1
|
Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX, Mignotte B, Kroemer G. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 1995; 182:367-77. [PMID: 7629499 PMCID: PMC2192111 DOI: 10.1084/jem.182.2.367] [Citation(s) in RCA: 1248] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Programmed cell death (PCD) is a physiological process commonly defined by alterations in nuclear morphology (apoptosis) and/or characteristic stepwise degradation of chromosomal DNA occurring before cytolysis. However, determined characteristics of PCD such as loss in mitochondrial reductase activity or cytolysis can be induced in enucleated cells, indicating cytoplasmic PCD control. Here we report a sequential disregulation of mitochondrial function that precedes cell shrinkage and nuclear fragmentation. A first cyclosporin A-inhibitable step of ongoing PCD is characterized by a reduction of mitochondrial transmembrane potential, as determined by specific fluorochromes (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine++ + iodide; 3,3'dihexyloxacarbocyanine iodide). Cytofluorometrically purified cells with reduced mitochondrial transmembrane potential are initially incapable of oxidizing hydroethidine (HE) into ethidium. Upon short-term in vitro culture, such cells acquire the capacity of HE oxidation, thus revealing a second step of PCD marked by mitochondrial generation of reactive oxygen species (ROS). This step can be selectively inhibited by rotenone and ruthenium red yet is not affected by cyclosporin A. Finally, cells reduce their volume, a step that is delayed by radical scavengers, indicating the implication of ROS in the apoptotic process. This sequence of alterations accompanying early PCD is found in very different models of apoptosis induction: glucocorticoid-induced death of lymphocytes, activation-induced PCD of T cell hybridomas, and tumor necrosis factor-induced death of U937 cells. Transfection with the antiapoptotic protooncogene Bcl-2 simultaneously inhibits mitochondrial alterations and apoptotic cell death triggered by steroids or ceramide. In vivo injection of fluorochromes such as 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide; 3,3'dihexyloxacarbocyanine iodide; or HE allows for the detection of cells that are programmed for death but still lack nuclear DNA fragmentation. In particular, assessment of mitochondrial ROS generation provides an accurate picture of PCD-mediated lymphocyte depletion. In conclusion, alterations of mitochondrial function constitute an important feature of early PCD.
Collapse
|
research-article |
30 |
1248 |
2
|
Abstract
During apoptosis, mitochondrial membrane permeability (MMP) increases and the release into the cytosol of pro-apoptotic factors (procaspases, caspase activators and caspase-independent factors such as apoptosis-inducing factor (AIF)) leads to the apoptotic phenotype. Apart from this pivotal role of mitochondria during the execution phase of apoptosis (documented in other reviews of this issue), it appears that reactive oxygen species (ROS) produced by the mitochondria can be involved in cell death. These toxic compounds are normally detoxified by the cells, failing which oxidative stress occurs. However, ROS are not only dangerous molecules for the cell, but they also display a physiological role, as mediators in signal transduction pathways. ROS participate in early and late steps of the regulation of apoptosis, according to different possible molecular mechanisms. In agreement with this role of ROS in apoptosis signaling, inhibition of apoptosis by anti-apoptotic Bcl-2 and Bcl-x(L) is associated with a protection against ROS and/or a shift of the cellular redox potential to a more reduced state. Furthermore, the fact that active forms of cell death in yeast and plants also involve ROS suggests the existence of an ancestral redox-sensitive death signaling pathway that has been independent of caspases and Bcl-2.
Collapse
|
Review |
23 |
774 |
3
|
Abstract
Programmed cell death (PCD) is involved in the removal of superfluous and damaged cells in most organ systems. The induction phase of PCD or apoptosis is characterized by an extreme heterogeneity of potential PCD-triggering signal transduction pathways. During the subsequent effector phase, the numerous PCD-inducing stimuli converge into a few stereotypical pathways and cells pass a point of no return, thus becoming irreversibly committed to death. It is only during the successive degradation phase that vital structures and functions are destroyed, giving rise to the full-blown phenotype of PCD. Evidence is accumulating that cytoplasmic structures, including mitochondria, participate in the critical effector stage and that alterations commonly considered to define PCD (apoptotic morphology of the nucleus and regular, oligonucleosomal chromatin fragmentation) have to be ascribed to the late degradation phase. The decision as to whether a cell will undergo PCD or not may be expected to be regulated by "switches" that, once activated, trigger self-amplificatory metabolic pathways. One of these switches may reside in a perturbation of mitochondrial function. Thus, a decrease in mitochondrial transmembrane potential, followed by mitochondrial uncoupling and generation of reactive oxygen species, precedes nuclear alterations. It appears that molecules that participate in apoptotic decision-making also exert functions that are vital for normal cell proliferation and intermediate metabolism.
Collapse
|
Review |
30 |
757 |
4
|
Abstract
Programmed cell death serves as a major mechanism for the precise regulation of cell numbers and as a defense mechanism to remove unwanted and potentially dangerous cells. Despite the striking heterogeneity of cell death induction pathways, the execution of the death program is often associated with characteristic morphological and biochemical changes, and this form of programmed cell death has been termed apoptosis. Genetic studies in Caenorhabditis elegans had led to the identification of cell death genes (ced). The genes ced-3 and ced-4 are essential for cell death; ced-9 antagonizes the activities of ced-3 and ced-4, and thereby protects cells that should survive from any accidental activation of the death program. Caspases (cysteine aspartases) are the mammalian homologues of CED-3. CED-9 protein is homologous to a family of many members termed the Bcl-2 family (Bcl-2s) in reference to the first discovered mammalian cell death regulator. In both worm and mammalian cells, the antiapoptotic members of the Bcl-2 family act upstream of the execution caspases somehow preventing their proteolytic processing into active killers. Two main mechanisms of action have been proposed to connect Bcl-2s to caspases. In the first one, antiapoptotic Bcl-2s would maintain cell survival by dragging caspases to intracellular membranes (probably the mitochondrial membrane) and by preventing their activation. The recently described mammalian protein Apaf-1 (apoptosis protease-activating factor 1) could be the mammalian equivalent of CED-4 and could be the physical link between Bcl-2s and caspases. In the second one, Bcl-2 would act by regulating the release from mitochondria of some caspases activators: cytochrome c and/or AIF (apoptosis-inducing factor). This crucial position of mitochondria in programmed cell death control is reinforced by the observation that mitochondria contribute to apoptosis signaling via the production of reactive oxygen species. Although for a long time the absence of mitochondrial changes was considered as a hallmark of apoptosis, mitochondria appear today as the central executioner of programmed cell death. In this review, we examine the data concerning the mitochondrial features of apoptosis. Furthermore, we discuss the possibility that the mechanism originally involved in the maintenance of the symbiosis between the bacterial ancestor of the mitochondria and the host cell precursor of eukaryotes, provided the basis for the actual mechanism controlling cell survival.
Collapse
|
Review |
27 |
567 |
5
|
Petit PX, Lecoeur H, Zorn E, Dauguet C, Mignotte B, Gougeon ML. Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J Cell Biol 1995; 130:157-67. [PMID: 7790370 PMCID: PMC2120516 DOI: 10.1083/jcb.130.1.157] [Citation(s) in RCA: 451] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In this paper we used a multiparametric approach to analyze extensively the events occurring during apoptotic cell death of thymocytes, and furthermore, we asked whether alterations in mitochondrial structure and function are occurring in early stages of apoptosis. A multiparametric quantitative analysis was performed on normal or apoptotic thymocytes emerging from a few-hour culture performed in culture medium or in the presence of dexamethasone. Simultaneous detection of light scattering properties, integrity of plasma membrane (trypan blue exclusion), chromatin condensation (AO/EB staining of entire cells or PI staining of nuclei), and DNA fragmentation (in situ nick-translation in apoptotic cells) allowed a precise analysis of the preapoptotic and apoptotic stages. Moreover a thorough study of mitochondrial transmembrane potential (delta psi m) assessed following in a time course study the uptake by apoptotic cells of the cationic lipophilic dye DiOC6(3) or the J-aggregate-forming cation JC-1, indicates that a drop in delta psi m occurs very early in thymocyte apoptosis, before DNA fragmentation. This is associated with alteration in mitochondrial structure assessed by cytofluorimetric study of NAO uptake in apoptotic cells. Finally these dramatic alterations in mitochondrial structure and function occurring in early stages of apoptosis were confirmed by confocal and electron microscopy analysis.
Collapse
|
research-article |
30 |
451 |
6
|
Petit PX, Susin SA, Zamzami N, Mignotte B, Kroemer G. Mitochondria and programmed cell death: back to the future. FEBS Lett 1996; 396:7-13. [PMID: 8906857 DOI: 10.1016/0014-5793(96)00988-x] [Citation(s) in RCA: 368] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Programmed cell death, or apoptosis, has in the past few years undoubtedly become one of the most intensively investigated biological processes. However, fundamental questions concerning the molecular and biochemical mechanisms remain to be elucidated. The central question concerns the biochemical steps shared by the numerous death induction pathways elicited by different stimuli. Heterogeneous death signals precede a common effector phase during which cells pass a threshold of 'no return' and are engaged in a degradation phase where they acquire the typical onset of late apoptosis. Alterations in mitochondrial permeability transition linked to membrane potential disruption precede nuclear and plasma membrane changes. In vitro induction of permeability transition in isolated mitochondria provokes the release of a protein factor capable of inducing nuclear chromatin condensation and fragmentation. This permeability transition is regulated by multiple endogenous effectors, including members of the bcl-2 gene family. Inhibition of these effects prevents apoptosis.
Collapse
|
Review |
29 |
368 |
7
|
Vayssiere JL, Petit PX, Risler Y, Mignotte B. Commitment to apoptosis is associated with changes in mitochondrial biogenesis and activity in cell lines conditionally immortalized with simian virus 40. Proc Natl Acad Sci U S A 1994; 91:11752-6. [PMID: 7972136 PMCID: PMC45310 DOI: 10.1073/pnas.91.24.11752] [Citation(s) in RCA: 229] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Rodent embryo cells immortalized with temperature-sensitive mutants of simian virus 40 large tumor (T) antigen have a proliferative potential that depends on temperature. At the restrictive temperature, heat-inactivation of large T antigen causes p53 release, growth arrest, and cell death. Morphological and molecular analysis indicate that the induced cell death corresponds to apoptosis. Flow cytometric analysis using a combination of forward light scatter and side scatter allows a discrimination of cells committed to apoptosis within the whole population. These cells display a reduction in cell size and a higher cellular density, confirming the apoptotic nature of the cell death. When cells exhibiting the morphological features of apoptosis were stained with a fluorescent probe of the mitochondrial membrane potential, a decreased accumulation of the dye was recorded. Measures of cellular respiration, performed with whole-cell populations, showed that the lower mitochondrial membrane potential (delta psi m) correlates, as expected, with an uncoupling of electron transport from ATP production and is linked to the induction of apoptosis. We also show that this decrease in delta psi m is associated with a decrease in the rate of mitochondrial translation. These events are detected at early stages of the apoptotic process, when most of the cells are not irreversibly committed to death, suggesting that mitochondria could be a primary target during apoptosis.
Collapse
|
research-article |
31 |
229 |
8
|
Leschelle X, Goubern M, Andriamihaja M, Blottière HM, Couplan E, Gonzalez-Barroso MDM, Petit C, Pagniez A, Chaumontet C, Mignotte B, Bouillaud F, Blachier F. Adaptative metabolic response of human colonic epithelial cells to the adverse effects of the luminal compound sulfide. Biochim Biophys Acta Gen Subj 2005; 1725:201-12. [PMID: 15996823 DOI: 10.1016/j.bbagen.2005.06.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 05/25/2005] [Accepted: 06/08/2005] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H(2)S), a bacterial metabolite present in the lumen of the large intestine, is able to exert deleterious effects on the colonic epithelium. The mechanisms involved are still poorly understood, the reported effect of sulfide being its capacity to reduce n-butyrate beta-oxidation in colonocytes. In this work, we studied both the acute effect of the sodium salt of H(2)S on human colonic epithelial cell metabolism and the adaptative response of these cells to the pre-treatment with this agent. Using the human colon carcinoma epithelial HT-29 Glc(-/+) cell model, we found that the acute effect of millimolar concentrations of NaHS was to inhibit l-glutamine, n-butyrate and acetate oxidation in a dose-dependent manner. Using micromolar concentrations of NaHS, a comparable effect but largely reversible was observed for O(2) consumption and cytochrome c oxidase activity. Pre-treatment with 1 mM NaHS induced several adaptative responses. Firstly, increased lactate release and decreased cellular oxygen consumption evidenced a Pasteur-like effect which only partly compensated for the altered mitochondrial ATP production. Thus, a decrease in the proliferation rate with a constant adenylate charge was observed. Secondly, in these pre-treated cells, NaHS induced a hypoxia-like effect on cytochrome c oxidase subunits I and II which were decreased. Thirdly, a mild uncoupling of mitochondrial respiration possibly resulting from an increase of UCP 2 protein was observed. The NaHS antimitotic activity was not due to cellular apoptosis and/or necrosis but to a proportional slowdown in all cell cycle phases. These results are compatible with a metabolic adaptative response of the HT-29 colonic epithelial cells to sulfide-induced O(2) consumption reduction which, through the maintenance of a constant energetic load and an increased mitochondrial proton leak, would participate in the preservation of cellular viability.
Collapse
|
|
20 |
126 |
9
|
Sidoti-de Fraisse C, Rincheval V, Risler Y, Mignotte B, Vayssière JL. TNF-alpha activates at least two apoptotic signaling cascades. Oncogene 1998; 17:1639-51. [PMID: 9796693 DOI: 10.1038/sj.onc.1202094] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Apoptosis, the process whereby cells activate an intrinsic death program, can be induced in HeLa cells by TNF-alpha treatment. The aims of the present study were (i) to examine the precise role and the origin of Reactive Oxygen Species (ROS) in the TNF-alpha-induced programmed cell death, (ii) to characterize and order the morphological and mitochondrial changes associated with this process and (iii) to link these events with the activation of caspases. Analyses were performed on TNF-alpha-treated cells in the presence of an anti-oxidant, or of a general caspase inhibitor. To assess the role of mitochondria in the cell death signal transduction, these studies were also realized on HeLa-variant cell lines lacking functional mitochondrial respiratory chain. We show that at least two separate signaling cascades, both mediated by Z-VAD-sensitive caspase(s), contribute to the TNF-alpha-induced apoptosis of HeLa cells. One signaling pathway involves an early mitochondria-dependent ROS production, the other being ROS-independent.
Collapse
|
|
27 |
114 |
10
|
Monpoeho S, Dehée A, Mignotte B, Schwartzbrod L, Marechal V, Nicolas JC, Billaudel S, Férré V. Quantification of enterovirus RNA in sludge samples using single tube real-time RT-PCR. Biotechniques 2000; 29:88-93. [PMID: 10907082 DOI: 10.2144/00291st03] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have developed a quantitative RT-PCR method that can be used to determine the amount of enterovirus RNA in urban sludge samples. This method combines Taq-Man technology with the ABI Prism 7700 real-time sequence detection system. We optimized a one-step RT-PCR that uses a dual-labeled fluorogenic probe to quantify the 5' noncoding region of enteroviruses. For accurate quantification of the number of copies, a Mahoney type 1 poliovirus RNA standard was designed and produced using genetic engineering. This fragment, quantified using the Ribogreen method, was used in serial dilutions as an external standard. The method had a 7-log dynamic range (5 to 2 x 10(7)). PCR inhibitors were removed by extracting viral RNA (after virus concentration) using the RNeasy mini kit with added polyvinylpyrrolidone (PVP) and running the amplification reaction with a mixture containing PVP and T4 gene 32 protein. This real-time quantification of enterovirus RNA allows large numbers of samples to be screened. Its sensitivity, simplicity and reproducibility render it suitable as a screening method with which to characterize enteroviruses, the presence of infectious particles being subsequently confirmed by cell culture.
Collapse
|
Technical Report |
25 |
109 |
11
|
Gaumer S, Guénal I, Brun S, Théodore L, Mignotte B. Bcl-2 and Bax mammalian regulators of apoptosis are functional in Drosophila. Cell Death Differ 2000; 7:804-14. [PMID: 11042675 DOI: 10.1038/sj.cdd.4400714] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Studies of apoptosis in C. elegans have allowed the identification of three genes, ced-3, ced-4 and ced-9. Their products constitute the components of an induction pathway of apoptosis conserved in the nematode and mammals. In Drosophila, homologues have been found for CED-3, CED-4 and CED-9. CED-9 belongs to the Bcl-2 family which includes negative (Bcl-2) and positive (Bax) regulators of apoptosis. The recently discovered Bcl-2 family member named Drob-1 acts as a positive regulator of cell death. To address whether a Bcl-2 anti-apoptotic pathway exists in the fly, we studied the effects of expressing the mammalian genes bcl-2 in Drosophila. In embryos, expression of bcl-2 inhibits developmental and X-ray-induced apoptosis. Expressing bcl-2 or the pro-apoptotic mammalian bax in the developing eye and wing alters these structures, bcl-2 increasing the number of cells, while bax reduces the number of cells. In addition, the functional interaction between Bcl-2 and Bax is conserved. These results indicate that factors necessary for the activity of bcl-2 and bax are present in Drosophila. Therefore, a Bcl-2 pathway for inhibition of cell death may exist in the fly.
Collapse
|
|
25 |
102 |
12
|
Petit PX, Zamzami N, Vayssière JL, Mignotte B, Kroemer G, Castedo M. Implication of mitochondria in apoptosis. Mol Cell Biochem 1997. [PMID: 9309685 DOI: 10.1023/a:1006848205880] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The induction phase of programmed cell death (PCD) or apoptosis is characterized by an extreme heterogeneity of potential PCD-triggering signal transduction pathways. During the subsequent effector phase, the numerous PCD-inducing stimuli converge into a few stereotypical pathways and cells pass a 'point of no return', thus becoming irreversibly committed to death. Evidence is accumulating that cytoplasmic structures, including mitochondria, participate in the critical effector stage and that alterations usually considered to define apoptosis, as nuclear chromatolysis and cytolysis, have to be ascribed to the late degradation phase. We and others have recently shown that nuclear features of apoptosis are preceded by alterations in mitochondrial function and structure. The importance of these alterations for the apoptotic process and also the possible link between, these observations, the permeability transition pore and the programmed cell death, are discussed.
Collapse
|
Review |
28 |
102 |
13
|
Guénal I, Sidoti-de Fraisse C, Gaumer S, Mignotte B. Bcl-2 and Hsp27 act at different levels to suppress programmed cell death. Oncogene 1997; 15:347-60. [PMID: 9233769 DOI: 10.1038/sj.onc.1201182] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Apoptosis and necrosis, two morphologically distinct forms of cell death, can be induced by common stimuli depending on the doses and the cell type. This study compares the protective effect of oncoprotein Bcl-2 and of the small stress protein Hsp27 on these two types of cell death. We use rat embryo fibroblasts conditionally immortalized by the tsA58 mutant of SV40 large T antigen as parental cells to develop cell lines carrying inducible bcl-2 or hsp27 genes. Two apoptotic stimuli were used: shift to the restrictive temperature that induced p53-mediated apoptosis and treatment with low doses of hydrogen peroxide. Necrosis was induced by high doses of hydrogen peroxide. Although Bcl-2 and Hsp27 protect these cells from necrotic death, only Bcl-2 appears capable of preventing apoptotic death. Bcl-2 protection is not mediated by a negative effect on the induction of the p53 responsive genes bax or waf1 but it slows down at least two stages of apoptosis: decrease of mitochondrial membrane potential and subsequent morphological changes. In contrast, although Hsp27 has been recently shown to inhibit apoptosis induced by various stimuli, its overexpression has no effect on apoptosis in this cell system. It should be also noticed that the apoptotic stimuli (temperature shift or hydrogen peroxide treatment) induce Hsp27, but not Bcl-2 accumulation suggesting that, in parental cells, Hsp27 might already provide some protection. However, taken together these results suggest that Hsp27, as well as Bcl-2, acts at several levels to inhibit cell death, but that their protective functions only partially overlap.
Collapse
|
|
28 |
81 |
14
|
Verrier F, Deniaud A, Lebras M, Métivier D, Kroemer G, Mignotte B, Jan G, Brenner C. Dynamic evolution of the adenine nucleotide translocase interactome during chemotherapy-induced apoptosis. Oncogene 2004; 23:8049-64. [PMID: 15377997 DOI: 10.1038/sj.onc.1208001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mitochondrial permeability transition pore complex (PTPC) is involved in the control of the mitochondrial membrane permeabilization during apoptosis, necrosis and autophagy. Indeed, the adenine nucleotide translocator (ANT) and the voltage-dependent anion channel (VDAC), two major components of PTPC, are the targets of a variety of proapoptotic inducers. Using co-immunoprecipitation and proteomic analysis, we identified some of the interacting partners of ANT in several normal tissues and human cancer cell lines. During chemotherapy-induced apoptosis, some of these interactions were constant (e.g. ANT-VDAC), whereas others changed strongly concomitantly with the dissipation of the mitochondrial transmembrane potential and until nuclear degradation occurred (e.g. Bax, Bcl-2, subunits of the respiratory chain, a subunit of the phosphatase PP2A, phospholipase PLC beta 4 and IP3 receptor). In addition, a glutathione-S-transferase (GST) interacts with ANT in normal tissue, in colon carcinoma cells and in vitro. This interaction is lost during apoptosis induction, suggesting that GST behaves as an endogenous repressor of PTPC and ANT pore opening. Thus, ANT is connected to mitochondrial proteins as well as to proteins from other organelles such as the endoplasmic reticulum forming a dynamic polyprotein complex. Changes within this ANT interactome coordinate the lethal response of cells to apoptosis induction.
Collapse
|
|
21 |
69 |
15
|
Millet A, Bettaieb A, Renaud F, Prevotat L, Hammann A, Solary E, Mignotte B, Jeannin JF. Influence of the nitric oxide donor glyceryl trinitrate on apoptotic pathways in human colon cancer cells. Gastroenterology 2002; 123:235-46. [PMID: 12105852 DOI: 10.1053/gast.2002.34310] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS We have previously reported the role of nitric oxide in colon tumor regression in vivo. The present study was designed to explore the influence of an endogenous nitric oxide donor, glyceryl trinitrate (GTN), on cell death pathways in colon cancer cells. METHODS Human colon cancer cell lines were treated with the NO donor GTN. Apoptosis was identified by morphological criteria and the terminal deoxynucleotidyl transferase-mediated deoxyuridine (TUNEL) method. The mitochondrial transmembrane potential was studied by flow cytometry, cytochrome c release by Western blot, and caspase activation by combining fluorogenic peptide substrates, peptide inhibitors, and immunoblotting. Expression of death receptors was studied by flow cytometry and confocal microscopy. RESULTS GTN induces a dose- and time-dependent cell death by apoptosis in colon cancer cells. This cell death pathway involves the mitochondria and caspases, mainly caspase-1 and caspase-10. In contrast, caspase-3 activation is a late and limited event. Death receptors are not involved in GTN-mediated cell death, while GTN sensitizes tumor cells to Fas-ligand-induced apoptosis. This permissive effect correlates with an increased expression of Fas receptor and a decreased expression of several endogenous inhibitors of apoptosis (IAPs). CONCLUSIONS Our results indicate that GTN (1) activates an unusual caspase cascade to induce apoptosis in colon cancer cells and (2) sensitizes these cells to Fas-mediated cell death by increasing the expression of Fas and decreasing the expression of several IAPs.
Collapse
|
|
23 |
59 |
16
|
Mignotte B, Barat M, Mounolou JC. Characterization of a mitochondrial protein binding to single-stranded DNA. Nucleic Acids Res 1985; 13:1703-16. [PMID: 4039816 PMCID: PMC341106 DOI: 10.1093/nar/13.5.1703] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A DNA-binding protein from Xenopus laevis oocyte mitochondria which has been found associated with the D-loop also shows a strong preference for single-stranded DNA. The binding to polynucleotides is dependent on the base composition, but no sequence specificity was found. This protein, called mtSSB, binds tightly and cooperatively to single-stranded DNA. By its amino-acid composition and its binding properties it appears to be similar to the single-stranded DNA-binding proteins found in prokaryotes.
Collapse
|
research-article |
40 |
53 |
17
|
Bergeaud M, Mathieu L, Guillaume A, Moll UM, Mignotte B, Le Floch N, Vayssière JL, Rincheval V. Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F₁F0-ATP synthase. Cell Cycle 2013; 12:2781-93. [PMID: 23966169 DOI: 10.4161/cc.25870] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We and others previously reported that endogenous p53 can be located at mitochondria in the absence of stress, suggesting that p53 has a role in the normal physiology of this organelle. The aim of this study was to characterize in unstressed cells the intramitochondrial localization of p53 and identify new partners and functions of p53 in mitochondria. We find that the intramitochondrial pool of p53 is located in the intermembrane space and the matrix. Of note, unstressed HCT116 p53(+/+) cells simultaneously show increased O₂ consumption and decreased mitochondrial superoxide production compared with their p53-null counterpart. This data was confirmed by stable H1299 cell lines expressing low levels of p53 specifically targeted to the matrix. Using immunoprecipitation and mass spectrometry, we identified the oligomycin sensitivity-conferring protein (OSCP), a subunit of the F₁F₀-ATP synthase complex, as a new partner of endogenous p53, specifically interacting with p53 localized in the matrix. Interestingly, this interaction seems implicated in mitochondrial p53 localization. Moreover, p53 localized in the matrix promotes the assembly of F₁F₀-ATP synthase. Taking into account that deregulations of mitochondrial respiration and reactive oxygen species production are tightly linked to cancer development, we suggest that mitochondrial p53 may be an important regulator of normal mitochondrial and cellular physiology, potentially exerting tumor suppression activity inside mitochondria.
Collapse
|
Journal Article |
12 |
52 |
18
|
Traore O, Arnal C, Mignotte B, Maul A, Laveran H, Billaudel S, Schwartzbrod L. Reverse transcriptase PCR detection of astrovirus, hepatitis A virus, and poliovirus in experimentally contaminated mussels: comparison of several extraction and concentration methods. Appl Environ Microbiol 1998; 64:3118-22. [PMID: 9687488 PMCID: PMC106830 DOI: 10.1128/aem.64.8.3118-3122.1998] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/1998] [Accepted: 05/20/1998] [Indexed: 02/08/2023] Open
Abstract
Four methods of extraction and three methods of concentration of three enteric viruses from mussels were comparatively evaluated by reverse transcriptase PCR (RT-PCR). Shellfish were experimentally contaminated by immersion in seawater seeded with astrovirus, hepatitis A virus, or poliovirus. Sixty-gram samples of mussel tissues were processed by using borate buffer, glycine solution, saline beef, and saline beef-Freon extraction methods. The viruses were concentrated by precipitation with polyethylene glycol 6000 (PEG 6000) or PEG 8000 or by organic flocculation. RT-PCR was performed with RNA extracts from crude shellfish extracts and concentrates with and without Sephadex LH20 filtration. The glycine solution and borate buffer extraction methods resulted in significantly more RT-PCR-positive samples than the saline beef extraction method. We assessed the efficiency of 20 combinations of extraction and concentration methods. The borate buffer-organic flocculation, borate buffer-PEG 6000, and glycine solution-PEG 6000 combinations gave RT-PCR-positive results for all 27 samples analyzed for the three viruses. Detoxification of the samples by Sephadex LH20 filtration significantly decreased the efficiency of RT-PCR virus detection.
Collapse
|
Comparative Study |
27 |
50 |
19
|
Arnal C, Ferré-Aubineau V, Besse B, Mignotte B, Schwartzbrod L, Billaudel S. Comparison of seven RNA extraction methods on stool and shellfish samples prior to hepatitis A virus amplification. J Virol Methods 1999; 77:17-26. [PMID: 10029321 DOI: 10.1016/s0166-0934(98)00083-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
When choosing an extraction method, two parameters have to be considered: recovery of the viral material and elimination or inactivation of inhibitory substances. Seven techniques for extracting hepatitis A virus (HAV) from stool and shellfish samples were compared, in order to identify the protocol most suited to both types of sample and with the best extraction yield. The protocols tested were either techniques for the recovery and purification of total RNA, such as RNAzol, PEG-CETAB, GTC-silica and Chelex, or techniques for isolating specifically HAV using a nucleotide probe or a monoclonal antibody. For stool samples, RNAzol, PEG-CETAB, and magnetic beads with antibody allowed detection of the virus in 11/12 and 12/12 of samples. For shellfish samples, three protocols allowed RNA to be extracted in 90% of cases, RNAzol, PEG-CETAB, and GTC-silica. Their rapidity and low cost make RNAzol and GTC-silica the most suitable for routine diagnostic testing. reserved.
Collapse
|
Comparative Study |
26 |
47 |
20
|
Guénal I, Risler Y, Mignotte B. Down-regulation of actin genes precedes microfilament network disruption and actin cleavage during p53-mediated apoptosis. J Cell Sci 1997; 110 ( Pt 4):489-95. [PMID: 9067600 DOI: 10.1242/jcs.110.4.489] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inactivation of Simian Virus 40 large T antigen, in cells immortalized with conditional mutants, leads to activation of p53 and apoptosis. We used the mRNA differential display method to identify genes differentially expressed during this process. We found that steady-state levels of mRNA for cytoplasmic actins decreased early during apoptosis. We also showed that, although the steady-state level of the corresponding proteins is not profoundly affected, they are substrates for an interleukin 1-beta converting enzyme (ICE)-like protease activated during the process. However, only a very small fraction of actin is proteolysed during the early stages of apoptosis. The microfilament network is affected and non polymerized actin accumulates in apoptotic bodies after the decrease of mRNA levels, but before a significant amount of actin is cleaved. This suggests that down-regulation of actin genes may be involved in microfilament rearrangements during p53-mediated apoptosis.
Collapse
|
|
28 |
42 |
21
|
Rincheval V, Renaud F, Lemaire C, Godefroy N, Trotot P, Boulo V, Mignotte B, Vayssière JL. Bcl-2 can promote p53-dependent senescence versus apoptosis without affecting the G1/S transition. Biochem Biophys Res Commun 2002; 298:282-8. [PMID: 12387829 DOI: 10.1016/s0006-291x(02)02454-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
With the aim to identify events involved in the determination of p53-dependent apoptosis versus growth arrest, we used rat embryo fibroblasts expressing a temperature-sensitive mutant (tsA58) of the SV40 large tumour antigen (LT). Heat-inactivation of LT leads to p53 activation and commitment to a senescent-like state (REtsA15 cell line) or apoptosis (REtsAF cell line). We report that senescence is associated with high levels of the anti-apoptotic Bcl-2 protein and a cell cycle arrest in G1 phase, whereas apoptosis is associated with low levels of Bcl-2 and a cell cycle arrest in G2 phase. Here we show that Bcl-2, which can inhibit apoptosis and proliferation, turns the apoptotic phenotype into a senescent-like phenotype in G2 phase. This result suggests that Bcl-2-dependent inhibition of apoptosis could be crucial for the commitment to replicative senescence, whereas its ability to inhibit G1 progression would not be required.
Collapse
|
|
23 |
37 |
22
|
Ferecatu I, Bergeaud M, Rodríguez-Enfedaque A, Le Floch N, Oliver L, Rincheval V, Renaud F, Vallette FM, Mignotte B, Vayssière JL. Mitochondrial localization of the low level p53 protein in proliferative cells. Biochem Biophys Res Commun 2009; 387:772-7. [DOI: 10.1016/j.bbrc.2009.07.111] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 07/22/2009] [Indexed: 11/30/2022]
|
|
16 |
36 |
23
|
Jacquin S, Rincheval V, Mignotte B, Richard S, Humbert M, Mercier O, Londoño-Vallejo A, Fadel E, Eddahibi S. Inactivation of p53 Is Sufficient to Induce Development of Pulmonary Hypertension in Rats. PLoS One 2015; 10:e0131940. [PMID: 26121334 PMCID: PMC4488287 DOI: 10.1371/journal.pone.0131940] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 06/08/2015] [Indexed: 11/18/2022] Open
Abstract
Objective Pulmonary artery smooth muscle cells (PA-SMCs) in pulmonary arterial hypertension (PAH) show similarities to cancer cells. Due to the growth-suppressive and pro-apoptotic effects of p53 and its inactivation in cancer, we hypothesized that the p53 pathway could be altered in PAH. We therefore explored the involvement of p53 in the monocrotaline (MCT) rat model of pulmonary hypertension (PH) and the pathophysiological consequences of p53 inactivation in response to animal treatment with pifithrin-α (PFT, an inhibitor of p53 activity). Methods and Results PH development was assessed by pulmonary arterial pressure, right ventricular hypertrophy and arterial wall thickness. The effect of MCT and PFT on lung p53 pathway expression was evaluated by western blot. Fourteen days of daily PFT treatment (2.2 mg/kg/day), similar to a single injection of MCT (60 mg/kg), induced PH and aggravated MCT-induced PH. In the first week after MCT administration and prior to PH development, p53, p21 and MDM2 protein levels were significantly reduced; whereas PFT administration effectively altered the protein level of p53 targets. Anti-apoptotic and pro-proliferative effects of PFT were revealed by TUNEL and MTT assays on cultured human PA-SMCs treated with 50 μM PFT. Conclusions Pharmacological inactivation of p53 is sufficient to induce PH with a chronic treatment by PFT, an effect related to its anti-apoptotic and pro-proliferative properties. The p53 pathway was down-regulated during the first week in the rat MCT model. These in vivo experiments implicate the p53 pathway at the initiation stages of PH pathogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
35 |
24
|
Toumi M, Rincheval V, Young A, Gergeres D, Turos E, Couty F, Mignotte B, Evano G. A General Route to Cyclopeptide Alkaloids: Total Syntheses and Biological Evaluation of Paliurines E and F, Ziziphines N and Q, Abyssenine A, Mucronine E, and Analogues. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900122] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
16 |
35 |
25
|
Dumay A, Rincheval V, Trotot P, Mignotte B, Vayssière JL. The superoxide dismutase inhibitor diethyldithiocarbamate has antagonistic effects on apoptosis by triggering both cytochrome c release and caspase inhibition. Free Radic Biol Med 2006; 40:1377-90. [PMID: 16631528 DOI: 10.1016/j.freeradbiomed.2005.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 11/24/2005] [Accepted: 12/07/2005] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) and etoposide both trigger a large and rapid production of reactive oxygen species (ROS) in HeLa cells. This occurs before translocations of the proapoptotic Bax and cytochrome c proteins, the loss of mitochondrial membrane potential (DeltaPsim), and apoptosis. We have used diethyldithiocarbamate (DDC), a well-known inhibitor of Cu, Zn superoxide dismutase to study the role of ROS in this system. We report that DDC strongly inhibits caspase activation, loss of DeltaPsim, and cell death induced by TNF-alpha or etoposide. Surprisingly, DDC does not inhibit Bax and cytochrome c translocations. On the contrary, we have observed that DDC can trigger the translocations of these proteins by itself, without altering DeltaPsim. Here, we report that DDC has at least two antagonistic apoptosis regulation functions. First, DDC triggers ROS-dependent Bax and cytochrome c translocations, which are potentially proapoptotic, and second, DDC inhibits caspase activation and activity, loss of DeltaPsim, and cell death, in a ROS-independent manner. Our results suggest an interesting model in which ROS-dependent Bax and cytochrome c translocations can be studied without interference from later apoptotic events.
Collapse
|
|
19 |
35 |