1
|
Brownstein CA, Beggs AH, Homer N, Merriman B, Yu TW, Flannery KC, DeChene ET, Towne MC, Savage SK, Price EN, Holm IA, Luquette LJ, Lyon E, Majzoub J, Neupert P, McCallie D, Szolovits P, Willard HF, Mendelsohn NJ, Temme R, Finkel RS, Yum SW, Medne L, Sunyaev SR, Adzhubey I, Cassa CA, de Bakker PIW, Duzkale H, Dworzyński P, Fairbrother W, Francioli L, Funke BH, Giovanni MA, Handsaker RE, Lage K, Lebo MS, Lek M, Leshchiner I, MacArthur DG, McLaughlin HM, Murray MF, Pers TH, Polak PP, Raychaudhuri S, Rehm HL, Soemedi R, Stitziel NO, Vestecka S, Supper J, Gugenmus C, Klocke B, Hahn A, Schubach M, Menzel M, Biskup S, Freisinger P, Deng M, Braun M, Perner S, Smith RJH, Andorf JL, Huang J, Ryckman K, Sheffield VC, Stone EM, Bair T, Black-Ziegelbein EA, Braun TA, Darbro B, DeLuca AP, Kolbe DL, Scheetz TE, Shearer AE, Sompallae R, Wang K, Bassuk AG, Edens E, Mathews K, Moore SA, Shchelochkov OA, Trapane P, Bossler A, Campbell CA, Heusel JW, Kwitek A, Maga T, Panzer K, Wassink T, Van Daele D, Azaiez H, Booth K, Meyer N, Segal MM, Williams MS, Tromp G, White P, Corsmeier D, Fitzgerald-Butt S, Herman G, Lamb-Thrush D, et alBrownstein CA, Beggs AH, Homer N, Merriman B, Yu TW, Flannery KC, DeChene ET, Towne MC, Savage SK, Price EN, Holm IA, Luquette LJ, Lyon E, Majzoub J, Neupert P, McCallie D, Szolovits P, Willard HF, Mendelsohn NJ, Temme R, Finkel RS, Yum SW, Medne L, Sunyaev SR, Adzhubey I, Cassa CA, de Bakker PIW, Duzkale H, Dworzyński P, Fairbrother W, Francioli L, Funke BH, Giovanni MA, Handsaker RE, Lage K, Lebo MS, Lek M, Leshchiner I, MacArthur DG, McLaughlin HM, Murray MF, Pers TH, Polak PP, Raychaudhuri S, Rehm HL, Soemedi R, Stitziel NO, Vestecka S, Supper J, Gugenmus C, Klocke B, Hahn A, Schubach M, Menzel M, Biskup S, Freisinger P, Deng M, Braun M, Perner S, Smith RJH, Andorf JL, Huang J, Ryckman K, Sheffield VC, Stone EM, Bair T, Black-Ziegelbein EA, Braun TA, Darbro B, DeLuca AP, Kolbe DL, Scheetz TE, Shearer AE, Sompallae R, Wang K, Bassuk AG, Edens E, Mathews K, Moore SA, Shchelochkov OA, Trapane P, Bossler A, Campbell CA, Heusel JW, Kwitek A, Maga T, Panzer K, Wassink T, Van Daele D, Azaiez H, Booth K, Meyer N, Segal MM, Williams MS, Tromp G, White P, Corsmeier D, Fitzgerald-Butt S, Herman G, Lamb-Thrush D, McBride KL, Newsom D, Pierson CR, Rakowsky AT, Maver A, Lovrečić L, Palandačić A, Peterlin B, Torkamani A, Wedell A, Huss M, Alexeyenko A, Lindvall JM, Magnusson M, Nilsson D, Stranneheim H, Taylan F, Gilissen C, Hoischen A, van Bon B, Yntema H, Nelen M, Zhang W, Sager J, Zhang L, Blair K, Kural D, Cariaso M, Lennon GG, Javed A, Agrawal S, Ng PC, Sandhu KS, Krishna S, Veeramachaneni V, Isakov O, Halperin E, Friedman E, Shomron N, Glusman G, Roach JC, Caballero J, Cox HC, Mauldin D, Ament SA, Rowen L, Richards DR, San Lucas FA, Gonzalez-Garay ML, Caskey CT, Bai Y, Huang Y, Fang F, Zhang Y, Wang Z, Barrera J, Garcia-Lobo JM, González-Lamuño D, Llorca J, Rodriguez MC, Varela I, Reese MG, De La Vega FM, Kiruluta E, Cargill M, Hart RK, Sorenson JM, Lyon GJ, Stevenson DA, Bray BE, Moore BM, Eilbeck K, Yandell M, Zhao H, Hou L, Chen X, Yan X, Chen M, Li C, Yang C, Gunel M, Li P, Kong Y, Alexander AC, Albertyn ZI, Boycott KM, Bulman DE, Gordon PMK, Innes AM, Knoppers BM, Majewski J, Marshall CR, Parboosingh JS, Sawyer SL, Samuels ME, Schwartzentruber J, Kohane IS, Margulies DM. An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge. Genome Biol 2014; 15:R53. [PMID: 24667040 PMCID: PMC4073084 DOI: 10.1186/gb-2014-15-3-r53] [Show More Authors] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 03/25/2014] [Indexed: 12/30/2022] Open
Abstract
Background There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. Results A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. Conclusions The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
90 |
2
|
Krasowski MD, Chudzik D, Dolezal A, Steussy B, Gailey MP, Koch B, Kilborn SB, Darbro BW, Rysgaard CD, Klesney-Tait JA. Promoting improved utilization of laboratory testing through changes in an electronic medical record: experience at an academic medical center. BMC Med Inform Decis Mak 2015; 15:11. [PMID: 25880934 PMCID: PMC4344785 DOI: 10.1186/s12911-015-0137-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/04/2015] [Indexed: 11/23/2022] Open
Abstract
This case study over time describes five years of experience with interventions to improve laboratory test utilization at an academic medical center. The high-frequency laboratory tests showing the biggest declines in order volume post intervention were serum albumin (36%) and erythrocyte sedimentation rate (17%). Introduction of restrictions for 170 high-cost send-out tests resulted in a 23% decline in order volume. Targeted interventions reduced mis-orders involving several “look-alike” tests: 1,25-dihydroxyvitamin D, 25-hydroxyvitamin D; manganese, magnesium; beta-2-glycoprotein, beta-2-microglobulin. Lastly, targeted alerts reduced duplicate orders of germline genetic testing and orders of hepatitis B surface antigen within 2 weeks of hepatitis B vaccination.
Collapse
|
Journal Article |
10 |
75 |
3
|
Hildebrand JM, Kauppi M, Majewski IJ, Liu Z, Cox AJ, Miyake S, Petrie EJ, Silk MA, Li Z, Tanzer MC, Brumatti G, Young SN, Hall C, Garnish SE, Corbin J, Stutz MD, Di Rago L, Gangatirkar P, Josefsson EC, Rigbye K, Anderton H, Rickard JA, Tripaydonis A, Sheridan J, Scerri TS, Jackson VE, Czabotar PE, Zhang JG, Varghese L, Allison CC, Pellegrini M, Tannahill GM, Hatchell EC, Willson TA, Stockwell D, de Graaf CA, Collinge J, Hilton A, Silke N, Spall SK, Chau D, Athanasopoulos V, Metcalf D, Laxer RM, Bassuk AG, Darbro BW, Fiatarone Singh MA, Vlahovich N, Hughes D, Kozlovskaia M, Ascher DB, Warnatz K, Venhoff N, Thiel J, Biben C, Blum S, Reveille J, Hildebrand MS, Vinuesa CG, McCombe P, Brown MA, Kile BT, McLean C, Bahlo M, Masters SL, Nakano H, Ferguson PJ, Murphy JM, Alexander WS, Silke J. A missense mutation in the MLKL brace region promotes lethal neonatal inflammation and hematopoietic dysfunction. Nat Commun 2020; 11:3150. [PMID: 32561755 PMCID: PMC7305203 DOI: 10.1038/s41467-020-16819-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
MLKL is the essential effector of necroptosis, a form of programmed lytic cell death. We have isolated a mouse strain with a single missense mutation, MlklD139V, that alters the two-helix 'brace' that connects the killer four-helix bundle and regulatory pseudokinase domains. This confers constitutive, RIPK3 independent killing activity to MLKL. Homozygous mutant mice develop lethal postnatal inflammation of the salivary glands and mediastinum. The normal embryonic development of MlklD139V homozygotes until birth, and the absence of any overt phenotype in heterozygotes provides important in vivo precedent for the capacity of cells to clear activated MLKL. These observations offer an important insight into the potential disease-modulating roles of three common human MLKL polymorphisms that encode amino acid substitutions within or adjacent to the brace region. Compound heterozygosity of these variants is found at up to 12-fold the expected frequency in patients that suffer from a pediatric autoinflammatory disease, chronic recurrent multifocal osteomyelitis (CRMO).
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
73 |
4
|
Sieren JC, Meyerholz DK, Wang XJ, Davis BT, Newell JD, Hammond E, Rohret JA, Rohret FA, Struzynski JT, Goeken JA, Naumann PW, Leidinger MR, Taghiyev A, Van Rheeden R, Hagen J, Darbro BW, Quelle DE, Rogers CS. Development and translational imaging of a TP53 porcine tumorigenesis model. J Clin Invest 2014; 124:4052-66. [PMID: 25105366 DOI: 10.1172/jci75447] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/19/2014] [Indexed: 01/03/2023] Open
Abstract
Cancer is the second deadliest disease in the United States, necessitating improvements in tumor diagnosis and treatment. Current model systems of cancer are informative, but translating promising imaging approaches and therapies to clinical practice has been challenging. In particular, the lack of a large-animal model that accurately mimics human cancer has been a major barrier to the development of effective diagnostic tools along with surgical and therapeutic interventions. Here, we developed a genetically modified porcine model of cancer in which animals express a mutation in TP53 (which encodes p53) that is orthologous to one commonly found in humans (R175H in people, R167H in pigs). TP53(R167H/R167H) mutant pigs primarily developed lymphomas and osteogenic tumors, recapitulating the tumor types observed in mice and humans expressing orthologous TP53 mutant alleles. CT and MRI imaging data effectively detected developing tumors, which were validated by histopathological evaluation after necropsy. Molecular genetic analyses confirmed that these animals expressed the R167H mutant p53, and evaluation of tumors revealed characteristic chromosomal instability. Together, these results demonstrated that TP53(R167H/R167H) pigs represent a large-animal tumor model that replicates the human condition. Our data further suggest that this model will be uniquely suited for developing clinically relevant, noninvasive imaging approaches to facilitate earlier detection, diagnosis, and treatment of human cancers.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
72 |
5
|
Van 't Erve TJ, Wagner BA, Martin SM, Knudson CM, Blendowski R, Keaton M, Holt T, Hess JR, Buettner GR, Ryckman KK, Darbro BW, Murray JC, Raife TJ. The heritability of hemolysis in stored human red blood cells. Transfusion 2015; 55:1178-85. [PMID: 25644965 DOI: 10.1111/trf.12992] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND The transfusion of red blood cells (RBCs) with maximum therapeutic efficacy is a major goal in transfusion medicine. One of the criteria used in determining stored RBC quality is end-of-storage hemolysis. Between donors, a wide range of hemolysis is observed under identical storage conditions. Here, a potential mechanism for this wide range is investigated. We hypothesize that the magnitude of hemolysis is a heritable trait. Also, we investigated correlations between hemolysis and RBC metabolites; this will establish pathways influencing hemolysis as future targets for genetic analysis. STUDY DESIGN AND METHODS Units of RBCs from identical and nonidentical twins were collected and stored under standard conditions for 56 days. Hemolysis, adenosine triphosphate (ATP), and total glutathione (tGSH) were measured throughout storage. Nontargeted metabolic analyses were performed on RBCs that had been stored for 28 days. Heritability was determined by comparing values between identical and nonidentical twins. RESULTS Hemolysis was found to be heritable (mean > 45%) throughout the storage period. Potential correlations were observed between hemolysis and metabolites from the purine metabolism, lysolipid, and glycolysis pathways. These also exhibited heritability (>20%). No correlation was found with ATP or tGSH. CONCLUSION The susceptibility of RBCs to lysis during storage is partly determined by inheritance. We have also uncovered several pathways that are candidate targets for future genomewide association studies. These findings will aid in the design of better storage solutions and the development of donor screening tools that minimize hemolysis during storage.
Collapse
|
Twin Study |
10 |
71 |
6
|
Cui H, Moore J, Ashimi SS, Mason BL, Drawbridge JN, Han S, Hing B, Matthews A, McAdams CJ, Darbro BW, Pieper AA, Waller DA, Xing C, Lutter M. Eating disorder predisposition is associated with ESRRA and HDAC4 mutations. J Clin Invest 2013; 123:4706-13. [PMID: 24216484 PMCID: PMC3809805 DOI: 10.1172/jci71400] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/08/2013] [Indexed: 12/22/2022] Open
Abstract
Anorexia nervosa and bulimia nervosa are common and severe eating disorders (EDs) of unknown etiology. Although genetic factors have been implicated in the psychopathology of EDs, a clear biological pathway has not been delineated. DNA from two large families affected by EDs was collected, and mutations segregating with illness were identified by whole-genome sequencing following linkage mapping or by whole-exome sequencing. In the first family, analysis of twenty members across three generations identified a rare missense mutation in the estrogen-related receptor α (ESRRA) gene that segregated with illness. In the second family, analysis of eight members across four generations identified a missense mutation in the histone deacetylase 4 (HDAC4) gene that segregated with illness. ESRRA and HDAC4 were determined to interact both in vitro in HeLa cells and in vivo in mouse cortex. Transcriptional analysis revealed that HDAC4 potently represses the expression of known ESRRA-induced target genes. Biochemical analysis of candidate mutations revealed that the identified ESRRA mutation decreased its transcriptional activity, while the HDAC4 mutation increased transcriptional repression of ESRRA. Our findings suggest that mutations that result in decreased ESRRA activity increase the risk of developing EDs.
Collapse
|
research-article |
12 |
59 |
7
|
Cox AJ, Darbro BW, Laxer RM, Velez G, Bing X, Finer AL, Erives A, Mahajan VB, Bassuk AG, Ferguson PJ. Recessive coding and regulatory mutations in FBLIM1 underlie the pathogenesis of chronic recurrent multifocal osteomyelitis (CRMO). PLoS One 2017; 12:e0169687. [PMID: 28301468 PMCID: PMC5354242 DOI: 10.1371/journal.pone.0169687] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic recurrent multifocal osteomyelitis (CRMO) is a rare, pediatric, autoinflammatory disease characterized by bone pain due to sterile osteomyelitis, and is often accompanied by psoriasis or inflammatory bowel disease. There are two syndromic forms of CRMO, Majeed syndrome and DIRA, for which the genetic cause is known. However, for the majority of cases of CRMO, the genetic basis is unknown. Via whole-exome sequencing, we detected a homozygous mutation in the filamin-binding domain of FBLIM1 in an affected child with consanguineous parents. Microarray analysis of bone marrow macrophages from the CRMO murine model (cmo) determined that the Fblim1 ortholog is the most differentially expressed gene, downregulated over 20-fold in the cmo mouse. We sequenced FBLIM1 in 96 CRMO subjects and found a second proband with a novel frameshift mutation in exon 6 and a rare regulatory variant. In SaOS2 cells, overexpressing the regulatory mutation showed the flanking region acts as an enhancer, and the mutation ablates enhancer activity. Our data implicate FBLIM1 in the pathogenesis of sterile bone inflammation and our findings suggest CRMO is a disorder of chronic inflammation and imbalanced bone remodeling.
Collapse
|
Case Reports |
8 |
53 |
8
|
van 't Erve TJ, Doskey CM, Wagner BA, Hess JR, Darbro BW, Ryckman KK, Murray JC, Raife TJ, Buettner GR. Heritability of glutathione and related metabolites in stored red blood cells. Free Radic Biol Med 2014; 76:107-13. [PMID: 25108189 PMCID: PMC4252477 DOI: 10.1016/j.freeradbiomed.2014.07.040] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/15/2014] [Accepted: 07/29/2014] [Indexed: 12/27/2022]
Abstract
Red blood cells (RBCs) collected for transfusion deteriorate during storage. This deterioration is termed the "RBC storage lesion." There is increasing concern over the safety, therapeutic efficacy, and toxicity of transfusing longer-stored units of blood. The severity of the RBC storage lesion is dependent on storage time and varies markedly between individuals. Oxidative damage is considered a significant factor in the development of the RBC storage lesion. In this study, the variability during storage and heritability of antioxidants and metabolites central to RBC integrity and function were investigated. In a classic twin study, we determined the heritability of glutathione (GSH), glutathione disulfide (GSSG), the status of the GSSG,2H(+)/2GSH couple (Ehc), and total glutathione (tGSH) in donated RBCs over 56 days of storage. Intracellular GSH and GSSG concentrations both decrease during storage (median net loss of 0.52 ± 0.63 mM (median ± SD) and 0.032 ± 0.107 mM, respectively, over 42 days). Taking into account the decline in pH, Ehc became more positive (oxidized) during storage (median net increase of 35 ± 16 mV). In our study population heritability estimates for GSH, GSSG, tGSH, and Ehc measured over 56 days of storage are 79, 60, 67, and, 75%, respectively. We conclude that susceptibility of stored RBCs to oxidative injury due to variations in the GSH redox buffer is highly variable among individual donors and strongly heritable. Identifying the genes that regulate the storage-related changes in this redox buffer could lead to the development of new methods to minimize the RBC storage lesion.
Collapse
|
Comparative Study |
11 |
50 |
9
|
van 't Erve TJ, Wagner BA, Martin SM, Knudson CM, Blendowski R, Keaton M, Holt T, Hess JR, Buettner GR, Ryckman KK, Darbro BW, Murray JC, Raife TJ. The heritability of metabolite concentrations in stored human red blood cells. Transfusion 2014; 54:2055-63. [PMID: 24601981 DOI: 10.1111/trf.12605] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/17/2013] [Accepted: 12/26/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND The degeneration of red blood cells (RBCs) during storage is a major issue in transfusion medicine. Family studies in the 1960s established the heritability of the RBC storage lesion based on poststorage adenosine triphosphate (ATP) concentrations. However, this critical discovery has not been further explored. In a classic twin study we confirmed the heritability of poststorage ATP concentrations and established the heritability of many other RBC metabolites. STUDY DESIGN AND METHODS ATP concentrations and metabolomic profiles were analyzed in RBC samples from 18 twin pairs. On samples stored for 28 days, the heritability of poststorage ATP concentrations were 64 and 53% in CP2D- and AS-3-stored RBCs, respectively. RESULTS Metabolomic analyses identified 87 metabolites with an estimated heritability of 20% or greater. Thirty-six metabolites were significantly correlated with ATP concentrations (p ≤ 0.05) and 16 correlated with borderline significance (0.05 ≤ p ≤ 0.10). Of the 52 metabolites that correlated significantly with ATP, 24 demonstrated 20% or more heritability. Pathways represented by heritable metabolites included glycolysis, membrane remodeling, redox homeostasis, and synthetic and degradation pathways. CONCLUSION We conclude that many RBC metabolite concentrations are genetically influenced during storage. Future studies of key metabolic pathways and genetic modifiers of RBC storage could lead to major advances in RBC storage and transfusion therapy.
Collapse
|
Twin Study |
11 |
48 |
10
|
White KA, Swier VJ, Cain JT, Kohlmeyer JL, Meyerholz DK, Tanas MR, Uthoff J, Hammond E, Li H, Rohret FA, Goeken A, Chan CH, Leidinger MR, Umesalma S, Wallace MR, Dodd RD, Panzer K, Tang AH, Darbro BW, Moutal A, Cai S, Li W, Bellampalli SS, Khanna R, Rogers CS, Sieren JC, Quelle DE, Weimer JM. A porcine model of neurofibromatosis type 1 that mimics the human disease. JCI Insight 2018; 3:120402. [PMID: 29925695 DOI: 10.1172/jci.insight.120402] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
Loss of the NF1 tumor suppressor gene causes the autosomal dominant condition, neurofibromatosis type 1 (NF1). Children and adults with NF1 suffer from pathologies including benign and malignant tumors to cognitive deficits, seizures, growth abnormalities, and peripheral neuropathies. NF1 encodes neurofibromin, a Ras-GTPase activating protein, and NF1 mutations result in hyperactivated Ras signaling in patients. Existing NF1 mutant mice mimic individual aspects of NF1, but none comprehensively models the disease. We describe a potentially novel Yucatan miniswine model bearing a heterozygotic mutation in NF1 (exon 42 deletion) orthologous to a mutation found in NF1 patients. NF1+/ex42del miniswine phenocopy the wide range of manifestations seen in NF1 patients, including café au lait spots, neurofibromas, axillary freckling, and neurological defects in learning and memory. Molecular analyses verified reduced neurofibromin expression in swine NF1+/ex42del fibroblasts, as well as hyperactivation of Ras, as measured by increased expression of its downstream effectors, phosphorylated ERK1/2, SIAH, and the checkpoint regulators p53 and p21. Consistent with altered pain signaling in NF1, dysregulation of calcium and sodium channels was observed in dorsal root ganglia expressing mutant NF1. Thus, these NF1+/ex42del miniswine recapitulate the disease and provide a unique, much-needed tool to advance the study and treatment of NF1.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
41 |
11
|
Scott AT, Weitz M, Breheny PJ, Ear PH, Darbro B, Brown BJ, Braun TA, Li G, Umesalma S, Kaemmer CA, Maharjan CK, Quelle DE, Bellizzi AM, Chandrasekharan C, Dillon JS, O'Dorisio TM, Howe JR. Gene Expression Signatures Identify Novel Therapeutics for Metastatic Pancreatic Neuroendocrine Tumors. Clin Cancer Res 2020; 26:2011-2021. [PMID: 31937620 PMCID: PMC7165057 DOI: 10.1158/1078-0432.ccr-19-2884] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Pancreatic neuroendocrine tumors (pNETs) are uncommon malignancies noted for their propensity to metastasize and comparatively favorable prognosis. Although both the treatment options and clinical outcomes have improved in the past decades, most patients will die of metastatic disease. New systemic therapies are needed. EXPERIMENTAL DESIGN Tissues were obtained from 43 patients with well-differentiated pNETs undergoing surgery. Gene expression was compared between primary tumors versus liver and lymph node metastases using RNA-Seq. Genes that were selectively elevated at only one metastatic site were filtered out to reduce tissue-specific effects. Ingenuity pathway analysis (IPA) and the Connectivity Map (CMap) identified drugs likely to antagonize metastasis-specific targets. The biological activity of top identified agents was tested in vitro using two pNET cell lines (BON-1 and QGP-1). RESULTS A total of 902 genes were differentially expressed in pNET metastases compared with primary tumors, 626 of which remained in the common metastatic profile after filtering. Analysis with IPA and CMap revealed altered activity of factors involved in survival and proliferation, and identified drugs targeting those pathways, including inhibitors of mTOR, PI3K, MEK, TOP2A, protein kinase C, NF-kB, cyclin-dependent kinase, and histone deacetylase. Inhibitors of MEK and TOP2A were consistently the most active compounds. CONCLUSIONS We employed a complementary bioinformatics approach to identify novel therapeutics for pNETs by analyzing gene expression in metastatic tumors. The potential utility of these drugs was confirmed by in vitro cytotoxicity assays, suggesting drugs targeting MEK and TOP2A may be highly efficacious against metastatic pNETs. This is a promising strategy for discovering more effective treatments for patients with pNETs.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
38 |
12
|
Paemka L, Mahajan VB, Skeie JM, Sowers LP, Ehaideb SN, Gonzalez-Alegre P, Sasaoka T, Tao H, Miyagi A, Ueno N, Takao K, Miyakawa T, Wu S, Darbro BW, Ferguson PJ, Pieper AA, Britt JK, Wemmie JA, Rudd DS, Wassink T, El-Shanti H, Mefford HC, Carvill GL, Manak JR, Bassuk AG. PRICKLE1 interaction with SYNAPSIN I reveals a role in autism spectrum disorders. PLoS One 2013; 8:e80737. [PMID: 24312498 PMCID: PMC3849077 DOI: 10.1371/journal.pone.0080737] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022] Open
Abstract
The frequent comorbidity of Autism Spectrum Disorders (ASDs) with epilepsy suggests a shared underlying genetic susceptibility; several genes, when mutated, can contribute to both disorders. Recently, PRICKLE1 missense mutations were found to segregate with ASD. However, the mechanism by which mutations in this gene might contribute to ASD is unknown. To elucidate the role of PRICKLE1 in ASDs, we carried out studies in Prickle1(+/-) mice and Drosophila, yeast, and neuronal cell lines. We show that mice with Prickle1 mutations exhibit ASD-like behaviors. To find proteins that interact with PRICKLE1 in the central nervous system, we performed a yeast two-hybrid screen with a human brain cDNA library and isolated a peptide with homology to SYNAPSIN I (SYN1), a protein involved in synaptogenesis, synaptic vesicle formation, and regulation of neurotransmitter release. Endogenous Prickle1 and Syn1 co-localize in neurons and physically interact via the SYN1 region mutated in ASD and epilepsy. Finally, a mutation in PRICKLE1 disrupts its ability to increase the size of dense-core vesicles in PC12 cells. Taken together, these findings suggest PRICKLE1 mutations contribute to ASD by disrupting the interaction with SYN1 and regulation of synaptic vesicles.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
35 |
13
|
Beraldi R, Chan CH, Rogers CS, Kovács AD, Meyerholz DK, Trantzas C, Lambertz AM, Darbro BW, Weber KL, White KAM, Rheeden RV, Kruer MC, Dacken BA, Wang XJ, Davis BT, Rohret JA, Struzynski JT, Rohret FA, Weimer JM, Pearce DA. A novel porcine model of ataxia telangiectasia reproduces neurological features and motor deficits of human disease. Hum Mol Genet 2015; 24:6473-84. [PMID: 26374845 DOI: 10.1093/hmg/ddv356] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/01/2015] [Indexed: 11/14/2022] Open
Abstract
Ataxia telangiectasia (AT) is a progressive multisystem disorder caused by mutations in the AT-mutated (ATM) gene. AT is a neurodegenerative disease primarily characterized by cerebellar degeneration in children leading to motor impairment. The disease progresses with other clinical manifestations including oculocutaneous telangiectasia, immune disorders, increased susceptibly to cancer and respiratory infections. Although genetic investigations and physiological models have established the linkage of ATM with AT onset, the mechanisms linking ATM to neurodegeneration remain undetermined, hindering therapeutic development. Several murine models of AT have been successfully generated showing some of the clinical manifestations of the disease, however they do not fully recapitulate the hallmark neurological phenotype, thus highlighting the need for a more suitable animal model. We engineered a novel porcine model of AT to better phenocopy the disease and bridge the gap between human and current animal models. The initial characterization of AT pigs revealed early cerebellar lesions including loss of Purkinje cells (PCs) and altered cytoarchitecture suggesting a developmental etiology for AT and could advocate for early therapies for AT patients. In addition, similar to patients, AT pigs show growth retardation and develop motor deficit phenotypes. By using the porcine system to model human AT, we established the first animal model showing PC loss and motor features of the human disease. The novel AT pig provides new opportunities to unmask functions and roles of ATM in AT disease and in physiological conditions.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
34 |
14
|
Darbro BW, Mahajan VB, Gakhar L, Skeie JM, Campbell E, Wu S, Bing X, Millen KJ, Dobyns WB, Kessler JA, Jalali A, Cremer J, Segre A, Manak JR, Aldinger KA, Suzuki S, Natsume N, Ono M, Hai HD, Viet LT, Loddo S, Valente EM, Bernardini L, Ghonge N, Ferguson PJ, Bassuk AG. Mutations in extracellular matrix genes NID1 and LAMC1 cause autosomal dominant Dandy-Walker malformation and occipital cephaloceles. Hum Mutat 2013; 34:1075-9. [PMID: 23674478 DOI: 10.1002/humu.22351] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/26/2013] [Indexed: 11/11/2022]
Abstract
We performed whole-exome sequencing of a family with autosomal dominant Dandy-Walker malformation and occipital cephaloceles and detected a mutation in the extracellular matrix (ECM) protein-encoding gene NID1. In a second family, protein interaction network analysis identified a mutation in LAMC1, which encodes a NID1-binding partner. Structural modeling of the NID1-LAMC1 complex demonstrated that each mutation disrupts the interaction. These findings implicate the ECM in the pathogenesis of Dandy-Walker spectrum disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
32 |
15
|
Kohlmeyer JL, Kaemmer CA, Pulliam C, Maharjan CK, Samayoa AM, Major HJ, Cornick KE, Knepper-Adrian V, Khanna R, Sieren JC, Leidinger MR, Meyerholz DK, Zamba KD, Weimer JM, Dodd RD, Darbro BW, Tanas MR, Quelle DE. RABL6A Is an Essential Driver of MPNSTs that Negatively Regulates the RB1 Pathway and Sensitizes Tumor Cells to CDK4/6 Inhibitors. Clin Cancer Res 2020; 26:2997-3011. [PMID: 32086342 PMCID: PMC7299809 DOI: 10.1158/1078-0432.ccr-19-2706] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/20/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Malignant peripheral nerve sheath tumors (MPNST) are deadly sarcomas that lack effective therapies. In most MPNSTs, the retinoblastoma (RB1) tumor suppressor is disabled by hyperactivation of cyclin-dependent kinases (CDK), commonly through loss of CDK-inhibitory proteins such as p27(Kip1). RABL6A is an inhibitor of RB1 whose role in MPNSTs is unknown. To gain insight into MPNST development and establish new treatment options, we investigated RABL6A-RB1 signaling and CDK inhibitor-based therapy in MPNSTs. EXPERIMENTAL DESIGN We examined patient-matched MPNSTs and precursor lesions by RNA sequencing (RNA-Seq) and IHC. Molecular and biological effects of silencing RABL6A and/or p27 in MPNST lines and normal human Schwann cells were determined. Tumor-suppressive effects of CDK inhibitors were measured in MPNST cells and orthotopic tumors. RESULTS RABL6A was dramatically upregulated in human MPNSTs compared with precursor lesions, which correlated inversely with p27 levels. Silencing RABL6A caused MPNST cell death and G1 arrest that coincided with p27 upregulation, CDK downregulation, and RB1 activation. The growth-suppressive effects of RABL6A loss, and its regulation of RB1, were largely rescued by p27 depletion. Importantly, reactivation of RB1 using a CDK4/6 inhibitor (palbociclib) killed MPNST cells in vitro in an RABL6A-dependent manner and suppressed MPNST growth in vivo. Low-dose combination of drugs targeting multiple RB1 kinases (CDK4/6, CDK2) had enhanced antitumorigenic activity associated with potential MPNST cell redifferentiation. CONCLUSIONS RABL6A is a new driver of MPNST pathogenesis that acts in part through p27-RB1 inactivation. Our results suggest RB1 targeted therapy with multiple pathway drugs may effectively treat MPNSTs.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
31 |
16
|
Hagen J, Muniz VP, Falls KC, Reed SM, Taghiyev AF, Quelle FW, Gourronc FA, Klingelhutz AJ, Major HJ, Askeland RW, Sherman SK, O'Dorisio TM, Bellizzi AM, Howe JR, Darbro BW, Quelle DE. RABL6A promotes G1-S phase progression and pancreatic neuroendocrine tumor cell proliferation in an Rb1-dependent manner. Cancer Res 2014; 74:6661-70. [PMID: 25273089 DOI: 10.1158/0008-5472.can-13-3742] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mechanisms of neuroendocrine tumor (NET) proliferation are poorly understood, and therapies that effectively control NET progression and metastatic disease are limited. We found amplification of a putative oncogene, RABL6A, in primary human pancreatic NETs (PNET) that correlated with high-level RABL6A protein expression. Consistent with those results, stable silencing of RABL6A in cultured BON-1 PNET cells revealed that it is essential for their proliferation and survival. Cells lacking RABL6A predominantly arrested in G1 phase with a moderate mitotic block. Pathway analysis of microarray data suggested activation of the p53 and retinoblastoma (Rb1) tumor-suppressor pathways in the arrested cells. Loss of p53 had no effect on the RABL6A knockdown phenotype, indicating that RABL6A functions independent of p53 in this setting. By comparison, Rb1 inactivation partially restored G1 to S phase progression in RABL6A-knockdown cells, although it was insufficient to override the mitotic arrest and cell death caused by RABL6A loss. Thus, RABL6A promotes G1 progression in PNET cells by inactivating Rb1, an established suppressor of PNET proliferation and development. This work identifies RABL6A as a novel negative regulator of Rb1 that is essential for PNET proliferation and survival. We suggest RABL6A is a new potential biomarker and target for anticancer therapy in PNET patients.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
31 |
17
|
Darbro BW, Schneider GB, Klingelhutz AJ. Co-regulation of p16INK4A and migratory genes in culture conditions that lead to premature senescence in human keratinocytes. J Invest Dermatol 2005; 125:499-509. [PMID: 16117791 PMCID: PMC2020850 DOI: 10.1111/j.0022-202x.2005.23844.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellular stasis, also known as telomere-independent senescence, prevents many epithelial cells from becoming immortalized by telomerase alone. As human keratinocytes age in culture, protein levels of the tumor suppressor p16INK4a continue to increase, resulting in growth arrest independent of telomere length. Differences in culture conditions have been shown to modulate both p16INK4a expression and replicative capacity of human keratinocytes; however, the mechanism of p16INK4a induction under these conditions is unknown. Using multiple primary keratinocyte cell strains, we verified a delay in p16INK4a induction and an extended lifespan of human keratinocytes when grown in co-culture with post-mitotic fibroblast feeder cells as compared with keratinocytes grown on tissue culture plastic alone. Evaluation of gene expression levels in the two culture conditions by microarray analysis, and subsequent validation, demonstrated that keratinocytes cultured on plastic alone had significantly increased expression of many genes involved in keratinocyte migration and reduced expression levels of genes involved in keratinocyte differentiation. Higher levels of p16INK4a expression were present in cells that also displayed increased amounts of autophosphorylated focal adhesion kinase and urokinase plaminogen activator receptor (uPAR), both markers of keratinocyte migration. Furthermore, when tyrosine phosphorylation or urokinase-type plasminogen activator (uPA)/uPAR function was inhibited, both keratinocyte migration and p16INK4a expression were reduced. Our results indicate that keratinocytes cultured in the absence of feeder cells exhibit a migratory phenotype and suggest that p16INK4a is selectively induced under these conditions by a mechanism involving tyrosine kinase activity and the urokinase plasminogen activation system.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
29 |
18
|
Umesalma S, Kaemmer CA, Kohlmeyer JL, Letney B, Schab AM, Reilly JA, Sheehy RM, Hagen J, Tiwari N, Zhan F, Leidinger MR, O'Dorisio TM, Dillon J, Merrill RA, Meyerholz DK, Perl AL, Brown BJ, Braun TA, Scott AT, Ginader T, Taghiyev AF, Zamba GK, Howe JR, Strack S, Bellizzi AM, Narla G, Darbro BW, Quelle FW, Quelle DE. RABL6A inhibits tumor-suppressive PP2A/AKT signaling to drive pancreatic neuroendocrine tumor growth. J Clin Invest 2019; 129:1641-1653. [PMID: 30721156 DOI: 10.1172/jci123049] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/24/2019] [Indexed: 12/15/2022] Open
Abstract
Hyperactivated AKT/mTOR signaling is a hallmark of pancreatic neuroendocrine tumors (PNETs). Drugs targeting this pathway are used clinically, but tumor resistance invariably develops. A better understanding of factors regulating AKT/mTOR signaling and PNET pathogenesis is needed to improve current therapies. We discovered that RABL6A, a new oncogenic driver of PNET proliferation, is required for AKT activity. Silencing RABL6A caused PNET cell-cycle arrest that coincided with selective loss of AKT-S473 (not T308) phosphorylation and AKT/mTOR inactivation. Restoration of AKT phosphorylation rescued the G1 phase block triggered by RABL6A silencing. Mechanistically, loss of AKT-S473 phosphorylation in RABL6A-depleted cells was the result of increased protein phosphatase 2A (PP2A) activity. Inhibition of PP2A restored phosphorylation of AKT-S473 in RABL6A-depleted cells, whereas PP2A reactivation using a specific small-molecule activator of PP2A (SMAP) abolished that phosphorylation. Moreover, SMAP treatment effectively killed PNET cells in a RABL6A-dependent manner and suppressed PNET growth in vivo. The present work identifies RABL6A as a new inhibitor of the PP2A tumor suppressor and an essential activator of AKT in PNET cells. Our findings offer what we believe is a novel strategy of PP2A reactivation for treatment of PNETs as well as other human cancers driven by RABL6A overexpression and PP2A inactivation.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
26 |
19
|
Waldrop MA, Moore SA, Mathews KD, Darbro BW, Medne L, Finkel R, Connolly AM, Crawford TO, Drachman D, Wein N, Habib AA, Krzesniak-Swinarska MA, Zaidman CM, Collins JJ, Jokela M, Udd B, Day JW, Ortiz-Guerrero G, Statland J, Butterfield RJ, Dunn DM, Weiss RB, Flanigan KM. Intron mutations and early transcription termination in Duchenne and Becker muscular dystrophy. Hum Mutat 2022; 43:511-528. [PMID: 35165973 PMCID: PMC9901284 DOI: 10.1002/humu.24343] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/11/2022]
Abstract
DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle-derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription-polymerase chain reaction or high-throughput RNA sequencing methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3'-terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP-mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full-length dystrophin expression for some patients.
Collapse
|
research-article |
3 |
25 |
20
|
Brophy PD, Alasti F, Darbro BW, Clarke J, Nishimura C, Cobb B, Smith RJ, Manak JR. Genome-wide copy number variation analysis of a Branchio-oto-renal syndrome cohort identifies a recombination hotspot and implicates new candidate genes. Hum Genet 2013; 132:1339-50. [PMID: 23851940 DOI: 10.1007/s00439-013-1338-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/02/2013] [Indexed: 12/30/2022]
Abstract
Branchio-oto-renal (BOR) syndrome is an autosomal dominant disorder characterized by branchial arch anomalies, hearing loss and renal dysmorphology. Although haploinsufficiency of EYA1 and SIX1 are known to cause BOR, copy number variation analysis has only been performed on a limited number of BOR patients. In this study, we used high-resolution array-based comparative genomic hybridization on 32 BOR probands negative for coding-sequence and splice-site mutations in known BOR-causing genes to identify potential disease-causing genomic rearrangements. Of the >1,000 rare and novel copy number variants we identified, four were heterozygous deletions of EYA1 and several downstream genes that had nearly identical breakpoints associated with retroviral sequence blocks, suggesting that non-allelic homologous recombination seeded by this recombination hotspot is important in the pathogenesis of BOR. A different heterozygous deletion removing the last exon of EYA1 was identified in an additional proband. Thus, in total five probands (14 %) had deletions of all or part of EYA1. Using a novel disease-gene prioritization strategy that includes network analysis of genes associated with other deletions suggests that SHARPIN (Sipl1), FGF3 and the HOXA gene cluster may contribute to the pathogenesis of BOR.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
24 |
21
|
Darbro BW, Lee KM, Nguyen NK, Domann FE, Klingelhutz AJ. Methylation of the p16(INK4a) promoter region in telomerase immortalized human keratinocytes co-cultured with feeder cells. Oncogene 2006; 25:7421-33. [PMID: 16767161 PMCID: PMC1894570 DOI: 10.1038/sj.onc.1209729] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human keratinocytes grown in co-culture with fibroblast feeder cells have an extended in vitro lifespan and delayed accumulation of the tumor suppressor protein p16(INK4a) when compared to the same cells grown on tissue culture plastic alone. Previous studies have indicated that human keratinocytes can be immortalized by telomerase activity alone when grown in co-culture with feeder cells, suggesting that loss of the p16(INK4a)/Rb pathway is not required for immortalization. Using two independent human keratinocyte cell strains, we found that exogenous telomerase expression and co-culture with feeder cells results in efficient extension of lifespan without an apparent crisis. However, when these cells were transferred from the co-culture environment to plastic alone they experienced only a brief period of slowed growth before continuing to proliferate indefinitely. Examination of immortal cell lines demonstrated p16(INK4a) promoter methylation had occurred in both the absence and presence of feeder cells. Reintroduction of p16(INK4a) into immortal cell lines resulted in rapid growth arrest. Our results suggest that p16(INK4a)/Rb-induced telomere-independent senescence, although delayed in the presence of feeders, still provides a proliferation barrier to human keratinocytes in this culture system and that extended culture of telomerase-transduced keratinocytes on feeders can lead to the methylation of p16(INK4a).
Collapse
|
Research Support, N.I.H., Extramural |
19 |
23 |
22
|
Whittier KL, Boese EA, Gibson-Corley KN, Kirby PA, Darbro BW, Qian Q, Ingram WJ, Robertson T, Remke M, Taylor MD, O’Dorisio MS. G-protein coupled receptor expression patterns delineate medulloblastoma subgroups. Acta Neuropathol Commun 2013; 1:66. [PMID: 24252460 PMCID: PMC3893540 DOI: 10.1186/2051-5960-1-66] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/01/2013] [Indexed: 12/02/2022] Open
Abstract
Background Medulloblastoma is the most common malignant brain tumor in children. Genetic profiling has identified four principle tumor subgroups; each subgroup is characterized by different initiating mutations, genetic and clinical profiles, and prognoses. The two most well-defined subgroups are caused by overactive signaling in the WNT and SHH mitogenic pathways; less is understood about Groups 3 and 4 medulloblastoma. Identification of tumor subgroup using molecular classification is set to become an important component of medulloblastoma diagnosis and staging, and will likely guide therapeutic options. However, thus far, few druggable targets have emerged. G-protein coupled receptors (GPCRs) possess characteristics that make them ideal targets for molecular imaging and therapeutics; drugs targeting GPCRs account for 30-40% of all current pharmaceuticals. While expression patterns of many proteins in human medulloblastoma subgroups have been discerned, the expression pattern of GPCRs in medulloblastoma has not been investigated. We hypothesized that analysis of GPCR expression would identify clear subsets of medulloblastoma and suggest distinct GPCRs that might serve as molecular targets for both imaging and therapy. Results Our study found that medulloblastoma tumors fall into distinct clusters based solely on GPCR expression patterns. Normal cerebellum clustered separately from the tumor samples. Further, two of the tumor clusters correspond with high fidelity to the WNT and SHH subgroups of medulloblastoma. Distinct over-expressed GPCRs emerge; for example, LGR5 and GPR64 are significantly and uniquely over-expressed in the WNT subgroup of tumors, while PTGER4 is over-expressed in the SHH subgroup. Uniquely under-expressed GPCRs were also observed. Our key findings were independently validated using a large international dataset. Conclusions Our results identify GPCRs with potential to act as imaging and therapeutic targets. Elucidating tumorigenic pathways is a secondary benefit to identifying differential GPCR expression patterns in medulloblastoma tumors.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
19 |
23
|
Meyerholz DK, Ofori-Amanfo GK, Leidinger MR, Goeken JA, Khanna R, Sieren JC, Darbro BW, Quelle DE, Weimer JM. Immunohistochemical Markers for Prospective Studies in Neurofibromatosis-1 Porcine Models. J Histochem Cytochem 2017; 65:607-618. [PMID: 28846462 DOI: 10.1369/0022155417729357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common, cancer-predisposing disease caused by mutations in the NF1 tumor gene. Patients with NF1 have an increased risk for benign and malignant tumors of the nervous system (e.g., neurofibromas, malignant peripheral nerve sheath tumors, gliomas) and other tissues (e.g., leukemias, rhabdomyosarcoma, etc.) as well as increased susceptibility to learning disabilities, chronic pain/migraines, hypertension, pigmentary changes, and developmental lesions (e.g., tibial pseudoarthrosis). Pigs are an attractive and upcoming animal model for future NF1 studies, but a potential limitation to porcine model research has been the lack of validated reagents for direct translational study to humans. To address that issue, we used formalin-fixed tissues (human and pigs) to evaluate select immunohistochemical markers (activated caspase-3, allograft inflammatory factor-1, beta-tubulin III, calbindin D, CD13, CD20, desmin, epithelial membrane antigen, glial fibrillary acidic protein, glucose transporter-1, laminin, myelin basic protein, myoglobin, proliferating cell nuclear antigen, S100, vimentin, and von Willebrand factor). The markers were validated by comparing known expression and localization in human and pig tissues. Validation of these markers on fixed tissues will facilitate prospective immunohistochemical studies of NF1 pigs, as well as other pig models, in a more efficient, reproducible, and translationally relevant manner.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
18 |
24
|
Lansdon LA, Darbro BW, Petrin AL, Hulstrand AM, Standley JM, Brouillette RB, Long A, Mansilla MA, Cornell RA, Murray JC, Houston DW, Manak JR. Identification of Isthmin 1 as a Novel Clefting and Craniofacial Patterning Gene in Humans. Genetics 2018; 208:283-296. [PMID: 29162626 PMCID: PMC5753863 DOI: 10.1534/genetics.117.300535] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Orofacial clefts are one of the most common birth defects, affecting 1-2 per 1000 births, and have a complex etiology. High-resolution array-based comparative genomic hybridization has increased the ability to detect copy number variants (CNVs) that can be causative for complex diseases such as cleft lip and/or palate. Utilizing this technique on 97 nonsyndromic cleft lip and palate cases and 43 cases with cleft palate only, we identified a heterozygous deletion of Isthmin 1 in one affected case, as well as a deletion in a second case that removes putative 3' regulatory information. Isthmin 1 is a strong candidate for clefting, as it is expressed in orofacial structures derived from the first branchial arch and is also in the same "synexpression group" as fibroblast growth factor 8 and sprouty RTK signaling antagonist 1a and 2, all of which have been associated with clefting. CNVs affecting Isthmin 1 are exceedingly rare in control populations, and Isthmin 1 scores as a likely haploinsufficiency locus. Confirming its role in craniofacial development, knockdown or clustered randomly interspaced short palindromic repeats/Cas9-generated mutation of isthmin 1 in Xenopus laevis resulted in mild to severe craniofacial dysmorphologies, with several individuals presenting with median clefts. Moreover, knockdown of isthmin 1 produced decreased expression of LIM homeobox 8, itself a gene associated with clefting, in regions of the face that pattern the maxilla. Our study demonstrates a successful pipeline from CNV identification of a candidate gene to functional validation in a vertebrate model system, and reveals Isthmin 1 as both a new human clefting locus as well as a key craniofacial patterning gene.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
18 |
25
|
Klingelhutz AJ, Qian Q, Phillips SL, Gourronc FA, Darbro BW, Patil SR. Amplification of the chromosome 20q region is associated with expression of HPV-16 E7 in human airway and anogenital epithelial cells. Virology 2005; 340:237-44. [PMID: 16051300 PMCID: PMC2223067 DOI: 10.1016/j.virol.2005.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 05/16/2005] [Accepted: 06/14/2005] [Indexed: 11/21/2022]
Abstract
To study the role of human papillomavirus (HPV) infection in the development of genetic instability, we transduced normal human airway and anogenital epithelial cells with various combinations of HPV-16 E6, E7, and the reverse transcriptase component of telomerase (hTERT). Cell lines generated by co-expression of E7 with E6 and/or hTERT (i.e., E6/E7, E7/hTERT, and E6/E7/hTERT) exhibited extra copies of chromosome 20 and specific amplification of the 20q12-ter region, whereas those generated without E7 (i.e., hTERT alone or E6/hTERT) did not. Co-expression of hTERT and a dominant-negative version of cdk4 that has been shown to inactivate the retinoblastoma (pRb) pathway also resulted in 20q amplification. Interestingly, extra copies of chromosome 20 were observed in early passage keratinocytes that expressed E7 alone, and microarray expression analysis revealed that genes in the 20q region and on chromosome 5 were specifically upregulated in these cells. Our results indicate that chromosome 20q amplification is an early event that may be specifically caused by expression of E7 through inactivation of the pRb pathway in human epithelial cells.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
17 |