1
|
Patel BB, Walsh DJ, Kim DH, Kwok J, Lee B, Guironnet D, Diao Y. Tunable structural color of bottlebrush block copolymers through direct-write 3D printing from solution. SCIENCE ADVANCES 2020; 6:eaaz7202. [PMID: 32577511 PMCID: PMC7286684 DOI: 10.1126/sciadv.aaz7202] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/23/2020] [Indexed: 05/18/2023]
Abstract
Additive manufacturing of functional materials is limited by control of microstructure and assembly at the nanoscale. In this work, we integrate nonequilibrium self-assembly with direct-write three-dimensional (3D) printing to prepare bottlebrush block copolymer (BBCP) photonic crystals (PCs) with tunable structure color. After varying deposition conditions during printing of a single ink solution, peak reflected wavelength for BBCP PCs span a range of 403 to 626 nm (blue to red), corresponding to an estimated change in d-spacing of >70 nm (Bragg- Snell equation). Physical characterization confirms that these vivid optical effects are underpinned by tuning of lamellar domain spacing, which we attribute to modulation of polymer conformation. Using in situ optical microscopy and solvent-vapor annealing, we identify kinetic trapping of metastable microstructures during printing as the mechanism for domain size control. More generally, we present a robust processing scheme with potential for on-the-fly property tuning of a variety of functional materials.
Collapse
|
research-article |
5 |
87 |
2
|
Deshpande AM, Akunowicz JD, Reveles XT, Patel BB, Saria EA, Gorlick RG, Naylor SL, Leach RJ, Hansen MF. PHC3, a component of the hPRC-H complex, associates with E2F6 during G0 and is lost in osteosarcoma tumors. Oncogene 2006; 26:1714-22. [PMID: 17001316 PMCID: PMC2691996 DOI: 10.1038/sj.onc.1209988] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Polyhomeotic-like 3 (PHC3) is a ubiquitously expressed member of the polycomb gene family and part of the human polycomb complex hPRC-H. We found that in normal cells PHC3 associated with both hPRC-H complex components and with the transcription factor E2F6. In differentiating and confluent cells, PHC3 and E2F6 showed nuclear colocalization in a punctate pattern that resembled the binding of polycomb bodies to heterochromatin. This punctate pattern was not seen in proliferating cells suggesting that PHC3 may be part of an E2F6-polycomb complex that has been shown to occupy and silence target promoters in G(0). Previous loss of heterozygosity (LoH) analyses had shown that the region containing PHC3 underwent frequent LoH in primary human osteosarcoma tumors. When we examined normal bone and human osteosarcoma tumors, we found loss of PHC3 expression in 36 of 56 osteosarcoma tumors. Sequence analysis revealed that PHC3 was mutated in nine of 15 primary osteosarcoma tumors. These findings suggest that loss of PHC3 may favor tumorigenesis by potentially disrupting the ability of cells to remain in G(0).
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
36 |
3
|
Park SK, Sun H, Chung H, Patel BB, Zhang F, Davies DW, Woods TJ, Zhao K, Diao Y. Super‐ and Ferroelastic Organic Semiconductors for Ultraflexible Single‐Crystal Electronics. Angew Chem Int Ed Engl 2020; 59:13004-13012. [PMID: 32342626 DOI: 10.1002/anie.202004083] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Indexed: 12/20/2022]
|
|
5 |
23 |
4
|
Patel BB, Waddell TG, Pagni RM. Explaining photodermatosis: cyclopentenone vs. alpha-methylene-gamma-lactone natural products. Fitoterapia 2001; 72:511-5. [PMID: 11429245 DOI: 10.1016/s0367-326x(01)00257-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The possible role of cyclopentenone-containing sesquiterpene lactones in the cause of photochemical chronic actinic dermatitis (CAD) is examined in light of recent reports that the alpha-methylene-gamma-lactone group of these natural products forms 2+2 photoadducts with the DNA base thymine. Neither cyclopentenone nor tenulin (a cyclopentenone-containing sesquiterpene lactone) form such photoadducts with thymine either with sunlight or a UV lamp (300 nm). In contrast, alpha-methylenebutyrolactone readily forms the 2+2 photoadduct with thymine in sunlight. Thus, the photochemical role of the alpha-methylene-gamma-lactone group (rather than cyclopentenone) is strongly implicated in the CAD disease.
Collapse
|
|
24 |
20 |
5
|
Xu Z, Park KS, Kwok JJ, Lin O, Patel BB, Kafle P, Davies DW, Chen Q, Diao Y. Not All Aggregates Are Made the Same: Distinct Structures of Solution Aggregates Drastically Modulate Assembly Pathways, Morphology, and Electronic Properties of Conjugated Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203055. [PMID: 35724384 DOI: 10.1002/adma.202203055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Tuning structures of solution-state aggregation and aggregation-mediated assembly pathways of conjugated polymers is crucial for optimizing their solid-state morphology and charge-transport property. However, it remains challenging to unravel and control the exact structures of solution aggregates, let alone to modulate assembly pathways in a controlled fashion. Herein, aggregate structures of an isoindigo-bithiophene-based polymer (PII-2T) are modulated by tuning selectivity of the solvent toward the side chain versus the backbone, which leads to three distinct assembly pathways: direct crystallization from side-chain-associated amorphous aggregates, chiral liquid crystal (LC)-mediated assembly from semicrystalline aggregates with side-chain and backbone stacking, and random agglomeration from backbone-stacked semicrystalline aggregates. Importantly, it is demonstrated that the amorphous solution aggregates, compared with semicrystalline ones, lead to significantly improved alignment and reduced paracrystalline disorder in the solid state due to direct crystallization during the meniscus-guided coating process. Alignment quantified by the dichroic ratio is enhanced by up to 14-fold, and the charge-carrier mobility increases by a maximum of 20-fold in films printed from amorphous aggregates compared to those from semicrystalline aggregates. This work shows that by tuning the precise structure of solution aggregates, the assembly pathways and the resulting thin-film morphology and device properties can be drastically tuned.
Collapse
|
|
3 |
14 |
6
|
Patel BB, Diao Y. Multiscale assembly of solution-processed organic electronics: the critical roles of confinement, fluid flow, and interfaces. NANOTECHNOLOGY 2018; 29:044004. [PMID: 29176055 DOI: 10.1088/1361-6528/aa9d7c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Organic semiconducting small molecules and polymers provide a rich phase space for investigating the fundamentals of molecular and hierarchical assembly. Stemming from weak intermolecular interactions, their assembly sensitively depends on processing conditions, which in turn drastically modulate their electronic properties. Much work has gone into molecular design strategies that maximize intermolecular interactions and encourage close packing. Less understood, however, is the non-equilibrium assembly that occurs during the fabrication process (especially solution coating and printing) which is critical to determining thin film morphology across length scales. This encompasses polymorphism and molecular packing at molecular scale, assembly of π-bonding aggregates at the tens of nanometers scale, and the formation of domains at the micron-millimeter device scale. Here, we discuss three phenomena ubiquitous in solution processing of organic electronic thin films: the confinement effect, fluid flows, and interfacial assembly and the role they play in directing assembly. This review focuses on the mechanistic understanding of how assembly outcomes couple closely to the solution processing environment, supported by salient examples from the recent literature.
Collapse
|
|
7 |
12 |
7
|
Park KS, Xue Z, Patel BB, An H, Kwok JJ, Kafle P, Chen Q, Shukla D, Diao Y. Chiral emergence in multistep hierarchical assembly of achiral conjugated polymers. Nat Commun 2022; 13:2738. [PMID: 35585050 PMCID: PMC9117306 DOI: 10.1038/s41467-022-30420-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 04/27/2022] [Indexed: 11/09/2022] Open
Abstract
Intimately connected to the rule of life, chirality remains a long-time fascination in biology, chemistry, physics and materials science. Chiral structures, e.g., nucleic acid and cholesteric phase developed from chiral molecules are common in nature and synthetic soft materials. While it was recently discovered that achiral but bent-core mesogens can also form chiral helices, the assembly of chiral microstructures from achiral polymers has rarely been explored. Here, we reveal chiral emergence from achiral conjugated polymers, in which hierarchical helical structures are developed through a multistep assembly pathway. Upon increasing concentration beyond a threshold volume fraction, dispersed polymer nanofibers form lyotropic liquid crystalline (LC) mesophases with complex, chiral morphologies. Combining imaging, X-ray and spectroscopy techniques with molecular simulations, we demonstrate that this structural evolution arises from torsional polymer molecules which induce multiscale helical assembly, progressing from nano- to micron scale helical structures as the solution concentration increases. This study unveils a previously unknown complex state of matter for conjugated polymers that can pave way to a field of chiral (opto)electronics. We anticipate that hierarchical chiral helical structures can profoundly impact how conjugated polymers interact with light, transport charges, and transduce signals from biomolecular interactions and even give rise to properties unimagined before.
Collapse
|
research-article |
3 |
11 |
8
|
Patel BB, Pan T, Chang Y, Walsh DJ, Kwok JJ, Park KS, Patel K, Guironnet D, Sing CE, Diao Y. Concentration-Driven Self-Assembly of PS- b-PLA Bottlebrush Diblock Copolymers in Solution. ACS POLYMERS AU 2022; 2:232-244. [PMID: 35971423 PMCID: PMC9372993 DOI: 10.1021/acspolymersau.1c00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Bottlebrush polymers
are a class of semiflexible, hierarchical
macromolecules with unique potential for shape-, architecture-, and
composition-based structure–property design. It is now well-established
that in dilute to semidilute solution, bottlebrush homopolymers adopt
a wormlike conformation, which decreases in extension (persistence
length) as the concentration and molecular overlap increase. By comparison,
the solution phase self-assembly of bottlebrush diblock copolymers
(BBCP) in a good solvent remains poorly understood, despite critical
relevance for solution processing of ordered phases and photonic crystals.
In this work, we combine small-angle X-ray scattering, coarse-grained
simulation, and polymer synthesis to map the equilibrium phase behavior
and conformation of a set of large, nearly symmetric PS-b-PLA bottlebrush diblock copolymers in toluene. Three BBCP are synthesized,
with side chains of number-averaged molecular weights of 4500 (PS)
and 4200 g/mol (PLA) and total backbone degrees of polymerization
of 100, 255, and 400 repeat units. The grafting density is one side
chain per backbone repeat unit. With increasing concentration in solution,
all three polymers progress through a similar structural transition:
from dispersed, wormlike chains with concentration-dependent (decreasing)
extension, through the onset of disordered PS/PLA compositional fluctuations,
to the formation of a long-range ordered lamellar phase. With increasing
concentration in the microphase-separated regimes, the domain spacing
increases as individual chains partially re-extend due to block immiscibility.
Increases in the backbone degree of polymerization lead to changes
in the scattering profiles which are consistent with the increased
segregation strength. Coarse-grained simulations using an implicit
side-chain model are performed, and concentration-dependent self-assembly
behavior is qualitatively matched to experiments. Finally, using the
polymer with the largest backbone length, we demonstrate that lamellar
phases develop a well-defined photonic band gap in solution, which
can be tuned across the visible spectrum by varying polymer concentration.
Collapse
|
|
3 |
7 |
9
|
Pan T, Patel BB, Walsh DJ, Dutta S, Guironnet D, Diao Y, Sing CE. Implicit Side-Chain Model and Experimental Characterization of Bottlebrush Block Copolymer Solution Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
4 |
5 |
10
|
Patel BB, Walsh DJ, Patel K, Kim DH, Kwok JJ, Guironnet D, Diao Y. Rapid, interface-driven domain orientation in bottlebrush diblock copolymer films during thermal annealing. SOFT MATTER 2022; 18:1666-1677. [PMID: 35133377 DOI: 10.1039/d1sm01634b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Favorable polymer-substrate interactions induce surface orientation fields in block copolymer (BCP) melts. In linear BCP processed near equilibrium, alignment of domains generally persists for a small number of periods (∼4-6 D0) before randomization of domain orientation. Bottlebrush BCP are an emerging class of materials with distinct chain dynamics stemming from substantial molecular rigidity, enabling rapid assembly at ultrahigh (>100 nm) domain periodicities with strong photonic properties (structural color). This work assesses interface-induced ordering in PS-b-PLA bottlebrush diblock copolymer films during thermal annealing between planar surfaces. To clearly observe the decay in orientational order from surface to bulk, we choose to study micron-scale films spanning greater than 200 lamellar periods. In situ optical microscopy and transmission UV-Vis spectroscopy are used to monitor photonic properties during annealing and paired with ex situ UV-Vis reflection measurement, cross-sectional scanning electron microscopy (SEM), and small-angle X-ray scattering (SAXS) to probe the evolution of domain microstructure. Photonic properties were observed to saturate within minutes of annealing at 150 °C, with distinct variation in transmission response as a function of film thickness. The depth of the highly aligned surface region was found to vary stochastically in the range of 30-100 lamellar periods, with the sharpness of the orientation gradient decreasing substantially with increasing film thickness. This observation suggests a competition between growth of aligned, heterogeneously nucleated, grains at the surface and orientationally isotropic, homogeneously nucleated, grains throughout the bulk. This work demonstrates the high potential of bottlebrush block copolymers in rapid fabrication workflows and provides a point of comparison for future application of directed self-assembly to BBCP ordering.
Collapse
|
|
3 |
5 |
11
|
Kwok JJ, Park KS, Patel BB, Dilmurat R, Beljonne D, Zuo X, Lee B, Diao Y. Understanding Solution State Conformation and Aggregate Structure of Conjugated Polymers via Small Angle X-ray Scattering. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
3 |
4 |
12
|
Park SK, Sun H, Chung H, Patel BB, Zhang F, Davies DW, Woods TJ, Zhao K, Diao Y. Super‐ and Ferroelastic Organic Semiconductors for Ultraflexible Single‐Crystal Electronics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
|
5 |
3 |
13
|
Memon GN, Patel BB, Thomas BP, Ansari MM. Ovarian compensatory hypertrophy in IUCD treated rats under normal or constant illumination. INDIAN JOURNAL OF EXPERIMENTAL BIOLOGY 1972; 10:84-6. [PMID: 4644879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
|
53 |
|
14
|
Nautiyal J, Yu Y, Patel BB, Majumdar AP. Targeting EGFRs and Src signaling with a modified ectodomain of human EGFR (EBIP) and dasatinib in breast cancer. Cancer Res 2009. [DOI: 10.1158/0008-5472.sabcs-3069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Abstract #3069
It is becoming increasingly evident that many solid tumors including breast cancer show increased activation of several growth factor receptors, specifically EGFR and its family members (EGFRs) as well as c-Src, a non-receptor tyrosine kinase that promote proliferation, inhibit apoptosis and induce metastasis. The EGF-receptor (EGFR) consists of an extracellular ligand-binding domain, a hydrophobic transmembrane region, and an intracellular tyrosine kinase domain. The extracellular or ectodomain of EGFR is essential for ligand-binding and subsequent homo/heterodimerization of the receptor. This raises the possibility that the ectodomain of EGFR could be utilized to inhibit EGFR functions and in turn cellular growth. Recently, we generated an ectodomain of human EGFR (hEGFR), composed of 1-448 amino acids fragment of hEGFR and the 30 amino acid epitope (known as “U” region) of rat EGFR-Related Protein (ERRP) fused at the carboxy-terminal end. The new protein, referred to as EBIP (ErbB Inhibitory Protein), as has been observed for ERRP (Xu et al. Mol. Cancer Ther. 2005 (4): 435-42), inhibits growth of colon and breast cancer cells that express varying levels of EGFR and/or its family members. We hypothesize that inhibition of c-Src and EGFRs will be an effective therapeutic strategy for breast cancer. To test our hypothesis we used Dasatinib (BMS-354825; Bristol-Myers Squibb), a newly developed highly potent, ATP-competitive Src and Abl kinase inhibitor and ErbB Inhibitory Protein (EBIP). Four different breast cancer cell lines (MDA-MB-468, SKBr-3, MDA-MB-453 and MDA-MB-231) expressing different levels of EGFR and/or its family members were used. Both EBIP and dasatinib caused a dose dependent inhibition of growth in all breast cancer cells, but dasatinib was less effective compared to EBIP. However, the combination of Dasatinib and EBIP synergistically inhibited cell growth. In EGFR overexpressing MDA-MB-468 cells, the combination therapy also inhibited invasion through extracellular matrix and decreased colony formation. Induction of apoptosis could be attributed to activation of caspases -9 and -8 and by modulating phosphorylation of anti- and pro-apoptotic proteins, Bcl-2 and Bad, respectively. The combination of Dasatinib and EBIP produced a greater inhibition of EGFR and Src activation and their downstream signaling pathways involving Akt and p44/42 MAPK. Additionally, we observed that EGFR promoter activities as well as transactivation of NFκB in MDA-MB-468 cells were greatly reduced. In conclusion, our data suggest that combination treatment of Dasatinib and EBIP that target EGFRs and Src could be a highly effective therapy for breast cancer than mono therapy, as they are likely to impact several aspects of tumor progression.
Citation Information: Cancer Res 2009;69(2 Suppl):Abstract nr 3069.
Collapse
|
|
16 |
|
15
|
Jeon S, Kamble YL, Kang H, Shi J, Wade MA, Patel BB, Pan T, Rogers SA, Sing CE, Guironnet D, Diao Y. Direct-ink-write cross-linkable bottlebrush block copolymers for on-the-fly control of structural color. Proc Natl Acad Sci U S A 2024; 121:e2313617121. [PMID: 38377215 PMCID: PMC10907314 DOI: 10.1073/pnas.2313617121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Additive manufacturing capable of controlling and dynamically modulating structures down to the nanoscopic scale remains challenging. By marrying additive manufacturing with self-assembly, we develop a UV (ultra-violet)-assisted direct ink write approach for on-the-fly modulation of structural color by programming the assembly kinetics through photo-cross-linking. We design a photo-cross-linkable bottlebrush block copolymer solution as a printing ink that exhibits vibrant structural color (i.e., photonic properties) due to the nanoscopic lamellar structures formed post extrusion. By dynamically modulating UV-light irradiance during printing, we can program the color of the printed material to access a broad spectrum of visible light with a single ink while also creating color gradients not previously possible. We unveil the mechanism of this approach using a combination of coarse-grained simulations, rheological measurements, and structural characterizations. Central to the assembly mechanism is the matching of the cross-linking timescale with the assembly timescale, which leads to kinetic trapping of the assembly process that evolves structural color from blue to red driven by solvent evaporation. This strategy of integrating cross-linking chemistry and out-of-equilibrium processing opens an avenue for spatiotemporal control of self-assembled nanostructures during additive manufacturing.
Collapse
|
research-article |
1 |
|
16
|
Kwok JJ, Vishwanathan G, Park KS, Patel BB, Zhao D, Juarez G, Diao Y. Understanding the Aggregation and Flow Response of Donor–Acceptor Conjugated Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
3 |
|
17
|
Davies DW, Jeon S, Graziano G, Patel BB, Liu W, Strzalka J, Zhu X, Diao Y. Direct Laser Writing Crystal Polymorphs of Organic Semiconductors for Phase Change Electronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42546-42554. [PMID: 39082972 DOI: 10.1021/acsami.4c01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The many diverse polymorphic behaviors observed in organic electronic materials offer opportunities to modulate electronic properties through reversibly switching crystal structures. Here, we access the prolific polymorphism observed in two-dimensional quinoidal terthiophene via laser writing to locally heat and direct the phase transitions. We access a metastable polymorph IV through rapid cooling and observe distinct symmetry as well as packing through grazing incidence X-ray diffraction (GIXD). Using our open-source PolyChemPrint patterning platform, we direct laser heating to initiate the IV-I transition, switching the conductance by >2 orders of magnitude. This is confirmed via a combination of GIXD and Raman spectroscopy. Finally, we demonstrate switching of transistor devices as well as discrete tuning of conductance via laser writing.
Collapse
|
|
1 |
|
18
|
Patel BB, Feng H, Loo WS, Snyder CR, Eom C, Murphy J, Sunday DF, Nealey PF, DeLongchamp DM. Self-Assembly of Hierarchical High-χ Fluorinated Block Copolymers with an Orthogonal Smectic-within-Lamellae 3 nm Sublattice and Vertical Surface Orientation. ACS NANO 2024; 18:11311-11322. [PMID: 38623826 DOI: 10.1021/acsnano.4c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Hierarchical structure-within-structure assemblies offer a route toward increasingly complex and multifunctional materials while pushing the limits of block copolymer self-assembly. We present a detailed study of the self-assembly of a series of fluorinated high-χ block copolymers (BCPs) prepared via postmodification of a single poly(styrene)-block-poly(glycidyl methacrylate) (S-b-G) parent polymer with the fluorinated alkylthiol pendent groups containing 1, 6, or 8 fluorinated carbons (termed trifluoro-ethanethiol (TFET), perfluoro-octylthiol (PFOT), and perfluoro-decylthiol (PFDT), respectively). Bulk X-ray scattering of thermally annealed samples demonstrates hierarchical molecular assembly with phase separation between the two blocks and within the fluorinated block. The degree of ordering within the fluorinated block is highly sensitive to synthetic variation; a lamellar sublattice was formed for S-b-GPFOT and S-b-GPFDT. Thermal analyses of S-b-GPFOT reveal that the fluorinated block exhibits liquid crystal-like ordering. The complex thin-film self-assembly behavior of an S-b-GPFOT polymer was investigated using real-space (atomic force microscopy and scanning electron microscopy) and reciprocal-space (resonant soft X-ray scattering (RSoXS), grazing incidence small- and wide-angle scattering) measurements. After thermal annealing in nitrogen or vacuum, films thicker than 1.5 times the primary lattice spacing exhibit a 90-degree grain boundary, exposing a thin layer of vertical lamellae at the free interface, while exhibiting horizontal lamellae on the preferential (polystyrene brush) substrate. RSoXS measurements reveal the near-perfect orthogonality between the primary and sublattice orientations, demonstrating hierarchical patterning at the nanoscale.
Collapse
|
|
1 |
|
19
|
Xia P, Davies DW, Patel BB, Qin M, Liang Z, Graham KR, Diao Y, Tang ML. Spin-coated fluorinated PbS QD superlattice thin film with high hole mobility. NANOSCALE 2020; 12:11174-11181. [PMID: 32406467 DOI: 10.1039/d0nr02299c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Motivated by the oleophobic and electron-withdrawing nature of perfluorocarbons, we explore the effect of a trifluoromethyl coating on lead sulfide quantum dots (PbS QDs) in thin film transistor (TFT) geometry. The low surface energy conferred by the oleophobic perfluorocarbons creates QDs packed in a primitive cubic lattice with long range order, as confirmed by grazing incidence small angle X-ray scattering (GISAXS) and transmission electron microscopy (TEM). Hole mobilities as high as 0.085 cm2 V-1 s-1 were measured in the TFTs. No electron transport was observed. This suggests that the electron-withdrawing nature of the trifluoromethyl ligand is eclipsed by the excess holes present in the PbS QDs that likely stem from cation vacancies induced by the thiol group.
Collapse
|
|
5 |
|