1
|
Falcaro P, Hill AJ, Nairn KM, Jasieniak J, Mardel JI, Bastow TJ, Mayo SC, Gimona M, Gomez D, Whitfield HJ, Riccò R, Patelli A, Marmiroli B, Amenitsch H, Colson T, Villanova L, Buso D. A new method to position and functionalize metal-organic framework crystals. Nat Commun 2011; 2:237. [PMID: 21407203 PMCID: PMC3072101 DOI: 10.1038/ncomms1234] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 02/09/2011] [Indexed: 11/11/2022] Open
Abstract
With controlled nanometre-sized pores and surface areas of thousands of square metres per gram, metal-organic frameworks (MOFs) may have an integral role in future catalysis, filtration and sensing applications. In general, for MOF-based device fabrication, well-organized or patterned MOF growth is required, and thus conventional synthetic routes are not suitable. Moreover, to expand their applicability, the introduction of additional functionality into MOFs is desirable. Here, we explore the use of nanostructured poly-hydrate zinc phosphate (α-hopeite) microparticles as nucleation seeds for MOFs that simultaneously address all these issues. Affording spatial control of nucleation and significantly accelerating MOF growth, these α-hopeite microparticles are found to act as nucleation agents both in solution and on solid surfaces. In addition, the introduction of functional nanoparticles (metallic, semiconducting, polymeric) into these nucleating seeds translates directly to the fabrication of functional MOFs suitable for molecular size-selective applications. Metal-organic frameworks (MOFs) have potential catalysis, filtration and sensing applications, but device fabrication will require controlled MOF growth. Here, α-hopeite microparticles are used to achieve spatial control of MOF nucleation, and accelerate MOF growth.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
145 |
2
|
Tu M, Xia B, Kravchenko DE, Tietze ML, Cruz AJ, Stassen I, Hauffman T, Teyssandier J, De Feyter S, Wang Z, Fischer RA, Marmiroli B, Amenitsch H, Torvisco A, Velásquez-Hernández MDJ, Falcaro P, Ameloot R. Direct X-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks. NATURE MATERIALS 2021; 20:93-99. [PMID: 33106648 DOI: 10.1038/s41563-020-00827-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/14/2020] [Indexed: 05/09/2023]
Abstract
Metal-organic frameworks (MOFs) offer disruptive potential in micro- and optoelectronics because of the unique properties of these microporous materials. Nanoscale patterning is a fundamental step in the implementation of MOFs in miniaturized solid-state devices. Conventional MOF patterning methods suffer from low resolution and poorly defined pattern edges. Here, we demonstrate the resist-free, direct X-ray and electron-beam lithography of MOFs. This process avoids etching damage and contamination and leaves the porosity and crystallinity of the patterned MOFs intact. The resulting high-quality patterns have excellent sub-50-nm resolution, and approach the mesopore regime. The compatibility of X-ray and electron-beam lithography with existing micro- and nanofabrication processes will facilitate the integration of MOFs in miniaturized devices.
Collapse
|
|
4 |
75 |
3
|
Dimitrakakis C, Marmiroli B, Amenitsch H, Malfatti L, Innocenzi P, Grenci G, Vaccari L, Hill AJ, Ladewig BP, Hill MR, Falcaro P. Top-down patterning of Zeolitic Imidazolate Framework composite thin films by deep X-ray lithography. Chem Commun (Camb) 2012; 48:7483-5. [DOI: 10.1039/c2cc33292b] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
13 |
44 |
4
|
Marmiroli B, Grenci G, Cacho-Nerin F, Sartori B, Ferrari E, Laggner P, Businaro L, Amenitsch H. Free jet micromixer to study fast chemical reactions by small angle X-ray scattering. LAB ON A CHIP 2009; 9:2063-2069. [PMID: 19568676 DOI: 10.1039/b904296b] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present the design, fabrication process, and the first test results of a high aspect ratio micromixer combined with a free jet for under 100 micros time resolved studies of chemical reactions. The whole system has been optimized for synchrotron small angle X-ray scattering (SAXS) experiments. These studies are of particular interest to understand the early stages of chemical reactions, such as the kinetics of nanoparticle formation. The mixer is based on hydrodynamic focusing and works in the laminar regime. The use of a free jet overcomes the fouling of the channels and simultaneously circumvents background scattering from the walls. The geometrical parameters of the device have been optimized using finite element simulations, resulting in smallest features with radius <1 microm, and a channel depth of 60 microm, thus leading to an aspect ratio >60. To achieve the desired dimensions deep X-ray lithography (DXRL) has been employed. The device has been tested. First the focusing effect has been visualized using fluorescein. Then the evolution and stability of the jet, which exits the mixer nozzle at 13 m s(-1), have been characterized. Finally SAXS measurements have been conducted of the formation of calcium carbonate from calcium chloride and sodium carbonate. The fastest measurement is 75 micros after the beginning of the mixing of the reagents. The nanostructural evolution of chemical reactions is clearly discernible.
Collapse
|
|
16 |
41 |
5
|
Faustini M, Marmiroli B, Malfatti L, Louis B, Krins N, Falcaro P, Grenci G, Laberty-Robert C, Amenitsch H, Innocenzi P, Grosso D. Direct nano-in-micropatterning of TiO2 thin layers and TiO2/Pt nanoelectrode arrays by deep X-ray lithography. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm03493b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
14 |
32 |
6
|
Falcaro P, Malfatti L, Vaccari L, Amenitsch H, Marmiroli B, Grenci G, Innocenzi P. Fabrication of Advanced Functional Devices Combining Soft Chemistry with X-ray Lithography in One Step. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:4932-4936. [PMID: 25376948 DOI: 10.1002/adma.200901561] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/10/2009] [Indexed: 06/04/2023]
Abstract
Deep X-ray lithography combined with sol-gel techniques offers facile fabrication of controlled patterned films. Using sol-gel, different functional properties can be induced; deep X-ray lithography alters the functionality in the exposed regions. Miniaturized devices based on local property changes are easily fabricated: this technique requires no resist, enabling direct patterning of films in a one-step lithographic process.
Collapse
|
|
16 |
25 |
7
|
Sharifi P, Marmiroli B, Sartori B, Cacho-Nerin F, Keckes J, Amenitsch H, Paris O. Humidity-driven deformation of ordered mesoporous silica films. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2014. [DOI: 10.1680/bbn.14.00017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
|
11 |
21 |
8
|
Naughton KL, Phan L, Leung EM, Kautz R, Lin Q, Van Dyke Y, Marmiroli B, Sartori B, Arvai A, Li S, Pique ME, Naeim M, Kerr JP, Aquino MJ, Roberts VA, Getzoff ED, Zhu C, Bernstorff S, Gorodetsky AA. Self-Assembly of the Cephalopod Protein Reflectin. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8405-8412. [PMID: 27454809 DOI: 10.1002/adma.201601666] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/08/2016] [Indexed: 06/06/2023]
Abstract
Films from the cephalopod protein reflectin demonstrate multifaceted functionality as infrared camouflage coatings, proton transport media, and substrates for growth of neural stem cells. A detailed study of the in vitro formation, structural characteristics, and stimulus response of such films is presented. The reported observations hold implications for the design and development of advanced cephalopod-inspired functional materials.
Collapse
|
|
9 |
18 |
9
|
Malfatti L, Falcaro P, Marmiroli B, Amenitsch H, Piccinini M, Falqui A, Innocenzi P. Nanocomposite mesoporous ordered films for lab-on-chip intrinsic surface enhanced Raman scattering detection. NANOSCALE 2011; 3:3760-3766. [PMID: 21826319 DOI: 10.1039/c1nr10404g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mesoporous nanocomposite materials have been fabricated through integration of evaporation-induced self-assembly and deep X-ray lithography. Micropatterned films made using a mesoporous ordered silica matrix which contains silver nanoparticles have been obtained. The exposure of the mesoporous films to high energy X-rays, which are generated by a synchrotron source, produces several effects: the removal of the surfactant, the densification of the silica backbone and the formation of silver nanoparticles. This integrated process produces a nanocomposite material which has a 2D-hexagonal organized porosity and silver nanoparticles with a sharp size distribution around 5 nm. The patterned nanostructured films have been tested as a lab-on-chip device for intrinsic surface enhanced Raman scattering detection using a solution containing rhodamine 6G in ethanol and measuring Raman response as a function of laser power.
Collapse
|
|
14 |
16 |
10
|
Velásquez-Hernández MDJ, Linares-Moreau M, Brandner LA, Marmiroli B, Barella M, Acuna GP, Zilio SD, Verstreken MFK, Kravchenko DE, Linder-Patton OM, Evans JD, Wiltsche H, Carraro F, Wolinski H, Ameloot R, Doonan C, Falcaro P. Fabrication of 3D Oriented MOF Micropatterns with Anisotropic Fluorescent Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211478. [PMID: 36934320 DOI: 10.1002/adma.202211478] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Micropatterning crystalline materials with oriented pores is necessary for the fabrication of devices with anisotropic properties. Crystalline and porous metal-organic frameworks (MOFs) are ideal materials as their chemical and structural mutability enables precise tuning of functional properties for applications ranging from microelectronics to photonics. Herein, a patternable oriented MOF film is designed: by using a photomask under X-ray exposure, the MOF film decomposes in the irradiated areas, remaining intact in the unexposed regions. The MOF film acts simultaneously as a resist and as functional porous material. While the heteroepitaxial growth from aligned Cu(OH)2 nanobelts is used to deposit oriented MOF films, the sensitivity to radiation is achieved by integrating a brominated dicarboxylate ligand (Br2 BDC) into a copper-based MOF Cu2 L2 DABCO (DABCO = 1,4-diazabicyclo[2.2.2]octane; L = BDC/Br2 BDC). The lithographed samples act as diffraction gratings upon irradiation with a laser, thus confirming the quality of the extended MOF micropattern. Furthermore, the oriented MOF patterns are functionalized with fluorescent dyes. As a result, by rotating the polarization angle of the laser excitation, the alignment of the dye in the MOF is demonstrated. By controlling the functional response to light, this MOF patterning protocol can be used for the microfabrication of optical components for photonic devices.
Collapse
|
|
2 |
13 |
11
|
Doherty CM, Gao Y, Marmiroli B, Amenitsch H, Lisi F, Malfatti L, Okada K, Takahashi M, Hill AJ, Innocenzi P, Falcaro P. Microfabrication of mesoporous silica encapsulated enzymes using deep X-ray lithography. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm32863a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
|
13 |
13 |
12
|
Saldanha O, Graceffa R, Hémonnot CYJ, Ranke C, Brehm G, Liebi M, Marmiroli B, Weinhausen B, Burghammer M, Köster S. Rapid Acquisition of X-Ray Scattering Data from Droplet-Encapsulated Protein Systems. Chemphyschem 2017; 18:1220-1223. [DOI: 10.1002/cphc.201700221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Indexed: 11/07/2022]
|
|
8 |
12 |
13
|
Pinna A, Lasio B, Piccinini M, Marmiroli B, Amenitsch H, Falcaro P, Tokudome Y, Malfatti L, Innocenzi P. Combining top-down and bottom-up routes for fabrication of mesoporous titania films containing ceria nanoparticles for free radical scavenging. ACS APPLIED MATERIALS & INTERFACES 2013; 5:3168-3175. [PMID: 23484882 DOI: 10.1021/am4001024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nanocomposite thin films formed by mesoporous titania layers loaded with ceria nanoparticles have been obtained by combining bottom-up self-assembly synthesis of a titania matrix with top-down hard X-ray lithography of nanocrystalline cerium oxide. At first the titania mesopores have been impregnated with the ceria precursor solution and then exposed to hard X-rays, which triggered the formation of crystalline cerium oxides within the pores inducing the in situ growth of nanoparticles with average size of 4 nm. It has been observed that the type of coordinating agent in the solution plays a primary role in the formation of nanoparticles. Different patterns have been also produced through deep X-ray lithography by spatially controlling the nanoparticle growth on the micrometer scale. The radical scavenging role of the nanocomposite films has been tested using as a benchmark the UV photodegradation of rhodamine 6G. After impregnation with a rhodamine 6G solution, samples with and without ceria have shown a remarkably different response upon exposure to UV light. The dye photodegradation on the surface of nanocomposite films appears strongly slowed down because of the antioxidation effect of ceria nanoparticles.
Collapse
|
|
12 |
11 |
14
|
Haider R, Sartori B, Radeticchio A, Wolf M, Dal Zilio S, Marmiroli B, Amenitsch H. µDrop: a system for high-throughput small-angle X-ray scattering measurements of microlitre samples. J Appl Crystallogr 2021; 54:132-141. [PMID: 33833644 PMCID: PMC7941311 DOI: 10.1107/s1600576720014788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/07/2020] [Indexed: 11/11/2022] Open
Abstract
An automatic sample changer system for measurements of large numbers of liquid samples - the µDrop Sample Changer - is presented. It is based on a robotic arm equipped with a pipetting mechanism, which is combined with a novel drop-based sample holder. In this holder a drop of liquid is suspended between two parallel plates by surface tension. The absence of a transfer line benefits the cleaning, improving the background as well as making it faster and more efficient than most comparable capillary-based systems. The µDrop Sample Changer reaches cycle times below 35 s and can process up to 480 samples in a single run. Sample handling is very reliable, with a drop misplacement chance of about 0.2%. Very low sample volumes (<20 µl) are needed and repeatable measurements were performed down to 6 µl. Using measurements of bovine serum albumin and lysozyme, the performance of the instrument and quality of the gathered data of low and high concentrations of proteins are presented. The temperature of samples can also be controlled during storage and during measurement, which is demonstrated by observing a phase transition of a mesophase-forming lipid solution. The instrument has been developed for use in small-angle X-ray scattering experiments, which is a well established technique for measuring (macro-)molecules. It is commonly used in biological studies, where often large sets of rare samples have to be measured.
Collapse
|
research-article |
4 |
10 |
15
|
Santucci SC, Cojoc D, Amenitsch H, Marmiroli B, Sartori B, Burghammer M, Schoeder S, DiCola E, Reynolds M, Riekel C. Optical tweezers for synchrotron radiation probing of trapped biological and soft matter objects in aqueous environments. Anal Chem 2011; 83:4863-70. [PMID: 21542583 DOI: 10.1021/ac200515x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Investigations of single fragile objects manipulated by optical forces with high brilliance X-ray beams may initiate the development of new research fields such as protein crystallography in an aqueous environment. We have developed a dedicated optical tweezers setup with a compact, portable, and versatile geometry for the customary manipulation of objects for synchrotron radiation applications. Objects of a few micrometers up to a few tens of micrometers size can be trapped for extended periods of time. The selection and positioning of single objects out of a batch of many can be performed semi-automatically by software routines. The performance of the setup has been tested by wide-angle and small-angle X-ray scattering experiments on single optically trapped starch granules, using a synchrotron radiation microbeam. We demonstrate here for the first time the feasibility of microdiffraction on optically trapped protein crystals. Starch granules and insulin crystals were repeatedly raster-scanned at about 50 ms exposure/raster-point up to the complete loss of the structural order. Radiation damage in starch granules results in the appearance of low-angle scattering due to the breakdown of the polysaccharide matrix. For insulin crystals, order along the densely packed [110] direction is preferentially maintained until complete loss of long-range order.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
9 |
16
|
Romanato F, Businaro L, Tormen M, Perennes F, Matteucci M, Marmiroli B, Balslev S, Fabrizio ED. Fabrication of 3D micro and nanostructures for MEMS and MOEMS: an approach based on combined lithographies. ACTA ACUST UNITED AC 2006. [DOI: 10.1088/1742-6596/34/1/150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
19 |
8 |
17
|
Malfatti L, Falcaro P, Pinna A, Lasio B, Casula MF, Loche D, Falqui A, Marmiroli B, Amenitsch H, Sanna R, Mariani A, Innocenzi P. Exfoliated graphene into highly ordered mesoporous titania films: highly performing nanocomposites from integrated processing. ACS APPLIED MATERIALS & INTERFACES 2014; 6:795-802. [PMID: 24256457 DOI: 10.1021/am4027407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To fully exploit the potential of self-assembly in a single step, we have designed an integrated process to obtain mesoporous graphene nanocomposite films. The synthesis allows incorporating graphene sheets with a small number of defects into highly ordered and transparent mesoporous titania films. The careful design of the porous matrix at the mesoscale ensures the highest diffusivity in the films. These exhibit an enhanced photocatalytic efficiency, while the high order of the mesoporosity is not affected by the insertion of the graphene sheets and is well-preserved after a controlled thermal treatment. In addition, we have proven that the nanocomposite films can be easily processed by deep X-ray lithography to produce functional arrays.
Collapse
|
|
11 |
8 |
18
|
Umerani MJ, Pratakshya P, Chatterjee A, Cerna Sanchez JA, Kim HS, Ilc G, Kovačič M, Magnan C, Marmiroli B, Sartori B, Kwansa AL, Orins H, Bartlett AW, Leung EM, Feng Z, Naughton KL, Norton-Baker B, Phan L, Long J, Allevato A, Leal-Cruz JE, Lin Q, Baldi P, Bernstorff S, Plavec J, Yingling YG, Gorodetsky AA. Structure, self-assembly, and properties of a truncated reflectin variant. Proc Natl Acad Sci U S A 2020; 117:32891-32901. [PMID: 33323484 PMCID: PMC7780002 DOI: 10.1073/pnas.2009044117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Naturally occurring and recombinant protein-based materials are frequently employed for the study of fundamental biological processes and are often leveraged for applications in areas as diverse as electronics, optics, bioengineering, medicine, and even fashion. Within this context, unique structural proteins known as reflectins have recently attracted substantial attention due to their key roles in the fascinating color-changing capabilities of cephalopods and their technological potential as biophotonic and bioelectronic materials. However, progress toward understanding reflectins has been hindered by their atypical aromatic and charged residue-enriched sequences, extreme sensitivities to subtle changes in environmental conditions, and well-known propensities for aggregation. Herein, we elucidate the structure of a reflectin variant at the molecular level, demonstrate a straightforward mechanical agitation-based methodology for controlling this variant's hierarchical assembly, and establish a direct correlation between the protein's structural characteristics and intrinsic optical properties. Altogether, our findings address multiple challenges associated with the development of reflectins as materials, furnish molecular-level insight into the mechanistic underpinnings of cephalopod skin cells' color-changing functionalities, and may inform new research directions across biochemistry, cellular biology, bioengineering, and optics.
Collapse
|
research-article |
5 |
7 |
19
|
Han SH, Doherty CM, Marmiroli B, Jo HJ, Buso D, Patelli A, Schiavuta P, Innocenzi P, Lee YM, Thornton AW, Hill AJ, Falcaro P. Simultaneous microfabrication and tuning of the permselective properties in microporous polymers using X-ray lithography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2277-2282. [PMID: 23447493 DOI: 10.1002/smll.201202735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/11/2012] [Indexed: 06/01/2023]
Abstract
Microchannels are fabricated using a photosensitive polymer to which microporosity is tuned with different X-ray doses. Using hard X-ray irradiation, the micropattern is positioned with various geometries in a multi-level, three-dimensional structure, while controlling the pore size and transport properties of small molecules. This highly reliable fabrication process has potential for use in microfluidic devices with enhanced transport properties through microchannels.
Collapse
|
|
12 |
6 |
20
|
Marmiroli B, Amenitsch H. X-ray lithography and small-angle X-ray scattering: a combination of techniques merging biology and materials science. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:851-61. [PMID: 22854870 DOI: 10.1007/s00249-012-0843-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/30/2012] [Accepted: 07/10/2012] [Indexed: 11/28/2022]
Abstract
The advent of micro/nanotechnology has blurred the border between biology and materials science. Miniaturization of chemical and biological assays, performed by use of micro/nanofluidics, requires both careful selection of the methods of fabrication and the development of materials designed for specific applications. This, in turn, increases the need for interdisciplinary combination of suitable microfabrication and characterisation techniques. In this review, the advantages of combining X-ray lithography, as fabrication technique, with small-angle X-ray scattering measurements will be discussed. X-ray lithography enables the limitations of small-angle X-ray scattering, specifically time resolution and sample environment, to be overcome. Small-angle X-ray scattering, on the other hand, enables investigation and, consequently, adjustment of the nanostructural morphology of microstructures and materials fabricated by X-ray lithography. Moreover, the effect of X-ray irradiation on novel materials can be determined by use of small-angle X-ray scattering. The combination of top-down and bottom-up methods to develop new functional materials and structures with potential in biology will be reported.
Collapse
|
Review |
13 |
6 |
21
|
Costacurta S, Falcaro P, Malfatti L, Marongiu D, Marmiroli B, Cacho-Nerin F, Amenitsch H, Kirkby N, Innocenzi P. Shaping mesoporous films using dewetting on X-ray pre-patterned hydrophilic/hydrophobic layers and pinning effects at the pattern edge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:3898-3905. [PMID: 21375318 DOI: 10.1021/la103863d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Ordered mesoporous silica micrometer-sized structures have been fabricated via selective dewetting of the coating sol on a hydrophilic/hydrophobic fluorinated silica substrate, which had been pre-patterned using deep X-ray lithography with a synchrotron radiation source. We have observed that deposition of mesoporous films on the pre-patterned areas can be used as a design tool for obtaining regions of specific geometry and dimensions. The evaporation of the solution in constrained conditions because of pinning at the pattern edges gives layers with thicker edges. This edge effect appears dependent upon the dimension of the pre-patterned hydrophilic/hydrophobic layer; in smaller patterns, the evaporation is too fast and thickening of the edges is not observed. We have used infrared imaging, optical profilometry, and atomic force microscopy to characterize the patterned layers and the edge effect, produced by pinning at the border of the microstructures.
Collapse
|
|
14 |
6 |
22
|
Digiacomo L, Quagliarini E, Marmiroli B, Sartori B, Perini G, Papi M, Capriotti AL, Montone CM, Cerrato A, Caracciolo G, Pozzi D. Magnetic Levitation Patterns of Microfluidic-Generated Nanoparticle-Protein Complexes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2376. [PMID: 35889600 PMCID: PMC9324036 DOI: 10.3390/nano12142376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022]
Abstract
Magnetic levitation (MagLev) has recently emerged as a powerful method to develop diagnostic technologies based on the exploitation of the nanoparticle (NP)-protein corona. However, experimental procedures improving the robustness, reproducibility, and accuracy of this technology are largely unexplored. To contribute to filling this gap, here, we investigated the effect of total flow rate (TFR) and flow rate ratio (FRR) on the MagLev patterns of microfluidic-generated graphene oxide (GO)-protein complexes using bulk mixing of GO and human plasma (HP) as a reference. Levitating and precipitating fractions of GO-HP samples were characterized in terms of atomic force microscopy (AFM), bicinchoninic acid assay (BCA), and one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (1D SDS-PAGE), and nanoliquid chromatography-tandem mass spectrometry (nano-LC-MS/MS). We identified combinations of TFR and FRR (e.g., TFR = 35 μL/min and FRR (GO:HP) = 9:1 or TFR = 3.5 μL/min and FRR (GO:HP) = 19:1), leading to MagLev patterns dominated by levitating and precipitating fractions with bulk-like features. Since a typical MagLev experiment for disease detection is based on a sequence of optimization, exploration, and validation steps, this implies that the optimization (e.g., searching for optimal NP:HP ratios) and exploration (e.g., searching for MagLev signatures) steps can be performed using samples generated by bulk mixing. When these steps are completed, the validation step, which involves using human specimens that are often available in limited amounts, can be made by highly reproducible microfluidic mixing without any ex novo optimization process. The relevance of developing diagnostic technologies based on MagLev of coronated nanomaterials is also discussed.
Collapse
|
research-article |
3 |
6 |
23
|
Klokic S, Naumenko D, Marmiroli B, Carraro F, Linares-Moreau M, Zilio SD, Birarda G, Kargl R, Falcaro P, Amenitsch H. Unraveling the timescale of the structural photo-response within oriented metal-organic framework films. Chem Sci 2022; 13:11869-11877. [PMID: 36320901 PMCID: PMC9580475 DOI: 10.1039/d2sc02405e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/09/2022] [Indexed: 08/10/2023] Open
Abstract
Fundamental knowledge on the intrinsic timescale of structural transformations in photo-switchable metal-organic framework films is crucial to tune their switching performance and to facilitate their applicability as stimuli-responsive materials. In this work, for the first time, an integrated approach to study and quantify the temporal evolution of structural transformations is demonstrated on an epitaxially oriented DMOF-1-on-MOF film system comprising azobenzene in the DMOF-1 pores (DMOF-1/AB). We employed time-resolved Grazing Incidence Wide-Angle X-Ray Scattering measurements to track the structural response of the DMOF-1/AB film upon altering the length of the azobenzene molecule by photo-isomerization (trans-to-cis, 343 nm; cis-to-trans, 450 nm). Within seconds, the DMOF-1/AB response occurred fully reversible and over several switching cycles by cooperative photo-switching of the oriented DMOF-1/AB crystallites as confirmed further by infrared measurements. Our work thereby suggests a new avenue to elucidate the timescales and photo-switching characteristics in structurally responsive MOF film systems.
Collapse
|
research-article |
3 |
5 |
24
|
Dunst S, Rath T, Radivo A, Sovernigo E, Tormen M, Amenitsch H, Marmiroli B, Sartori B, Reichmann A, Knall AC, Trimmel G. Nanoimprinted comb structures in a low bandgap polymer: thermal processing and their application in hybrid solar cells. ACS APPLIED MATERIALS & INTERFACES 2014; 6:7633-7642. [PMID: 24724990 DOI: 10.1021/am5009425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this paper, we investigate conjugated polymer layers structured by nanoimprint lithography toward their suitability for the fabrication of nanostructured polymer/metal sulfide hybrid solar cells. Consequently, we first study the thermal stability of the nanoimprinted conjugated polymer layers by means of scanning electron microscopy and grazing incidence small-angle X-ray scattering, which reveals a reasonable thermal stability up to 145 °C and sufficient robustness against the solvent mixture used in the subsequent fabrication process. In the second part, we demonstrate the preparation of nanostructured polymer/copper indium sulfide hybrid solar cells via the infiltration and thermal decomposition of a mixture of copper and indium xanthates. Although this step needs temperatures of more than 160 °C, the nanostructures are retained in the final polymer/copper indium sulfide layers. The nanostructured solar cells show significantly improved power conversion efficiencies compared to similarly prepared flat bilayer devices, which is based on a distinct improvement of the short circuit current in the nanostructured solar cells.
Collapse
|
|
11 |
4 |
25
|
Malfatti L, Pinna A, Enzo S, Falcaro P, Marmiroli B, Innocenzi P. Tuning the phase transition of ZnO thin films through lithography: an integrated bottom-up and top-down processing. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:165-171. [PMID: 25537604 DOI: 10.1107/s1600577514024047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
An innovative approach towards the physico-chemical tailoring of zinc oxide thin films is reported. The films have been deposited by liquid phase using the sol-gel method and then exposed to hard X-rays, provided by a synchrotron storage ring, for lithography. The use of surfactant and chelating agents in the sol allows easy-to-pattern films made by an organic-inorganic matrix to be deposited. The exposure to hard X-rays strongly affects the nucleation and growth of crystalline ZnO, triggering the formation of two intermediate phases before obtaining a wurtzite-like structure. At the same time, X-ray lithography allows for a fast patterning of the coatings enabling microfabrication for sensing and arrays technology.
Collapse
|
|
10 |
4 |