Zouaoui J, Trunfio-Sfarghiu AM, Brizuela L, Piednoir A, Maniti O, Munteanu B, Mebarek S, Girard-Egrot A, Landoulsi A, Granjon T. Multi-scale mechanical characterization of prostate cancer cell lines: Relevant biological markers to evaluate the cell metastatic potential.
Biochim Biophys Acta Gen Subj 2017;
1861:3109-3119. [PMID:
28899829 DOI:
10.1016/j.bbagen.2017.09.003]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND
Considering the importance of cellular mechanics in the birth and evolution of cancer towards increasingly aggressive stages, we compared nano-mechanical properties of non-tumoral (WPMY-1) and highly aggressive metastatic (PC-3) prostate cell lines both on cell aggregates, single cells, and membrane lipids.
METHODS
Cell aggregate rheological properties were analyzed during dynamic compression stress performed on a homemade rheometer. Single cell visco-elasticity measurements were performed by Atomic Force Microscopy using a cantilever with round tip on surface-attached cells. At a molecular level, the lateral diffusion coefficient of total extracted lipids deposited as a Langmuir monolayer on an air-water interface was measured by the FRAP technique.
RESULTS
At cellular pellet scale, and at single cell scale, PC-3 cells were less stiff, less viscous, and thus more prone to deformation than the WPMY-1 control. Interestingly, stress-relaxation curves indicated a two-step response, which we attributed to a differential response coming from two cell elements, successively stressed. Both responses are faster for PC-3 cells. At a molecular scale, the dynamics of the PC-3 lipid extracts are also faster than that of WPMY-1 lipid extracts.
CONCLUSIONS
As the evolution of cancer towards increasingly aggressive stages is accompanied by alterations both in membrane composition and in cytoskeleton dynamical properties, we attribute differences in viscoelasticity between PC-3 and WPMY-1 cells to modifications of both elements.
GENERAL SIGNIFICANCE
A decrease in stiffness and a less viscous behavior may be one of the diverse mechanisms that cancer cells adopt to cope with the various physiological conditions that they encounter.
Collapse