1
|
Min B, Kim J, Oh S, Regan JM, Logan BE. Electricity generation from swine wastewater using microbial fuel cells. WATER RESEARCH 2005; 39:4961-8. [PMID: 16293279 DOI: 10.1016/j.watres.2005.09.039] [Citation(s) in RCA: 341] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 09/26/2005] [Accepted: 09/28/2005] [Indexed: 05/05/2023]
Abstract
Microbial fuel cells (MFCs) represent a new method for treating animal wastewaters and simultaneously producing electricity. Preliminary tests using a two-chambered MFC with an aqueous cathode indicated that electricity could be generated from swine wastewater containing 8320 +/- 190 mg/L of soluble chemical oxygen demand (SCOD) (maximum power density of 45 mW/m2). More extensive tests with a single-chambered air cathode MFC produced a maximum power density with the animal wastewater of 261 mW/m2 (200 omega resistor), which was 79% larger than that previously obtained with the same system using domestic wastewater (146 +/- 8 mW/m2) due to the higher concentration of organic matter in the swine wastewater. Power generation as a function of substrate concentration was modeled according to saturation kinetics, with a maximum power density of P(max) = 225 mW/m2 (fixed 1000 omega resistor) and half-saturation concentration of K(s) = 1512 mg/L (total COD). Ammonia was removed from 198 +/- 1 to 34 +/- 1 mg/L (83% removal). In order to try to increase power output and overall treatment efficiency, diluted (1:10) wastewater was sonicated and autoclaved. This pretreated wastewater generated 16% more power after treatment (110 +/- 4 mW/m2) than before treatment (96 +/- 4 mW/m2). SCOD removal was increased from 88% to 92% by stirring diluted wastewater, although power output slightly decreased. These results demonstrate that animal wastewaters such as this swine wastewater can be used for power generation in MFCs while at the same time achieving wastewater treatment.
Collapse
|
|
20 |
341 |
2
|
Min B, Prout M, Hu-Li J, Zhu J, Jankovic D, Morgan ES, Urban JF, Dvorak AM, Finkelman FD, LeGros G, Paul WE. Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. ACTA ACUST UNITED AC 2004; 200:507-17. [PMID: 15314076 PMCID: PMC2211939 DOI: 10.1084/jem.20040590] [Citation(s) in RCA: 334] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Using mice in which the eGfp gene replaced the first exon of the Il4 gene (G4 mice), we examined production of interleukin (IL)-4 during infection by the intestinal nematode Nippostrongylus brasiliensis (Nb). Nb infection induced green fluorescent protein (GFP)pos cells that were FcepsilonRIpos, CD49bbright, c-kitneg, and Gr1neg. These cells had lobulated nuclei and granules characteristic of basophils. They were found mainly in the liver and lung, to a lesser degree in the spleen, but not in the lymph nodes. Although some liver basophils from naive mice express GFP, Nb infection enhanced GFP expression and increased the number of tissue basophils. Similar basophil GFP expression was found in infected Stat6-/- mice. Basophils did not increase in number in infected Rag2-/- mice; Rag2-/- mice reconstituted with CD4 T cells allowed significant basophil accumulation, indicating that CD4 T cells can direct both tissue migration of basophils and enhanced IL-4 production. IL-4 production was immunoglobulin independent and only partially dependent on IL-3. Thus, infection with a parasite that induces a "Th2-type response" resulted in accumulation of tissue basophils, and these cells, stimulated by a non-FcR cross-linking mechanism, are a principal source of in vivo IL-4 production.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
334 |
3
|
Oh S, Min B, Logan BE. Cathode performance as a factor in electricity generation in microbial fuel cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2004; 38:4900-4. [PMID: 15487802 DOI: 10.1021/es049422p] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although microbial fuel cells (MFCs) generate much lower power densities than hydrogen fuel cells, the characteristics of the cathode can also substantially affect electricity generation. Cathodes used for MFCs are often either Pt-coated carbon electrodes immersed in water that use dissolved oxygen as the electron acceptor or they are plain carbon electrodes in a ferricyanide solution. The characteristics and performance of these two cathodes were compared using a two-chambered MFC. Power generation using the Pt-carbon cathode and dissolved oxygen (saturated) reached a maximum of 0.097 mW within 120 h after inoculation (wastewater sludge and 20 mM acetate) when the cathode was equal size to the anode (2.5 x 4.5 cm). Once stable power was generated after replacing the MFC with fresh medium (no sludge), the Coulombic efficiency ranged from 63 to 78%. Power was proportional to the dissolved oxygen concentration in a manner consistent with Monod-type kinetics, with a half saturation constant of K(DO) = 1.74 mg of O2/L. Power increased by 24% when the cathode surface areas were increased from 22.5 to 67.5 cm2 and decreased by 56% when the cathode surface area was reduced to 5.8 cm2. Power was also substantially reduced (by 78% to 0.02 mW) if Pt was not used on the cathode. By using ferricyanide instead of dissolved oxygen, the maximum power increased by 50-80% versus that obtained with dissolved oxygen. This result was primarily due to increased mass transfer efficiencies and the larger cathode potential (332 mV) of ferricyanide than that obtained with dissolved oxygen (268 mV). A cathode potential of 804 mV (NHE basis) is theoretically possible using dissolved oxygen, indicating that further improvements in cathode performance with oxygen as the electron acceptor are possible that could lead to increased power densities in this type of MFC.
Collapse
|
|
21 |
232 |
4
|
Min B, McHugh R, Sempowski GD, Mackall C, Foucras G, Paul WE. Neonates support lymphopenia-induced proliferation. Immunity 2003; 18:131-40. [PMID: 12530982 DOI: 10.1016/s1074-7613(02)00508-3] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
T cells expand without intentional antigen stimulation when transferred into adult lymphopenic environments. In this study, we show that the physiologic lymphopenic environment existing in neonatal mice also supports CD4 T cell proliferation. Strikingly, naive CD4 T cells that proliferate within neonates acquire the phenotypic and functional characteristics of memory cells. Such proliferation is inhibited by the presence of both memory and naive CD4 T cells, is enhanced by 3-day thymectomy, is independent of IL-7, and requires a class II MHC-TCR interaction and a CD28-mediated signal. CD44(bright) CD4 T cells in neonates have a wide repertoire as judged by the distribution of Vbeta expression. Thus, lymphopenia-induced T cell proliferation is a physiologic process that occurs during the early postnatal period.
Collapse
|
|
22 |
230 |
5
|
Min B, Logan BE. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2004; 38:5809-14. [PMID: 15575304 DOI: 10.1021/es0491026] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A microbial fuel cell (MFC) is a device that converts organic matter to electricity using microorganisms as the biocatalyst. Most MFCs contain two electrodes separated into one or two chambers that are operated as a completely mixed reactor. In this study, a flat plate MFC (FPMFC) was designed to operate as a plug flow reactor (no mixing) using a combined electrode/proton exchange membrane (PEM) system. The reactor consisted of a single channel formed between two nonconductive plates that were separated into two halves by the electrode/PEM assembly. Each electrode was placed on an opposite side of the PEM, with the anode facing the chamber containing the liquid phase and the cathode facing a chamber containing only air. Electricity generation using the FPMFC was examined by continuously feeding a solution containing wastewater, or a specific substrate, into the anode chamber. The system was initially acclimated for 1 month using domestic wastewater orwastewater enriched with a specific substrate such as acetate. Average power density using only domestic wastewater was 72+/-1 mW/m2 at a liquid flow rate of 0.39 mL/min [42% COD (chemical oxygen demand) removal, 1.1 h HRT (hydraulic retention time)]. At a longer HRT = 4.0 h, there was 79% COD removal and an average power density of 43+/-1 mW/m2. Power output was found to be a function of wastewater strength according to a Monod-type relationship, with a half-saturation constant of Ks = 461 or 719 mg COD/L. Power generation was sustained at high rates with several organic substrates (all at approximately 1000 mg COD/L), including glucose (212+/-2 mW/ m2), acetate (286+/-3 mW/m2), butyrate (220+/-1 mW/ m2), dextran (150+/-1 mW/m2), and starch (242+/-3 mW/ m2). These results demonstrate the versatility of power generation in a MFC with a variety of organic substrates and show that power can be generated at a high rate in a continuous flow reactor system.
Collapse
|
|
21 |
229 |
6
|
Kim TW, Staschke K, Bulek K, Yao J, Peters K, Oh KH, Vandenburg Y, Xiao H, Qian W, Hamilton T, Min B, Sen G, Gilmour R, Li X. A critical role for IRAK4 kinase activity in Toll-like receptor-mediated innate immunity. ACTA ACUST UNITED AC 2007; 204:1025-36. [PMID: 17470642 PMCID: PMC2118590 DOI: 10.1084/jem.20061825] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IRAK4 is a member of IL-1 receptor (IL-1R)–associated kinase (IRAK) family and has been shown to play an essential role in Toll-like receptor (TLR)–mediated signaling. We recently generated IRAK4 kinase-inactive knock-in mice to examine the role of kinase activity of IRAK4 in TLR-mediated signaling pathways. The IRAK4 kinase–inactive knock-in mice were completely resistant to lipopolysaccharide (LPS)- and CpG-induced shock, due to impaired TLR-mediated induction of proinflammatory cytokines and chemokines. Although inactivation of IRAK4 kinase activity did not affect the levels of TLR/IL-1R–mediated nuclear factor κB activation, a reduction of LPS-, R848-, and IL-1–mediated mRNA stability contributed to the reduced cytokine and chemokine production in bone marrow–derived macrophages from IRAK4 kinase–inactive knock-in mice. Both TLR7- and TLR9-mediated type I interferon production was abolished in plasmacytoid dendritic cells isolated from IRAK4 knock-in mice. In addition, influenza virus–induced production of interferons in plasmacytoid DCs was also dependent on IRAK4 kinase activity. Collectively, our results indicate that IRAK4 kinase activity plays a critical role in TLR-dependent immune responses.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
217 |
7
|
Kim JR, Min B, Logan BE. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol 2005; 68:23-30. [PMID: 15647935 DOI: 10.1007/s00253-004-1845-6] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 11/05/2004] [Accepted: 11/11/2004] [Indexed: 10/26/2022]
Abstract
A microbial fuel cell (MFC) is a relatively new type of fixed film bioreactor for wastewater treatment, and the most effective methods for inoculation are not well understood. Various techniques to enrich electrochemically active bacteria on an electrode were therefore studied using anaerobic sewage sludge in a two-chambered MFC. With a porous carbon paper anode electrode, 8 mW/m2 of power was generated within 50 h with a Coulombic efficiency (CE) of 40%. When an iron oxide-coated electrode was used, the power and the CE reached 30 mW/m2 and 80%, respectively. A methanogen inhibitor (2-bromoethanesulfonate) increased the CE to 70%. Bacteria in sludge were enriched by serial transfer using a ferric iron medium, but when this enrichment was used in a MFC the power was lower (2 mW/m2) than that obtained with the original inoculum. By applying biofilm scraped from the anode of a working MFC to a new anode electrode, the maximum power was increased to 40 mW/m2. When a second anode was introduced into an operating MFC the acclimation time was not reduced and the total power did not increase. These results suggest that these active inoculating techniques could increase the effectiveness of enrichment, and that start up is most successful when the biofilm is harvested from the anode of an existing MFC and applied to the new anode.
Collapse
|
|
20 |
206 |
8
|
Min B, Cheng S, Logan BE. Electricity generation using membrane and salt bridge microbial fuel cells. WATER RESEARCH 2005; 39:1675-86. [PMID: 15899266 DOI: 10.1016/j.watres.2005.02.002] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 02/02/2005] [Indexed: 05/02/2023]
Abstract
Microbial fuel cells (MFCs) can be used to directly generate electricity from the oxidation of dissolved organic matter, but optimization of MFCs will require that we know more about the factors that can increase power output such as the type of proton exchange system which can affect the system internal resistance. Power output in a MFC containing a proton exchange membrane was compared using a pure culture (Geobacter metallireducens) or a mixed culture (wastewater inoculum). Power output with either inoculum was essentially the same, with 40+/-1mW/m2 for G. metallireducens and 38+/-1mW/m2 for the wastewater inoculum. We also examined power output in a MFC with a salt bridge instead of a membrane system. Power output by the salt bridge MFC (inoculated with G. metallireducens) was 2.2mW/m2. The low power output was directly attributed to the higher internal resistance of the salt bridge system (19920+/-50 Ohms) compared to that of the membrane system (1286+/-1Ohms) based on measurements using impedance spectroscopy. In both systems, it was observed that oxygen diffusion from the cathode chamber into the anode chamber was a factor in power generation. Nitrogen gas sparging, L-cysteine (a chemical oxygen scavenger), or suspended cells (biological oxygen scavenger) were used to limit the effects of gas diffusion into the anode chamber. Nitrogen gas sparging, for example, increased overall Coulombic efficiency (47% or 55%) compared to that obtained without gas sparging (19%). These results show that increasing power densities in MFCs will require reducing the internal resistance of the system, and that methods are needed to control the dissolved oxygen flux into the anode chamber in order to increase overall Coulombic efficiency.
Collapse
|
|
20 |
201 |
9
|
Zhu J, Guo L, Min B, Watson CJ, Hu-Li J, Young HA, Tsichlis PN, Paul WE. Growth factor independent-1 induced by IL-4 regulates Th2 cell proliferation. Immunity 2002; 16:733-44. [PMID: 12049724 DOI: 10.1016/s1074-7613(02)00317-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
IL-4 is important in Th2 differentiation and in cell expansion. Stat6 is necessary and sufficient for both functions. Although Gata3 is critical for Th2 polarization, it is not sufficient to mediate IL-4-driven cell expansion. We report that growth factor independent-1 (Gfi-1), a Stat6-dependent transcriptional repressor, strikingly increases Th2 cell expansion by promoting proliferation and preventing apoptosis. Cells infected with a Gfi-1 retrovirus show striking enhancement of IL-2-induced Stat5 phosphorylation and repression of p27(Kip-1) expression, suggesting a potential mechanism for the Gfi-1 growth effect. The synergy of Gfi-1 and Gata3 provides a mechanism through which IL-4 could selectively promote Th2 cell expansion.
Collapse
|
Comparative Study |
23 |
165 |
10
|
Gulen MF, Kang Z, Bulek K, Youzhong W, Kim TW, Chen Y, Altuntas CZ, Sass Bak-Jensen K, McGeachy MJ, Do JS, Xiao H, Delgoffe GM, Min B, Powell JD, Tuohy VK, Cua DJ, Li X. The receptor SIGIRR suppresses Th17 cell proliferation via inhibition of the interleukin-1 receptor pathway and mTOR kinase activation. Immunity 2010; 32:54-66. [PMID: 20060329 DOI: 10.1016/j.immuni.2009.12.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 10/12/2009] [Accepted: 11/04/2009] [Indexed: 12/17/2022]
Abstract
Interleukin-1 (IL-1)-mediated signaling in T cells is essential for T helper 17 (Th17) cell differentiation. We showed here that SIGIRR, a negative regulator of IL-1 receptor and Toll-like receptor signaling, was induced during Th17 cell lineage commitment and governed Th17 cell differentiation and expansion through its inhibitory effects on IL-1 signaling. The absence of SIGIRR in T cells resulted in increased Th17 cell polarization in vivo upon myelin oligodendrocyte glycoprotein (MOG(35-55)) peptide immunization. Recombinant IL-1 promoted a marked increase in the proliferation of SIGIRR-deficient T cells under an in vitro Th17 cell-polarization condition. Importantly, we detected increased IL-1-induced phosphorylation of JNK and mTOR kinase in SIGIRR-deficient Th17 cells compared to wild-type Th17 cells. IL-1-induced proliferation was abolished in mTOR-deficient Th17 cells, indicating the essential role of mTOR activation. Our results demonstrate an important mechanism by which SIGIRR controls Th17 cell expansion and effector function through the IL-1-induced mTOR signaling pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
152 |
11
|
Min B, Yamane H, Hu-Li J, Paul WE. Spontaneous and homeostatic proliferation of CD4 T cells are regulated by different mechanisms. THE JOURNAL OF IMMUNOLOGY 2005; 174:6039-44. [PMID: 15879097 DOI: 10.4049/jimmunol.174.10.6039] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transfer of naive CD4 T cells into lymphopenic mice initiates a proliferative response of the transferred cells, often referred to as homeostatic proliferation. Careful analysis reveals that some of the transferred cells proliferate rapidly and undergo robust differentiation to memory cells, a process we have designated spontaneous proliferation, and other cells proliferate relatively slowly and show more limited evidence of differentiation. In this study we report that spontaneous proliferation is IL-7 independent, whereas the slow proliferation (referred to as homeostatic proliferation) is IL-7 dependent. Administration of IL-7 induces homeostatic proliferation of naive CD4 T cells even within wild-type recipients. Moreover, the activation/differentiation pattern of the two responses are clearly distinguishable, indicating that different activation mechanisms may be involved. Our results reveal the complexity and heterogeneity of lymphopenia-driven T cell proliferation and suggest that they may have fundamentally distinct roles in the maintenance of CD4 T cell homeostasis.
Collapse
|
Journal Article |
20 |
150 |
12
|
Throckmorton DC, Brogden AP, Min B, Rasmussen H, Kashgarian M. PDGF and TGF-beta mediate collagen production by mesangial cells exposed to advanced glycosylation end products. Kidney Int 1995; 48:111-7. [PMID: 7564067 DOI: 10.1038/ki.1995.274] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Deposition of type III collagen protein is increased when cultured rat mesangial cells are cultured in media containing high glucose concentrations. Possible mechanisms for this effect include the production of growth factors, such as PDGF and TGF-beta, and the formation of abnormal glucose-protein adducts called advanced glycosylation end products (AGEs). In our studies, neutralizing antibodies to PDGF and TGF-beta prevented increased type III collagen deposition by mesangial cells exposed either to high glucose media or to low glucose media containing AGEs. Daily addition of PDGF or TGF-beta stimulated type III collagen production. However, while co-incubation with the TGF-beta Ab prevented PDGF-stimulated type III collagen production, the PDGF Ab did not prevent TGF-beta-stimulated type III collagen production. Daily addition of PDGF or TGF-beta stimulated, while AGEs inhibited, mesangial cell proliferation after 96 hours. We propose that high extracellular glucose and AGEs stimulate type III collagen production by pathways that involve the intermediate formation of PDGF and TGF-beta by mesangial cells. PDGF may increase type III collagen production by stimulating the intermediate production of TGF-beta. Exposure to high glucose, AGEs, or TGF-beta also leads to impaired mesangial cell proliferation. The autocrine effects of TGF-beta and PDGF play important roles in the effects of high extracellular glucose and AGEs on cultured mesangial cells.
Collapse
|
|
30 |
137 |
13
|
Bulek K, Swaidani S, Qin J, Lu Y, Gulen MF, Herjan T, Min B, Kastelein RA, Aronica M, Kosz-Vnenchak M, Li X. The essential role of single Ig IL-1 receptor-related molecule/Toll IL-1R8 in regulation of Th2 immune response. THE JOURNAL OF IMMUNOLOGY 2009; 182:2601-9. [PMID: 19234154 DOI: 10.4049/jimmunol.0802729] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel cytokine IL-33, an IL-1 family member, signals via ST2 receptor and promotes Th2 responses, through the activation of NF-kappaB and MAP kinases. Previous studies reported that single Ig IL-1R-related molecule (SIGIRR)/Toll IL-1R8 acts as negative regulator for TLR-IL-1R-mediated signaling. We now found that SIGIRR formed a complex with ST2 upon IL-33 stimulation and specifically inhibited IL-33/ST2-mediated signaling in cell culture model. Furthermore, IL-33-induced Th2 response was enhanced in SIGIRR-deficient mice compared with that in wild-type control mice, suggesting a negative regulatory role of SIGIRR in IL-33/ST2 signaling in vivo. Similar to ST2, SIGIRR was highly expressed in in vitro polarized Th2 cells, but not Th1 cells. SIGIRR-deficient Th2 cells produce higher levels of Th2 cytokines, including IL-5, IL-4, and IL-13, than that in wild-type cells. Moreover, SIGIRR-deficient mice developed stronger Th2 immune response in OVA-challenged asthma model. Taken together, our results suggest that SIGIRR plays an important role in the regulation of Th2 response in vivo, possibly through its impact on IL-33-ST2-mediated signaling.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
130 |
14
|
Min B, Foucras G, Meier-Schellersheim M, Paul WE. Spontaneous proliferation, a response of naive CD4 T cells determined by the diversity of the memory cell repertoire. Proc Natl Acad Sci U S A 2004; 101:3874-9. [PMID: 15001705 PMCID: PMC374337 DOI: 10.1073/pnas.0400606101] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T cell numbers are maintained within narrow ranges in vivo. Introduction of naïve cells into lymphopenic environments results in proliferation and differentiation driven by the recognition of peptide/MHC complexes and by cytokine signaling. This process, often described as homeostatic proliferation, is here referred to as spontaneous proliferation. We show that, although the presence of memory CD4 T cells of broad repertoire efficiently inhibits proliferation/differentiation of naïve CD4 T cells, a memory population of similar size comprised of cells with a repertoire of limited diversity fails to do so, implying that cells of a given specificity prevent responses of cells of the same or related specificity. This finding suggests that the immune system has evolved mechanisms to attain a memory cell repertoire of great diversity independently of foreign antigens.
Collapse
|
research-article |
21 |
126 |
15
|
Martin BN, Wang C, Zhang CJ, Kang Z, Gulen MF, Zepp JA, Zhao J, Bian G, Do JS, Min B, Pavicic PG, El-Sanadi C, Fox PL, Akitsu A, Iwakura Y, Sarkar A, Wewers MD, Kaiser WJ, Mocarski ES, Rothenberg ME, Hise AG, Dubyak GR, Ransohoff RM, Li X. T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. Nat Immunol 2016; 17:583-92. [PMID: 26998763 DOI: 10.1038/ni.3389] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/22/2015] [Indexed: 02/07/2023]
Abstract
Interleukin 1β (IL-1β) is critical for the in vivo survival, expansion and effector function of IL-17-producing helper T (T(H)17) cells during autoimmune responses, including experimental autoimmune encephalomyelitis (EAE). However, the spatiotemporal role and cellular source of IL-1β during EAE pathogenesis are poorly defined. In the present study, we uncovered a T cell-intrinsic inflammasome that drives IL-1β production during T(H)17-mediated EAE pathogenesis. Activation of T cell antigen receptors induced expression of pro-IL-1β, whereas ATP stimulation triggered T cell production of IL-1β via ASC-NLRP3-dependent caspase-8 activation. IL-1R was detected on T(H)17 cells but not on type 1 helper T (T(H)1) cells, and ATP-treated T(H)17 cells showed enhanced survival compared with ATP-treated T(H)1 cells, suggesting autocrine action of T(H)17-derived IL-1β. Together these data reveal a critical role for IL-1β produced by a T(H)17 cell-intrinsic ASC-NLRP3-caspase-8 inflammasome during inflammation of the central nervous system.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
126 |
16
|
Kim S, Prout M, Ramshaw H, Lopez AF, LeGros G, Min B. Cutting edge: basophils are transiently recruited into the draining lymph nodes during helminth infection via IL-3, but infection-induced Th2 immunity can develop without basophil lymph node recruitment or IL-3. THE JOURNAL OF IMMUNOLOGY 2009; 184:1143-7. [PMID: 20038645 DOI: 10.4049/jimmunol.0902447] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Basophils are recognized as immune modulators through their ability to produce IL-4, a key cytokine required for Th2 immunity. It has also recently been reported that basophils are transiently recruited into the draining lymph node (LN) after allergen immunization and that the recruited basophils promote the differentiation of naive CD4 T cells into Th2 effector cells. Using IL-3(-/-) and IL-3Rbeta(-/-) mice, we report in this study that the IL-3/IL-3R system is absolutely required to recruit circulating basophils into the draining LN following helminth infection. Unexpectedly, the absence of IL-3 or of basophil LN recruitment played little role in helminth-induced Th2 immune responses. Moreover, basophil depletion in infected mice did not diminish the development of IL-4-producing CD4 T cells. Our results reveal a previously unknown role of IL-3 in recruiting basophils to the LN and demonstrate that basophils are not necessarily associated with the development of Th2 immunity during parasite infection.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
116 |
17
|
Do JS, Fink PJ, Li L, Spolski R, Robinson J, Leonard WJ, Letterio JJ, Min B. Cutting edge: spontaneous development of IL-17-producing gamma delta T cells in the thymus occurs via a TGF-beta 1-dependent mechanism. THE JOURNAL OF IMMUNOLOGY 2010; 184:1675-9. [PMID: 20061408 DOI: 10.4049/jimmunol.0903539] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In naive animals, gammadelta T cells are innate sources of IL-17, a potent proinflammatory cytokine mediating bacterial clearance as well as autoimmunity. However, mechanisms underlying the generation of these cells in vivo remain unclear. In this study, we show that TGF-beta1 plays a key role in the generation of IL-17(+) gammadelta T cells and that it mainly occurs in the thymus particularly during the postnatal period. Interestingly, IL-17(+) gammadelta TCR(+) thymocytes were mainly CD44(high)CD25(low) cells, which seem to derive from double-negative 4 gammadelta TCR(+) cells that acquired CD44 and IL-17 expression. Our findings identify a novel developmental pathway during which IL-17-competent gammadelta T cells arise in the thymus by a TGF-beta1-dependent mechanism.
Collapse
|
Research Support, N.I.H., Intramural |
15 |
107 |
18
|
Kondaveeti S, Lee SH, Park HD, Min B. Bacterial communities in a bioelectrochemical denitrification system: the effects of supplemental electron acceptors. WATER RESEARCH 2014; 51:25-36. [PMID: 24388828 DOI: 10.1016/j.watres.2013.12.023] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/29/2013] [Accepted: 12/16/2013] [Indexed: 05/05/2023]
Abstract
Electrochemical treatment of nitrate (NO3(-)), nitrite (NO2(-)) and mixtures of nitrate and nitrite was evaluated with microbial catalysts on a cathode in three different bioelectrochemical denitrification systems (BEDS). The removal rates and removal percentage of nitrogen (N) compounds varied during biotic and abiotic operations. The biotic cathode using NO3(-)-N as an electron acceptor showed enhanced removal percentages (88%) compared to the operation with NO2(-)-N (85%). The simultaneous reduction of NO3(-)-N and NO2(-)-N occurred in the operation with a mixture of N compounds. The bacterial diversity from the initial inoculum (return sludge) changed at the end of bioelectrochemical denitrification operation after 55 days. The microbial community composition was different depending on the type of electron acceptor. BEDS operation with NO3(-)-N and NO2(-)-N was enriched with Proteobacteria and Firmicutes respectively. BEDS with a mixture of N electron acceptors showed enrichment with Proteobacteria. There was no clear, distinct microbial community between the cathode biofilm and suspended biomass.
Collapse
|
|
11 |
107 |
19
|
Curnow AW, Tumbula DL, Pelaschier JT, Min B, Söll D. Glutamyl-tRNA(Gln) amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. Proc Natl Acad Sci U S A 1998; 95:12838-43. [PMID: 9789001 PMCID: PMC23620 DOI: 10.1073/pnas.95.22.12838] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/1998] [Indexed: 11/18/2022] Open
Abstract
Asparaginyl-tRNA (Asn-tRNA) and glutaminyl-tRNA (Gln-tRNA) are essential components of protein synthesis. They can be formed by direct acylation by asparaginyl-tRNA synthetase (AsnRS) or glutaminyl-tRNA synthetase (GlnRS). The alternative route involves transamidation of incorrectly charged tRNA. Examination of the preliminary genomic sequence of the radiation-resistant bacterium Deinococcus radiodurans suggests the presence of both direct and indirect routes of Asn-tRNA and Gln-tRNA formation. Biochemical experiments demonstrate the presence of AsnRS and GlnRS, as well as glutamyl-tRNA synthetase (GluRS), a discriminating and a nondiscriminating aspartyl-tRNA synthetase (AspRS). Moreover, both Gln-tRNA and Asn-tRNA transamidation activities are present. Surprisingly, they are catalyzed by a single enzyme encoded by three ORFs orthologous to Bacillus subtilis gatCAB. However, the transamidation route to Gln-tRNA formation is idled by the inability of the discriminating D. radiodurans GluRS to produce the required mischarged Glu-tRNAGln substrate. The presence of apparently redundant complete routes to Asn-tRNA formation, combined with the absence from the D. radiodurans genome of genes encoding tRNA-independent asparagine synthetase and the lack of this enzyme in D. radiodurans extracts, suggests that the gatCAB genes may be responsible for biosynthesis of asparagine in this asparagine prototroph.
Collapse
|
research-article |
27 |
106 |
20
|
Min B, Román ÓB, Angelidaki I. Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotechnol Lett 2008; 30:1213-8. [DOI: 10.1007/s10529-008-9687-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/15/2008] [Accepted: 02/18/2008] [Indexed: 10/22/2022]
|
|
17 |
103 |
21
|
Do JS, Visperas A, Sanogo YO, Bechtel JJ, Dvorina N, Kim S, Jang E, Stohlman SA, Shen B, Fairchild RL, Baldwin WM, Vignali DAA, Min B. An IL-27/Lag3 axis enhances Foxp3+ regulatory T cell-suppressive function and therapeutic efficacy. Mucosal Immunol 2016; 9:137-45. [PMID: 26013006 PMCID: PMC4662649 DOI: 10.1038/mi.2015.45] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/22/2015] [Indexed: 02/04/2023]
Abstract
Foxp3-expressing regulatory T cells (Tregs) are central regulators of immune homeostasis and tolerance. As it has been suggested that proper Treg function is compromised under inflammatory conditions, seeking for a pathway that enhances or stabilizes Treg function is a subject of considerable interest. We report that interleukin (IL)-27, an IL-12 family cytokine known to have both pro- and anti-inflammatory roles in T cells, plays a pivotal role in enhancing Treg function to control T cell-induced colitis, a model for inflammatory bowel disease (IBD) in humans. Unlike wild-type (WT) Tregs capable of inhibiting colitogenic T-cell expansion and inflammatory cytokine expression, IL-27R-deficient Tregs were unable to downregulate inflammatory T-cell responses. Tregs stimulated with IL-27 expressed substantially improved suppressive function in vitro and in vivo. IL-27 stimulation of Tregs induced expression of Lag3, a surface molecule implicated in negatively regulating immune responses. Lag3 expression in Tregs was critical to mediate Treg function in suppressing colitogenic responses. Human Tregs also displayed enhanced suppressive function and Lag3 expression following IL-27 stimulation. Collectively, these results highlight a novel function for the IL-27/Lag3 axis in modulating Treg regulation of inflammatory responses in the intestine.
Collapse
|
research-article |
9 |
103 |
22
|
Zhang Y, Min B, Huang L, Angelidaki I. Electricity generation and microbial community response to substrate changes in microbial fuel cell. BIORESOURCE TECHNOLOGY 2011; 102:1166-73. [PMID: 20952193 DOI: 10.1016/j.biortech.2010.09.044] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/06/2010] [Accepted: 09/09/2010] [Indexed: 05/05/2023]
Abstract
The effect of substrate changes on the performance and microbial community of two-chamber microbial fuel cells (MFCs) was investigated in this study. The MFCs enriched with a single substrate (e.g., acetate, glucose, or butyrate) had different acclimatization capability to substrate changes. The MFC enriched with glucose showed rapid and higher power generation, when glucose was switched with acetate or butyrate. However, the MFC enriched with acetate needed a longer adaptation time for utilizing glucose. Microbial community was also changed when the substrate was changed. Clostridium and Bacilli of phylum Firmicutes were detected in acetate-enriched MFCs after switching to glucose. By contrast, Firmicutes completely disappeared and Geobacter-like species were specifically enriched in glucose-enriched MFCs after feeding acetate to the reactor. This study further suggests that the type of substrate fed to MFC is a very important parameter for reactor performance and microbial community, and significantly affects power generation in MFCs.
Collapse
|
|
14 |
101 |
23
|
Oh K, Shen T, Le Gros G, Min B. Induction of Th2 type immunity in a mouse system reveals a novel immunoregulatory role of basophils. Blood 2006; 109:2921-7. [PMID: 17132717 DOI: 10.1182/blood-2006-07-037739] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
While production of cytokines such as IL-12 by activated dendritic cells supports development of Th1 type immunity, a source of early IL-4 that is responsible for Th2 immunity is not well understood. We now show that coculture of basophils could promote a robust Th2 differentiation upon stimulation of naive CD4 T cells primarily via IL-4. Th2 promotion by basophils was also observed even when naive CD4 T cells were stimulated in a Th1-promoting condition or when fully differentiated Th1 phenotype effector CD4 T cells were restimulated. IL-4–deficient basophils failed to induce Th2 differentiation but suppressed Th1 differentiation. It was subsequently revealed that the IL-4–deficient basophils must engage cell-to-cell contact to exert the inhibitory effect on Th1 differentiation. Stimulation of naive CD4 T cells within an in vivo environment of increased basophil generation supported development of Th2 type immunity. Taken together, our results suggest that basophils may provide an important link for the development of Th2 immunity.
Collapse
|
|
19 |
98 |
24
|
Salama ES, Kabra AN, Ji MK, Kim JR, Min B, Jeon BH. Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. BIORESOURCE TECHNOLOGY 2014; 172:97-103. [PMID: 25247249 DOI: 10.1016/j.biortech.2014.09.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 05/03/2023]
Abstract
The growth of Scenedesmus obliquus improved with increase in phytohormones concentrations (10(-8)-10(-)(5)M). Indole-3-acetic acid (IAA) supported the maximum growth at 10(-5)M with 17.7×10(6)cells/mL and total fatty acid of 97.9mg/g-DCW, enhancing the growth by 1.9-fold compared to control (9.5×10(6)cells/mL). While 10(-5)M of a newly discovered phytohormone Diethyl aminoethyl hexanoate (DAH) demonstrated a 2.5-fold higher growth with 23.5×10(6)cells/mL and a total fatty acid content of 100mg/g-DCW. Poly-unsaturated fatty acid content increased up to 56% and 59% at 10(-)(5)M of IAA and DAH, respectively. The highest carbohydrate content (33% and 34%) achieved at 10(-8)M and 10(-5)M of IAA and DAH, respectively. While, the highest protein content (34% and 35%) obtained at 10(-8)M of IAA and DAH, respectively. The current investigation demonstrates that phytohormones accelerate microalgal growth and induce the quality and quantity of fatty acid content for biodiesel production.
Collapse
|
|
11 |
93 |
25
|
Min B, Nam KC, Cordray J, Ahn DU. Endogenous factors affecting oxidative stability of beef loin, pork loin, and chicken breast and thigh meats. J Food Sci 2009; 73:C439-46. [PMID: 19241532 DOI: 10.1111/j.1750-3841.2008.00805.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The susceptibility of meats from different animal species (chicken breast [CB] and thigh [CT], pork [PL and beef [BL]) to lipid oxidation was studied. The amounts of TBARS in raw PL, CB, and CT did not change during a 7-d storage period. TBARS values of raw BL, however, significantly increased during 7-d storage because of high heme iron content, high lipoxygenase-like activities, and low 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities. Ferric ion reducing capacities (FRC) were detected in all raw meats, but their characteristics were different: storage-unstable in CB and CT and storage-stable in PL and BL. Ferric ion reducing capacities in raw CB and CT was higher than those of PL and BL, and could be related to their high oxidative stability. The TBARS values of cooked meat increased significantly with storage. The rates of TBARS increase in cooked CT and BL were significantly higher than those of cooked CB and PL after a 7-d storage. Nonheme iron content in cooked BL was higher than other meats and increased significantly after 7 d. Cooked BL had a higher amount of heat-stable FRC, which acted as a prooxidant in the presence of high free ionic irons, than other meats. Therefore, high heat-stable FRC and increased nonheme iron content in cooked BL were responsible for its high susceptibility to lipid oxidation. Despite relatively low nonheme iron and heat-stable FRC levels, cooked CT showed similar levels of TBARS to cooked BL after a 7-d storage because of its high PUFA content.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
16 |
90 |