATH-MS and benchmarked using a synthetic phosphopeptide reference data set and phosphopeptide-enriched samples. IPF reduced false site-localization by more than sevenfold compared with previous approaches, while recovering 85.4% of the true signals. Using IPF, we quantified peptidoforms in DIA data acquired from >200 samples of blood plasma of a human twin cohort and assessed the contribution of heritable, environmental and longitudinal effects on their PTMs.
Collapse
|
Journal Article |
8 |
88 |