1
|
|
Research Support, N.I.H., Extramural |
18 |
1414 |
2
|
Rybicki BA, Major M, Popovich J, Maliarik MJ, Iannuzzi MC. Racial differences in sarcoidosis incidence: a 5-year study in a health maintenance organization. Am J Epidemiol 1997; 145:234-41. [PMID: 9012596 DOI: 10.1093/oxfordjournals.aje.a009096] [Citation(s) in RCA: 614] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Reports of racial differences in the incidence of sarcoidosis, a granulomatous disorder of unknown etiology, are primarily based on studies of military and veteran populations. To determine racial differences in sarcoidosis incidence in a metropolitan population the authors conducted a study of newly diagnosed cases that occurred between 1990 and 1994 among members of the Health Alliance Plan health maintenance organization in Detroit, Michigan. The study population was racially heterogeneous, was limited to individuals aged 20-69 years, and comprised about 5% of the Detroit metropolitan area population in that age group. Annual age-adjusted incidence, in number of new cases per 100,000, was highest in African-American females (39.1 cases). The next highest incidence was found in African-American males (29.8 cases), followed by Caucasian females (12.1) and Caucasian males (9.6). African-American females aged 30-39 years were at the greatest risk, with an annual incidence of 107/100,000. Overall, African Americans had about a threefold higher age-adjusted annual incidence (35.5/100,000) compared with Caucasians (10.9/100,000). Additional adjustment for sex, area of residence, and year of study resulted in 3.8-fold greater risk for African Americans compared with Caucasians. This study further confirmed the higher incidence of sarcoidosis in African Americans compared with Caucasians, but the racial difference was lower than previously reported. The results should be more generalizable than previous studies done with select populations and should serve as a useful frame of reference for future epidemiologic research of sarcoidosis.
Collapse
|
Comparative Study |
28 |
614 |
3
|
Jacobs KB, Yeager M, Zhou W, Wacholder S, Wang Z, Rodriguez-Santiago B, Hutchinson A, Deng X, Liu C, Horner MJ, Cullen M, Epstein CG, Burdett L, Dean MC, Chatterjee N, Sampson J, Chung CC, Kovaks J, Gapstur SM, Stevens VL, Teras LT, Gaudet MM, Albanes D, Weinstein SJ, Virtamo J, Taylor PR, Freedman ND, Abnet CC, Goldstein AM, Hu N, Yu K, Yuan JM, Liao L, Ding T, Qiao YL, Gao YT, Koh WP, Xiang YB, Tang ZZ, Fan JH, Aldrich MC, Amos C, Blot WJ, Bock CH, Gillanders EM, Harris CC, Haiman CA, Henderson BE, Kolonel LN, Le Marchand L, McNeill LH, Rybicki BA, Schwartz AG, Signorello LB, Spitz MR, Wiencke JK, Wrensch M, Wu X, Zanetti KA, Ziegler RG, Figueroa JD, Garcia-Closas M, Malats N, Marenne G, Prokunina-Olsson L, Baris D, Schwenn M, Johnson A, Landi MT, Goldin L, Consonni D, Bertazzi PA, Rotunno M, Rajaraman P, Andersson U, Freeman LEB, Berg CD, Buring JE, Butler MA, Carreon T, Feychting M, Ahlbom A, Gaziano JM, Giles GG, Hallmans G, Hankinson SE, Hartge P, Henriksson R, Inskip PD, Johansen C, Landgren A, McKean-Cowdin R, Michaud DS, Melin BS, Peters U, Ruder AM, Sesso HD, Severi G, Shu XO, Visvanathan K, White E, Wolk A, Zeleniuch-Jacquotte A, Zheng W, Silverman DT, Kogevinas M, Gonzalez JR, Villa O, Li D, Duell EJ, Risch HA, Olson SH, Kooperberg C, Wolpin BM, Jiao L, Hassan M, Wheeler W, Arslan AA, Bas Bueno-de-Mesquita H, Fuchs CS, Gallinger S, Gross MD, Holly EA, Klein AP, LaCroix A, Mandelson MT, Petersen G, Boutron-Ruault MC, Bracci PM, Canzian F, Chang K, Cotterchio M, Giovannucci EL, Goggins M, Bolton JAH, Jenab M, Khaw KT, Krogh V, Kurtz RC, McWilliams RR, Mendelsohn JB, Rabe KG, Riboli E, Tjønneland A, Tobias GS, Trichopoulos D, Elena JW, Yu H, Amundadottir L, Stolzenberg-Solomon RZ, Kraft P, Schumacher F, Stram D, Savage SA, Mirabello L, Andrulis IL, Wunder JS, García AP, Sierrasesúmaga L, Barkauskas DA, Gorlick RG, Purdue M, Chow WH, Moore LE, Schwartz KL, Davis FG, Hsing AW, Berndt SI, Black A, Wentzensen N, Brinton LA, Lissowska J, Peplonska B, McGlynn KA, Cook MB, Graubard BI, Kratz CP, Greene MH, Erickson RL, Hunter DJ, Thomas G, Hoover RN, Real FX, Fraumeni JF, Caporaso NE, Tucker M, Rothman N, Pérez-Jurado LA, Chanock SJ. Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 2012; 44:651-8. [PMID: 22561519 PMCID: PMC3372921 DOI: 10.1038/ng.2270] [Citation(s) in RCA: 454] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 04/09/2012] [Indexed: 12/14/2022]
Abstract
In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
454 |
4
|
Newman LS, Rose CS, Bresnitz EA, Rossman MD, Barnard J, Frederick M, Terrin ML, Weinberger SE, Moller DR, McLennan G, Hunninghake G, DePalo L, Baughman RP, Iannuzzi MC, Judson MA, Knatterud GL, Thompson BW, Teirstein AS, Yeager H, Johns CJ, Rabin DL, Rybicki BA, Cherniack R. A case control etiologic study of sarcoidosis: environmental and occupational risk factors. Am J Respir Crit Care Med 2004; 170:1324-30. [PMID: 15347561 DOI: 10.1164/rccm.200402-249oc] [Citation(s) in RCA: 424] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Past research suggests that environmental factors may be associated with sarcoidosis risk. We conducted a case control study to test a priori hypotheses that environmental and occupational exposures are associated with sarcoidosis. Ten centers recruited 706 newly diagnosed patients with sarcoidosis and an equal number of age-, race-, and sex-matched control subjects. Interviewers administered questionnaires containing questions regarding occupational and nonoccupational exposures that we assessed in univariable and multivariable analyses. We observed positive associations between sarcoidosis and specific occupations (e.g., agricultural employment, odds ratio [OR] 1.46, confidence interval [CI] 1.13-1.89), exposures (e.g., insecticides at work, OR 1.52, CI 1.14-2.04, and work environments with mold/mildew exposures [environments with possible exposures to microbial bioaerosols], OR 1.61, CI 1.13-2.31). A history of ever smoking cigarettes was less frequent among cases than control subjects (OR 0.62, CI 0.50-0.77). In multivariable modeling, we observed elevated ORs for work in areas with musty odors (OR 1.62, CI 1.24-2.11) and with occupational exposure to insecticides (OR 1.61, CI 1.13-2.28), and a decreased OR related to ever smoking cigarettes (OR 0.65, CI 0.51-0.82). The study did not identify a single, predominant cause of sarcoidosis. We identified several exposures associated with sarcoidosis risk, including insecticides, agricultural employment, and microbial bioaerosols.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
424 |
5
|
Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ. The risk of Parkinson's disease with exposure to pesticides, farming, well water, and rural living. Neurology 1998; 50:1346-50. [PMID: 9595985 DOI: 10.1212/wnl.50.5.1346] [Citation(s) in RCA: 415] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We assessed exposure to pesticides, farming, well water use, and rural living as risk factors for Parkinson's disease (PD) in a population-based case-control study consisting of men and women > or = 50 years of age who had primary medical care at Henry Ford Health System in metropolitan Detroit. Enrolled PD patients (n = 144) and control subjects (n = 464) were frequency-matched for age, race, and sex. When adjusted for these variables and smoking status, there was a significant association of occupational exposure to herbicides (odds ratio [OR], 4.10; 95% CI, 1.37, 12.24) and insecticides (OR, 3.55; 95% CI, 1.75, 7.18) with PD, but no relation was found with fungicide exposure. Farming as an occupation was significantly associated with PD (OR, 2.79; 95% CI, 1.03, 7.55), but there was no increased risk of the disease with rural or farm residence or well water use. The association of occupational exposure to herbicides or insecticides with PD remained after adjustment for farming. The association of farming with PD was maintained after adjustment for occupational herbicide exposure and was of borderline significance after adjustment for occupational insecticide exposure. These results suggest that PD is associated with occupational exposure to herbicides and insecticides and to farming and that the risk of farming cannot be accounted for by pesticide exposure alone.
Collapse
|
|
27 |
415 |
6
|
Al Olama AA, Kote-Jarai Z, Berndt SI, Conti DV, Schumacher F, Han Y, Benlloch S, Hazelett DJ, Wang Z, Saunders E, Leongamornlert D, Lindstrom S, Jugurnauth-Little S, Dadaev T, Tymrakiewicz M, Stram DO, Rand K, Wan P, Stram A, Sheng X, Pooler LC, Park K, Xia L, Tyrer J, Kolonel LN, Le Marchand L, Hoover RN, Machiela MJ, Yeager M, Burdette L, Chung CC, Hutchinson A, Yu K, Goh C, Ahmed M, Govindasami K, Guy M, Tammela TLJ, Auvinen A, Wahlfors T, Schleutker J, Visakorpi T, Leinonen KA, Xu J, Aly M, Donovan J, Travis RC, Key TJ, Siddiq A, Canzian F, Khaw KT, Takahashi A, Kubo M, Pharoah P, Pashayan N, Weischer M, Nordestgaard BG, Nielsen SF, Klarskov P, Røder MA, Iversen P, Thibodeau SN, McDonnell SK, Schaid DJ, Stanford JL, Kolb S, Holt S, Knudsen B, Coll AH, Gapstur SM, Diver WR, Stevens VL, Maier C, Luedeke M, Herkommer K, Rinckleb AE, Strom SS, Pettaway C, Yeboah ED, Tettey Y, Biritwum RB, Adjei AA, Tay E, Truelove A, Niwa S, Chokkalingam AP, Cannon-Albright L, Cybulski C, Wokołorczyk D, Kluźniak W, Park J, Sellers T, Lin HY, Isaacs WB, Partin AW, Brenner H, Dieffenbach AK, Stegmaier C, Chen C, Giovannucci EL, Ma J, Stampfer M, Penney KL, Mucci L, John EM, Ingles SA, Kittles RA, Murphy AB, Pandha H, Michael A, Kierzek AM, Blot W, Signorello LB, Zheng W, Albanes D, Virtamo J, Weinstein S, Nemesure B, Carpten J, Leske C, Wu SY, Hennis A, Kibel AS, Rybicki BA, Neslund-Dudas C, Hsing AW, Chu L, Goodman PJ, Klein EA, Zheng SL, Batra J, Clements J, Spurdle A, Teixeira MR, Paulo P, Maia S, Slavov C, Kaneva R, Mitev V, Witte JS, Casey G, Gillanders EM, Seminara D, Riboli E, Hamdy FC, Coetzee GA, Li Q, Freedman ML, Hunter DJ, Muir K, Gronberg H, Neal DE, Southey M, Giles GG, Severi G, Cook MB, Nakagawa H, Wiklund F, Kraft P, Chanock SJ, Henderson BE, Easton DF, Eeles RA, Haiman CA. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet 2014; 46:1103-9. [PMID: 25217961 PMCID: PMC4383163 DOI: 10.1038/ng.3094] [Citation(s) in RCA: 350] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/19/2014] [Indexed: 02/02/2023]
Abstract
Genome-wide association studies (GWAS) have identified 76 variants associated with prostate cancer risk predominantly in populations of European ancestry. To identify additional susceptibility loci for this common cancer, we conducted a meta-analysis of > 10 million SNPs in 43,303 prostate cancer cases and 43,737 controls from studies in populations of European, African, Japanese and Latino ancestry. Twenty-three new susceptibility loci were identified at association P < 5 × 10(-8); 15 variants were identified among men of European ancestry, 7 were identified in multi-ancestry analyses and 1 was associated with early-onset prostate cancer. These 23 variants, in combination with known prostate cancer risk variants, explain 33% of the familial risk for this disease in European-ancestry populations. These findings provide new regions for investigation into the pathogenesis of prostate cancer and demonstrate the usefulness of combining ancestrally diverse populations to discover risk loci for disease.
Collapse
|
Meta-Analysis |
11 |
350 |
7
|
Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Brown GG, Richardson RJ. Occupational exposures to metals as risk factors for Parkinson's disease. Neurology 1997; 48:650-8. [PMID: 9065542 DOI: 10.1212/wnl.48.3.650] [Citation(s) in RCA: 295] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In a population-based case-control study, we investigated the potential role of occupational exposure to iron, copper, manganese, mercury, zinc, and lead as risk factors for Parkinson's disease (PD). Concurrently recruited, nondemented patients (n = 144) with idiopathic PD and controls (n = 464) consisting of men and women > or =50 years of age, frequency-matched for age (within 5 years), race, and sex were enrolled. All had primary medical care at Henry Ford Health System in urban/suburban metropolitan Detroit. Subjects were given an extensive risk-factor questionnaire detailing actual worksite conditions of all jobs held for more than 6 months from age 18 onward. An industrial hygienist, blinded to the case-control status of subjects, rated occupational exposure to each of the metals of interest. When adjusted for sex, race, age, and smoking status, we found in those with more than 20 years' exposure a significantly increased association with PD for copper (OR = 2.49, 95% CI = 1.06, 5.89) and manganese (OR = 10.61, 95% CI = 1.06, 105.83). For more than 20 years' exposure to combinations of lead-copper (OR = 5.24, 95% CI = 1.59, 17.21), lead-iron (OR = 2.83, 95% CI = 1.07, 7.50), and iron-copper (OR = 3.69, 95% CI = 1.40, 9.71), there was a greater association with PD than with any of these metals alone. These findings suggest that chronic exposure to these metals is associated with PD, and that they may act alone or together over time to help produce the disease.
Collapse
|
Clinical Trial |
28 |
295 |
8
|
Conti DV, Darst BF, Moss LC, Saunders EJ, Sheng X, Chou A, Schumacher FR, Olama AAA, Benlloch S, Dadaev T, Brook MN, Sahimi A, Hoffmann TJ, Takahashi A, Matsuda K, Momozawa Y, Fujita M, Muir K, Lophatananon A, Wan P, Le Marchand L, Wilkens LR, Stevens VL, Gapstur SM, Carter BD, Schleutker J, Tammela TLJ, Sipeky C, Auvinen A, Giles GG, Southey MC, MacInnis RJ, Cybulski C, Wokołorczyk D, Lubiński J, Neal DE, Donovan JL, Hamdy FC, Martin RM, Nordestgaard BG, Nielsen SF, Weischer M, Bojesen SE, Røder MA, Iversen P, Batra J, Chambers S, Moya L, Horvath L, Clements JA, Tilley W, Risbridger GP, Gronberg H, Aly M, Szulkin R, Eklund M, Nordström T, Pashayan N, Dunning AM, Ghoussaini M, Travis RC, Key TJ, Riboli E, Park JY, Sellers TA, Lin HY, Albanes D, Weinstein SJ, Mucci LA, Giovannucci E, Lindstrom S, Kraft P, Hunter DJ, Penney KL, Turman C, Tangen CM, Goodman PJ, Thompson IM, Hamilton RJ, Fleshner NE, Finelli A, Parent MÉ, Stanford JL, Ostrander EA, Geybels MS, Koutros S, Freeman LEB, Stampfer M, Wolk A, Håkansson N, Andriole GL, Hoover RN, Machiela MJ, Sørensen KD, Borre M, Blot WJ, Zheng W, Yeboah ED, Mensah JE, Lu YJ, Zhang HW, Feng N, Mao X, Wu Y, Zhao SC, Sun Z, Thibodeau SN, McDonnell SK, Schaid DJ, West CML, Burnet N, Barnett G, Maier C, Schnoeller T, Luedeke M, Kibel AS, Drake BF, Cussenot O, Cancel-Tassin G, Menegaux F, Truong T, Koudou YA, John EM, Grindedal EM, Maehle L, Khaw KT, Ingles SA, Stern MC, Vega A, Gómez-Caamaño A, Fachal L, Rosenstein BS, Kerns SL, Ostrer H, Teixeira MR, Paulo P, Brandão A, Watya S, Lubwama A, Bensen JT, Fontham ETH, Mohler J, Taylor JA, Kogevinas M, Llorca J, Castaño-Vinyals G, Cannon-Albright L, Teerlink CC, Huff CD, Strom SS, Multigner L, Blanchet P, Brureau L, Kaneva R, Slavov C, Mitev V, Leach RJ, Weaver B, Brenner H, Cuk K, Holleczek B, Saum KU, Klein EA, Hsing AW, Kittles RA, Murphy AB, Logothetis CJ, Kim J, Neuhausen SL, Steele L, Ding YC, Isaacs WB, Nemesure B, Hennis AJM, Carpten J, Pandha H, Michael A, De Ruyck K, De Meerleer G, Ost P, Xu J, Razack A, Lim J, Teo SH, Newcomb LF, Lin DW, Fowke JH, Neslund-Dudas C, Rybicki BA, Gamulin M, Lessel D, Kulis T, Usmani N, Singhal S, Parliament M, Claessens F, Joniau S, Van den Broeck T, Gago-Dominguez M, Castelao JE, Martinez ME, Larkin S, Townsend PA, Aukim-Hastie C, Bush WS, Aldrich MC, Crawford DC, Srivastava S, Cullen JC, Petrovics G, Casey G, Roobol MJ, Jenster G, van Schaik RHN, Hu JJ, Sanderson M, Varma R, McKean-Cowdin R, Torres M, Mancuso N, Berndt SI, Van Den Eeden SK, Easton DF, Chanock SJ, Cook MB, Wiklund F, Nakagawa H, Witte JS, Eeles RA, Kote-Jarai Z, Haiman CA. Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nat Genet 2021; 53:65-75. [PMID: 33398198 PMCID: PMC8148035 DOI: 10.1038/s41588-020-00748-0] [Citation(s) in RCA: 291] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/05/2020] [Indexed: 01/28/2023]
Abstract
Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction.
Collapse
|
Meta-Analysis |
4 |
291 |
9
|
Rybicki BA, Iannuzzi MC, Frederick MM, Thompson BW, Rossman MD, Bresnitz EA, Terrin ML, Moller DR, Barnard J, Baughman RP, DePalo L, Hunninghake G, Johns C, Judson MA, Knatterud GL, McLennan G, Newman LS, Rabin DL, Rose C, Teirstein AS, Weinberger SE, Yeager H, Cherniack R. Familial aggregation of sarcoidosis. A case-control etiologic study of sarcoidosis (ACCESS). Am J Respir Crit Care Med 2001; 164:2085-91. [PMID: 11739139 DOI: 10.1164/ajrccm.164.11.2106001] [Citation(s) in RCA: 265] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Despite reports of familial clustering of sarcoidosis, little empirical evidence exists that disease risk in family members of sarcoidosis cases is greater than that in the general population. To address this question, we estimated sarcoidosis familial relative risk using data on disease occurrence in 10,862 first- and 17,047 second-degree relatives of 706 age, sex, race, and geographically matched cases and controls who participated in the multicenter ACCESS (A Case-Control Etiology Study of Sarcoidosis) study from 1996 to 1999. Familial relative risk estimates were calculated using a logistic regression technique that accounted for the dependence between relatives. Sibs had the highest relative risk (odds ratio [OR] = 5.8; 95% confidence interval [CI] = 2.1-15.9), followed by avuncular relationships (OR = 5.7; 95% CI = 1.6-20.7), grandparents (OR = 5.2; 95% CI = 1.5-18.0), and then parents (OR = 3.8; 95% CI = 1.2-11.3). In a multivariate model fit to the parents and sibs data, the familial relative risk adjusted for age, sex, relative class, and shared environment was 4.7 (95% CI = 2.3-9.7). White cases had a markedly higher familial relative risk compared with African-American cases (18.0 versus 2.8; p = 0.098). In summary, a significant elevated risk of sarcoidosis was observed among first- and second-degree relatives of sarcoidosis cases compared with relatives of matched control subjects.
Collapse
|
|
24 |
265 |
10
|
Hinch AG, Tandon A, Patterson N, Song Y, Rohland N, Palmer CD, Chen GK, Wang K, Buxbaum SG, Akylbekova M, Aldrich MC, Ambrosone CB, Amos C, Bandera EV, Berndt SI, Bernstein L, Blot WJ, Bock CH, Boerwinkle E, Cai Q, Caporaso N, Casey G, Cupples LA, Deming SL, Diver WR, Divers J, Fornage M, Gillanders EM, Glessner J, Harris CC, Hu JJ, Ingles SA, Isaacs W, John EM, Kao WHL, Keating B, Kittles RA, Kolonel LN, Larkin E, Le Marchand L, McNeill LH, Millikan RC, Murphy A, Musani S, Neslund-Dudas C, Nyante S, Papanicolaou GJ, Press MF, Psaty BM, Reiner AP, Rich SS, Rodriguez-Gil JL, Rotter JI, Rybicki BA, Schwartz AG, Signorello LB, Spitz M, Strom SS, Thun MJ, Tucker MA, Wang Z, Wiencke JK, Witte JS, Wrensch M, Wu X, Yamamura Y, Zanetti KA, Zheng W, Ziegler RG, Zhu X, Redline S, Hirschhorn JN, Henderson BE, Taylor HA, Price AL, Hakonarson H, Chanock SJ, Haiman CA, Wilson JG, Reich D, Myers SR. The landscape of recombination in African Americans. Nature 2011; 476:170-5. [PMID: 21775986 PMCID: PMC3154982 DOI: 10.1038/nature10336] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/27/2011] [Indexed: 01/14/2023]
Abstract
Recombination, together with mutation, gives rise to genetic variation in populations. Here we leverage the recent mixture of people of African and European ancestry in the Americas to build a genetic map measuring the probability of crossing over at each position in the genome, based on about 2.1 million crossovers in 30,000 unrelated African Americans. At intervals of more than three megabases it is nearly identical to a map built in Europeans. At finer scales it differs significantly, and we identify about 2,500 recombination hotspots that are active in people of West African ancestry but nearly inactive in Europeans. The probability of a crossover at these hotspots is almost fully controlled by the alleles an individual carries at PRDM9 (P value < 10(-245)). We identify a 17-base-pair DNA sequence motif that is enriched in these hotspots, and is an excellent match to the predicted binding target of PRDM9 alleles common in West Africans and rare in Europeans. Sites of this motif are predicted to be risk loci for disease-causing genomic rearrangements in individuals carrying these alleles. More generally, this map provides a resource for research in human genetic variation and evolution.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
242 |
11
|
Rossman MD, Thompson B, Frederick M, Maliarik M, Iannuzzi MC, Rybicki BA, Pandey JP, Newman LS, Magira E, Beznik-Cizman B, Monos D. HLA-DRB1*1101: a significant risk factor for sarcoidosis in blacks and whites. Am J Hum Genet 2003; 73:720-35. [PMID: 14508706 PMCID: PMC1180597 DOI: 10.1086/378097] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Accepted: 06/11/2003] [Indexed: 12/27/2022] Open
Abstract
Sarcoidosis is a granulomatous disorder of unknown etiology, associated with an accumulation of CD4+ T cells and a TH1 immune response. Since previous studies of HLA associations with sarcoidosis were limited by serologic or low-resolution molecular identification, we performed high-resolution typing for the HLA-DPB1, HLA-DQB1, HLA-DRB1, and HLA-DRB3 loci and the presence of the DRB4 or DRB5 locus, to define HLA class II associations with sarcoidosis. A Case Control Etiologic Study of Sarcoidosis (ACCESS) enrolled biopsy-confirmed cases (736 total) from 10 centers in the United States. Seven hundred six (706) controls were case matched for age, race, sex, and geographic area. We studied the first 474 ACCESS patients and case-matched controls. The HLA-DRB1 alleles were differentially distributed between cases and controls (P<.0001). The HLA-DRB1*1101 allele was associated (P<.01) with sarcoidosis in blacks and whites and had a population attributable risk of 16% in blacks and 9% in whites. HLA-DRB1-F(47) was the amino acid residue most associated with sarcoidosis and independently associated with sarcoidosis in whites. The HLA-DPB1 locus also contributed to susceptibility for sarcoidosis and, in contrast to chronic beryllium disease, a non-E(69)-containing allele, HLA-DPB1*0101, conveyed most of the risk. Although significant differences were observed in the distribution of HLA class II alleles between blacks and whites, only HLA-DRB1*1501 was differentially associated with sarcoidosis (P<.003). In addition to being susceptibility markers, HLA class II alleles may be markers for different phenotypes of sarcoidosis (DRB1*0401 for eye in blacks and whites, DRB3 for bone marrow in blacks, and DPB1*0101 for hypercalcemia in whites). These studies confirm a genetic predisposition for sarcoidosis and present evidence for the allelic variation at the HLA-DRB1 locus as a major contributor.
Collapse
|
Multicenter Study |
22 |
239 |
12
|
Monda KL, Chen GK, Taylor KC, Palmer C, Edwards TL, Lange LA, Ng MC, Adeyemo AA, Allison MA, Bielak LF, Chen G, Graff M, Irvin MR, Rhie SK, Li G, Liu Y, Liu Y, Lu Y, Nalls MA, Sun YV, Wojczynski MK, Yanek LR, Aldrich MC, Ademola A, Amos CI, Bandera EV, Bock CH, Britton A, Broeckel U, Cai Q, Caporaso NE, Carlson C, Carpten J, Casey G, Chen WM, Chen F, Chen YDI, Chiang CW, Coetzee GA, Demerath E, Deming-Halverson SL, Driver RW, Dubbert P, Feitosa MF, Freedman BI, Gillanders EM, Gottesman O, Guo X, Haritunians T, Harris T, Harris CC, Hennis AJM, Hernandez DG, McNeill LH, Howard TD, Howard BV, Howard VJ, Johnson KC, Kang SJ, Keating BJ, Kolb S, Kuller LH, Kutlar A, Langefeld CD, Lettre G, Lohman K, Lotay V, Lyon H, Manson JE, Maixner W, Meng YA, Monroe KR, Morhason-Bello I, Murphy AB, Mychaleckyj JC, Nadukuru R, Nathanson KL, Nayak U, N’Diaye A, Nemesure B, Wu SY, Leske MC, Neslund-Dudas C, Neuhouser M, Nyante S, Ochs-Balcom H, Ogunniyi A, Ogundiran TO, Ojengbede O, Olopade OI, Palmer JR, Ruiz-Narvaez EA, Palmer ND, Press MF, Rampersaud E, Rasmussen-Torvik LJ, Rodriguez-Gil JL, Salako B, Schadt EE, Schwartz AG, Shriner DA, Siscovick D, Smith SB, Wassertheil-Smoller S, Speliotes EK, Spitz MR, Sucheston L, Taylor H, Tayo BO, Tucker MA, Van Den Berg DJ, Velez Edwards DR, Wang Z, Wiencke JK, Winkler TW, Witte JS, Wrensch M, Wu X, Yang JJ, Levin AM, Young TR, Zakai NA, Cushman M, Zanetti KA, Zhao JH, Zhao W, Zheng Y, Zhou J, Ziegler RG, Zmuda JM, Fernandes JK, Gilkeson GS, Kamen DL, Hunt KJ, Spruill IJ, Ambrosone CB, Ambs S, Arnett DK, Atwood L, Becker DM, Berndt SI, Bernstein L, Blot WJ, Borecki IB, Bottinger EP, Bowden DW, Burke G, Chanock SJ, Cooper RS, Ding J, Duggan D, Evans MK, Fox C, Garvey WT, Bradfield JP, Hakonarson H, Grant SF, Hsing A, Chu L, Hu JJ, Huo D, Ingles SA, John EM, Jordan JM, Kabagambe EK, Kardia SL, Kittles RA, Goodman PJ, Klein EA, Kolonel LN, Le Marchand L, Liu S, McKnight B, Millikan RC, Mosley TH, Padhukasahasram B, Williams LK, Patel SR, Peters U, Pettaway CA, Peyser PA, Psaty BM, Redline S, Rotimi CN, Rybicki BA, Sale MM, Schreiner PJ, Signorello LB, Singleton AB, Stanford JL, Strom SS, Thun MJ, Vitolins M, Zheng W, Moore JH, Williams SM, Zhu X, Zonderman AB, Kooperberg C, Papanicolaou G, Henderson BE, Reiner AP, Hirschhorn JN, Loos RJF, North KE, Haiman CA. A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. Nat Genet 2013; 45:690-6. [PMID: 23583978 PMCID: PMC3694490 DOI: 10.1038/ng.2608] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 03/18/2013] [Indexed: 11/08/2022]
Abstract
Genome-wide association studies (GWAS) have identified 36 loci associated with body mass index (BMI), predominantly in populations of European ancestry. We conducted a meta-analysis to examine the association of >3.2 million SNPs with BMI in 39,144 men and women of African ancestry and followed up the most significant associations in an additional 32,268 individuals of African ancestry. We identified one new locus at 5q33 (GALNT10, rs7708584, P = 3.4 × 10(-11)) and another at 7p15 when we included data from the GIANT consortium (MIR148A-NFE2L3, rs10261878, P = 1.2 × 10(-10)). We also found suggestive evidence of an association at a third locus at 6q16 in the African-ancestry sample (KLHL32, rs974417, P = 6.9 × 10(-8)). Thirty-two of the 36 previously established BMI variants showed directionally consistent effect estimates in our GWAS (binomial P = 9.7 × 10(-7)), five of which reached genome-wide significance. These findings provide strong support for shared BMI loci across populations, as well as for the utility of studying ancestrally diverse populations.
Collapse
|
Meta-Analysis |
12 |
199 |
13
|
Rebbeck TR, Devesa SS, Chang BL, Bunker CH, Cheng I, Cooney K, Eeles R, Fernandez P, Giri VN, Gueye SM, Haiman CA, Henderson BE, Heyns CF, Hu JJ, Ingles SA, Isaacs W, Jalloh M, John EM, Kibel AS, Kidd LR, Layne P, Leach RJ, Neslund-Dudas C, Okobia MN, Ostrander EA, Park JY, Patrick AL, Phelan CM, Ragin C, Roberts RA, Rybicki BA, Stanford JL, Strom S, Thompson IM, Witte J, Xu J, Yeboah E, Hsing AW, Zeigler-Johnson CM. Global patterns of prostate cancer incidence, aggressiveness, and mortality in men of african descent. Prostate Cancer 2013; 2013:560857. [PMID: 23476788 PMCID: PMC3583061 DOI: 10.1155/2013/560857] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 10/08/2012] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (CaP) is the leading cancer among men of African descent in the USA, Caribbean, and Sub-Saharan Africa (SSA). The estimated number of CaP deaths in SSA during 2008 was more than five times that among African Americans and is expected to double in Africa by 2030. We summarize publicly available CaP data and collected data from the men of African descent and Carcinoma of the Prostate (MADCaP) Consortium and the African Caribbean Cancer Consortium (AC3) to evaluate CaP incidence and mortality in men of African descent worldwide. CaP incidence and mortality are highest in men of African descent in the USA and the Caribbean. Tumor stage and grade were highest in SSA. We report a higher proportion of T1 stage prostate tumors in countries with greater percent gross domestic product spent on health care and physicians per 100,000 persons. We also observed that regions with a higher proportion of advanced tumors reported lower mortality rates. This finding suggests that CaP is underdiagnosed and/or underreported in SSA men. Nonetheless, CaP incidence and mortality represent a significant public health problem in men of African descent around the world.
Collapse
|
research-article |
12 |
177 |
14
|
Gorell JM, Rybicki BA, Johnson CC, Peterson EL. Smoking and Parkinson's disease: a dose-response relationship. Neurology 1999; 52:115-9. [PMID: 9921857 DOI: 10.1212/wnl.52.1.115] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether an inverse dose-response relationship exists between cigarette smoking and PD among ever-smokers and ex-smokers. METHODS Smoking and alcohol consumption were analyzed in 144 PD patients and 464 control subjects, who were frequency matched for sex, race, and age (+/-5 years), in a population-based case-control study of men and women > or =50 years old in the Henry Ford Health System. RESULTS With never-smokers as the reference category, there was an inverse association between current light smokers (>0 to 30 pack-years) and PD patients (odds ratio [OR], 0.59; 95% CI, 0.23 to 1.53), and a stronger inverse association of PD with current heavy smokers (>30 pack-years; OR, 0.08; 95% CI, 0.01 to 0.62). When former >30-pack-year smokers were stratified by the interval since quitting, there was an inverse association between those who stopped >20 years ago and PD (OR, 0.86; 95% CI, 0.42 to 1.75), and a greater inverse relationship with those who stopped 1 to 20 years ago (OR, 0.37; 95% CI, 0.19 to 0.72). Alcohol consumption had no independent, significant association with PD, but heavy drinking (>10 drink-years) had a greater effect than light-moderate drinking in reducing but not eliminating the inverse association between smoking and PD. CONCLUSIONS The inverse dose-response relationship between PD and smoking and its cessation is unlikely to be due to bias or confounding, as discussed, providing indirect evidence that smoking is biologically protective.
Collapse
|
|
26 |
161 |
15
|
Rybicki BA, Walewski JL, Maliarik MJ, Kian H, Iannuzzi MC. The BTNL2 gene and sarcoidosis susceptibility in African Americans and Whites. Am J Hum Genet 2005; 77:491-9. [PMID: 16080124 PMCID: PMC1226214 DOI: 10.1086/444435] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 06/29/2005] [Indexed: 11/03/2022] Open
Abstract
The BTNL2 gene is a member of the B7 receptor family that probably functions as a T-cell costimulatory molecule. It resides in the class II major histocompatibility complex (MHC) region of chromosome 6p and has recently been associated with sarcoidosis susceptibility in a white German population. We sought to replicate the BTNL2 association in an African American family-based study population (n=219 nuclear families) and two case-control populations--one African American (n=295 pairs) and one white (n=366 pairs). Ten SNPs were detected within a 490-bp region spanning exon/intron 5 of BTNL2. Haplotype variation within this region was significantly associated with sarcoidosis in all three study populations but more so in whites (P=.0006) than in the African American case-control (P=.02) or family-based (P=.03) samples. The previously reported BTNL2 SNP with the strongest sarcoidosis association, rs2076530, was also the SNP with the strongest association in our white population (P<.0001). The A allele of rs2076530 results in a premature exon-splice site and increases risk for sarcoidosis (odds ratio=2.03; 95% confidence interval 1.32-3.12). Although rs2076530 was not associated with sarcoidosis in either African American sample, a three-locus haplotype that included rs2076530 was associated with sarcoidosis across all three study samples. Multivariable logistic regression analyses showed that BTNL2 effects are independent of human leukocyte antigen class II genes in whites but may interact antagonistically in African Americans. Our results underscore the complexity of genetic risk for sarcoidosis emanating from the MHC region.
Collapse
|
Comparative Study |
20 |
154 |
16
|
Abstract
OBJECTIVE To determine the relative contribution of various risk factors to the development of Parkinson's disease (PD). METHODS Ten variables that were independently associated with PD in a health system population-based case-control study of epidemiological risk factors for the disease were jointly assessed. Stepwise logistic regression, adjusted for sex, race and age was used to develop a multiple variate model that best predicted the presence of PD. The population attributable risk was estimated for each variable in the final model, as well as for all factors together. RESULTS The 10 initial variables included >20 years occupational exposure to manganese or to copper, individually; >20 years joint occupational exposure to either lead and copper, copper and iron, or lead and iron; a positive family history of PD in first- or second-degree relatives; occupational exposure to insecticides or herbicides; occupational exposure to farming; and smoking. Logistic regression resulted in a final model that included >20 years joint occupational exposure to lead and copper (p=0.009; population attributable risk [PAR]=3.9%), occupational exposure to insecticides (p=0.002; PAR=8.1%), a positive family history of PD in first- and second-degree relatives (p=0.001; PAR=12.4%), and smoking </=30 pack-years or not smoking (p=0.005; PAR=41.4%). All four variables combined had a PAR=54.1%. CONCLUSIONS Our final model of PD risk suggests that occupational, environmental lifestyle and, likely, genetic factors, individually and collectively, play a significant role in the etiology of the disease. Clearly, additional risk factors remain to be determined through future research.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
150 |
17
|
Gorell JM, Johnson CC, Rybicki BA. Parkinson's disease and its comorbid disorders: an analysis of Michigan mortality data, 1970 to 1990. Neurology 1994; 44:1865-8. [PMID: 7936238 DOI: 10.1212/wnl.44.10.1865] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Using data from death certificates, we compared underlying causes of death for two populations of Michigan decedents: (1) persons 40 years of age and older for whom Parkinson's disease (PD) was listed as a contributing cause of death and who died in the years 1970 through 1989, and (2) all persons in Michigan over 40 years of age who died in 1970, 1980, or 1990. PD decedents were approximately 1.5 times more likely to die from cerebrovascular disease and three to four times more likely to die from pneumonia/influenza, but they had just 29% of the expected number of deaths due to cancer. These associations were maintained irrespective of gender or race. PD decedents had diabetes mellitus and heart diseases as frequently as decedents in the general population, but liver diseases were less frequent among PD decedents. These trends held throughout the 21-year study period. When we stratified cancers by whether they are known to be (1) highly related, (2) moderately related, or (3) weakly related or unrelated to smoking, there were still 2.5 times fewer cancers unrelated or weakly related to smoking among PD decedents than among decedents in the general population. We believe that the greater frequency of cerebrovascular disease in PD decedents may be due to a detection bias, since PD patients are more likely to be seen by neurologists, who are more apt to diagnose and document diseases of the nervous system. Pneumonia/influenza is more common among PD patients because of their relative immobility near the end of life.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
31 |
131 |
18
|
Wiktor A, Rybicki BA, Piao ZS, Shurafa M, Barthel B, Maeda K, Van Dyke DL. Clinical significance of Y chromosome loss in hematologic disease. Genes Chromosomes Cancer 2000. [DOI: 10.1002/(sici)1098-2264(200001)27:1<11::aid-gcc2>3.0.co;2-i] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
|
25 |
125 |
19
|
Johnson CC, Gorell JM, Rybicki BA, Sanders K, Peterson EL. Adult nutrient intake as a risk factor for Parkinson's disease. Int J Epidemiol 1999; 28:1102-9. [PMID: 10661654 DOI: 10.1093/ije/28.6.1102] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND This population-based case-control study evaluated nutrient intake as a risk factor for Parkinson's disease (PD) among people aged > or =50 years in metropolitan Detroit. METHODS Cases (n = 126) were diagnosed between 1991 and 1995 and neurologist-confirmed. Controls (n = 432) were frequency-matched for sex, age (+/-5 years) and race. Using a standardized food frequency questionnaire, subjects reported the foods they ate within the past year. RESULTS Estimating the association between PD and risk of being in the highest versus the lowest intake quartile, there were elevated odds ratios for total fat (OR 1.94, 95% confidence interval [CI] : 1.05-3.58), cholesterol (OR 2.11, 95% CI: 1.14-3.90), lutein (OR 2.52, 95% CI: 1.32-4.84) and iron (OR 1.88, 95% CI: 1.05-3.38). CONCLUSIONS These results suggest an association of PD with high intake of total fat, saturated fats, cholesterol, lutein and iron.
Collapse
|
|
26 |
120 |
20
|
Rybicki BA, Johnson CC, Uman J, Gorell JM. Parkinson's disease mortality and the industrial use of heavy metals in Michigan. Mov Disord 1993; 8:87-92. [PMID: 8419812 DOI: 10.1002/mds.870080116] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Parkinson's disease (PD) mortality rates in Michigan counties for 1986-1988 were calculated with respect to potential heavy metal exposure (iron, zinc, copper, mercury, magnesium, and manganese) from industry based on recent census data. Individuals were counted as a PD death if the diagnosis was listed as an "underlying" or "related" cause of death on the death certificate. Counties with an industry in the paper, chemical, iron, or copper related-industrial categories (ICs) had statistically significantly (p < 0.05) higher PD death rates than counties without these industries. Significant correlations of chemical (rs = 0.22; p = 0.05), paper (rs = 0.22; p = 0.05) and iron (rs = 0.29; p = 0.008) industry densities with PD death rates were also present. Counties were divided into high (> 15/100,000 individuals 45 years old and over) and low (< = 15/100,000) PD death rate counties by cluster analysis. Geographically, counties with high PD mortality were located mainly in the southern half of the lower peninsula and eastern half of the upper peninsula; low PD death rate counties formed two distinct clusters in the western edge of the upper peninsula and the north-central portion of the lower peninsula. Other possible risk factors that may explain the varied distribution of PD death rates in Michigan were examined. Those significantly correlated with PD mortality included population density (rs = 0.31; p = 0.005), farming density (rs = 0.25; p = 0.02), and well water use (rs = -0.24; p = 0.03). These ecologic findings suggest a geographic association between PD mortality and the industrial use of heavy metals.
Collapse
|
|
32 |
113 |
21
|
Haiman CA, Chen GK, Blot WJ, Strom SS, Berndt SI, Kittles RA, Rybicki BA, Isaacs WB, Ingles SA, Stanford JL, Diver WR, Witte JS, Chanock SJ, Kolb S, Signorello LB, Yamamura Y, Neslund-Dudas C, Thun MJ, Murphy A, Casey G, Sheng X, Wan P, Pooler LC, Monroe KR, Waters KM, Le Marchand L, Kolonel LN, Stram DO, Henderson BE. Characterizing genetic risk at known prostate cancer susceptibility loci in African Americans. PLoS Genet 2011; 7:e1001387. [PMID: 21637779 PMCID: PMC3102736 DOI: 10.1371/journal.pgen.1001387] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 04/21/2011] [Indexed: 12/16/2022] Open
Abstract
GWAS of prostate cancer have been remarkably successful in revealing common genetic variants and novel biological pathways that are linked with its etiology. A more complete understanding of inherited susceptibility to prostate cancer in the general population will come from continuing such discovery efforts and from testing known risk alleles in diverse racial and ethnic groups. In this large study of prostate cancer in African American men (3,425 prostate cancer cases and 3,290 controls), we tested 49 risk variants located in 28 genomic regions identified through GWAS in men of European and Asian descent, and we replicated associations (at p≤0.05) with roughly half of these markers. Through fine-mapping, we identified nearby markers in many regions that better define associations in African Americans. At 8q24, we found 9 variants (p≤6×10(-4)) that best capture risk of prostate cancer in African Americans, many of which are more common in men of African than European descent. The markers found to be associated with risk at each locus improved risk modeling in African Americans (per allele OR = 1.17) over the alleles reported in the original GWAS (OR = 1.08). In summary, in this detailed analysis of the prostate cancer risk loci reported from GWAS, we have validated and improved upon markers of risk in some regions that better define the association with prostate cancer in African Americans. Our findings with variants at 8q24 also reinforce the importance of this region as a major risk locus for prostate cancer in men of African ancestry.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
14 |
102 |
22
|
Rybicki BA, Conti DV, Moreira A, Cicek M, Casey G, Witte JS. DNA Repair Gene XRCC1 and XPD Polymorphisms and Risk of Prostate Cancer. Cancer Epidemiol Biomarkers Prev 2004; 13:23-9. [PMID: 14744728 DOI: 10.1158/1055-9965.epi-03-0053] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The X-ray repair cross-complementing group 1 (XRCC1) and xeroderma pigmentosum group D (XPD) genes are involved in base excision repair and nucleotide excision repair of DNA repair pathways, respectively. A growing body of evidence suggests that XRCC1 and XPD are important in environmentally induced cancers, and polymorphisms in both genes have been identified. To determine whether the XRCC1 (codon Arg399Gln) and XPD (codon Asp312Asn and codon Lys751Gln) polymorphisms are associated with prostate cancer susceptibility, we genotyped these polymorphisms in a primarily Caucasian sample of 506 sibships (n = 1,117) ascertained through a brother with prostate cancer. Sibships were analyzed with a Cox proportional hazards model with age at prostate cancer diagnosis as the outcome. Of the three polymorphisms investigated, only the XPD codon 312 Asn/Asn genotype had an odds ratio (OR) significantly different from one (OR, 1.61; 95% CI, 1.03-2.53). Analyses stratified by the clinical characteristics of affected brothers in the sibship did not reveal any significant heterogeneity in risk. In exploring two-way gene interactions, we found a markedly elevated risk for the combination of the XPD codon 312 Asn/Asn and XRCC1 codon 399 Gln/Gln genotypes (OR, 4.81; 95% CI, 1.66-13.97). In summary, our results suggest that the XPD codon 312 Asn allele may exert a modest positive effect on prostate cancer risk when two copies of the allele are present, and this effect is enhanced by the XRCC codon 399 Gln allele in its recessive state.
Collapse
|
|
21 |
101 |
23
|
Gorell JM, Rybicki BA, Cole Johnson C, Peterson EL. Occupational metal exposures and the risk of Parkinson's disease. Neuroepidemiology 1999; 18:303-8. [PMID: 10545782 DOI: 10.1159/000026225] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Occupational exposure to specific metals (manganese, copper, lead, iron, mercury, zinc, aluminum and others) appears to be a risk factor for Parkinson's disease (PD) in some, but not all, case-control studies. These epidemiological studies are reviewed. Several methodological issues that may account for the lack of unanimity of findings are discussed, and suggestions for improved case-control methodology are offered. The study of the neurological disease outcome of workers who have had long-term, well-defined occupational exposure to one or more metals is also urged, with collaborative work including industrial hygienists, occupational toxicologists, neurologists, epidemiologists and biostatisticians. Such efforts, employing state-of-the-art case and control ascertainment and enrollment from suitable population bases, neurological diagnostic rigor and exposure assessment, will help to further define the potentially important roles played by metals in PD and other neurodegenerative disorders.
Collapse
|
Review |
26 |
100 |
24
|
Han Y, Rand KA, Hazelett DJ, Ingles SA, Kittles RA, Strom SS, Rybicki BA, Nemesure B, Isaacs WB, Stanford JL, Zheng W, Schumacher FR, Berndt SI, Wang Z, Xu J, Rohland N, Reich D, Tandon A, Pasaniuc B, Allen A, Quinque D, Mallick S, Notani D, Rosenfeld MG, Jayani RS, Kolb S, Gapstur SM, Stevens VL, Pettaway CA, Yeboah ED, Tettey Y, Biritwum RB, Adjei AA, Tay E, Truelove A, Niwa S, Chokkalingam AP, John EM, Murphy AB, Signorello LB, Carpten J, Leske MC, Wu SY, Hennis AJM, Neslund-Dudas C, Hsing AW, Chu L, Goodman PJ, Klein EA, Zheng SL, Witte JS, Casey G, Lubwama A, Pooler LC, Sheng X, Coetzee GA, Cook MB, Chanock SJ, Stram DO, Watya S, Blot WJ, Conti DV, Henderson BE, Haiman CA. Prostate Cancer Susceptibility in Men of African Ancestry at 8q24. J Natl Cancer Inst 2016; 108:djv431. [PMID: 26823525 DOI: 10.1093/jnci/djv431] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 12/15/2015] [Indexed: 11/14/2022] Open
Abstract
The 8q24 region harbors multiple risk variants for distinct cancers, including >8 for prostate cancer. In this study, we conducted fine mapping of the 8q24 risk region (127.8-128.8Mb) in search of novel associations with common and rare variation in 4853 prostate cancer case patients and 4678 control subjects of African ancestry. All statistical tests were two-sided. We identified three independent associations at P values of less than 5.00×10(-8), all of which were replicated in studies from Ghana and Uganda (combined sample = 5869 case patients, 5615 control subjects; rs114798100: risk allele frequency [RAF] = 0.04, per-allele odds ratio [OR] = 2.31, 95% confidence interval [CI] = 2.04 to 2.61, P = 2.38×10(-40); rs72725879: RAF = 0.33, OR = 1.37, 95% CI = 1.30 to 1.45, P = 3.04×10(-27); and rs111906932: RAF = 0.03, OR = 1.79, 95% CI = 1.53 to 2.08, P = 1.39×10(-13)). Risk variants rs114798100 and rs111906923 are only found in men of African ancestry, with rs111906923 representing a novel association signal. The three variants are located within or near a number of prostate cancer-associated long noncoding RNAs (lncRNAs), including PRNCR1, PCAT1, and PCAT2. These findings highlight ancestry-specific risk variation and implicate prostate-specific lncRNAs at the 8q24 prostate cancer susceptibility region.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
99 |
25
|
Adrianto I, Lin CP, Hale JJ, Levin AM, Datta I, Parker R, Adler A, Kelly JA, Kaufman KM, Lessard CJ, Moser KL, Kimberly RP, Harley JB, Iannuzzi MC, Rybicki BA, Montgomery CG. Genome-wide association study of African and European Americans implicates multiple shared and ethnic specific loci in sarcoidosis susceptibility. PLoS One 2012; 7:e43907. [PMID: 22952805 PMCID: PMC3428296 DOI: 10.1371/journal.pone.0043907] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 07/27/2012] [Indexed: 12/21/2022] Open
Abstract
Sarcoidosis is a systemic inflammatory disease characterized by the formation of granulomas in affected organs. Genome-wide association studies (GWASs) of this disease have been conducted only in European population. We present the first sarcoidosis GWAS in African Americans (AAs, 818 cases and 1,088 related controls) followed by replication in independent sets of AAs (455 cases and 557 controls) and European Americans (EAs, 442 cases and 2,284 controls). We evaluated >6 million SNPs either genotyped using the Illumina Omni1-Quad array or imputed from the 1000 Genomes Project data. We identified a novel sarcoidosis-associated locus, NOTCH4, that reached genome-wide significance in the combined AA samples (rs715299, P(AA-meta) = 6.51 × 10(-10)) and demonstrated the independence of this locus from others in the MHC region in the same sample. We replicated previous European GWAS associations within HLA-DRA, HLA-DRB5, HLA-DRB1, BTNL2, and ANXA11 in both our AA and EA datasets. We also confirmed significant associations to the previously reported HLA-C and HLA-B regions in the EA but not AA samples. We further identified suggestive associations with several other genes previously reported in lung or inflammatory diseases.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
90 |