1
|
Podyma B, Parekh K, Güler AD, Deppmann CD. Metabolic homeostasis via BDNF and its receptors. Trends Endocrinol Metab 2021; 32:488-499. [PMID: 33958275 PMCID: PMC8192464 DOI: 10.1016/j.tem.2021.04.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022]
Abstract
Metabolic disorders result from dysregulation of central nervous system and peripheral metabolic energy homeostatic pathways. To maintain normal energy balance, neural circuits must integrate feedforward and feedback signals from the internal metabolic environment to orchestrate proper food intake and energy expenditure. These signals include conserved meal and adipocyte cues such as glucose and leptin, respectively, in addition to more novel players including brain-derived neurotrophic factor (BDNF). In particular, BDNF's two receptors, tropomyosin related kinase B (TrkB) and p75 neurotrophin receptor (p75NTR), are increasingly appreciated to be involved in whole body energy homeostasis. At times, these two receptors even seem to functionally oppose one another's actions, providing the framework for a potential neurotrophin mediated energy regulatory axis, which we explore further here.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
54 |
2
|
Chen M, Shrestha YB, Podyma B, Cui Z, Naglieri B, Sun H, Ho T, Wilson EA, Li YQ, Gavrilova O, Weinstein LS. Gsα deficiency in the dorsomedial hypothalamus underlies obesity associated with Gsα mutations. J Clin Invest 2016; 127:500-510. [PMID: 27991864 DOI: 10.1172/jci88622] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/10/2016] [Indexed: 11/17/2022] Open
Abstract
Gsα, encoded by Gnas, mediates hormone and neurotransmitter receptor-stimulated cAMP generation. Heterozygous Gsα-inactivating mutations lead to obesity in Albright hereditary osteodystrophy (AHO) patients, but only when the mutations occur on the maternal allele. This parent-of-origin effect is due to Gsα imprinting in the CNS, although the relevant CNS regions are unknown. We have now shown that mice with a Gnas gene deletion disrupting Gsα expression on the maternal allele, but not the paternal allele, in the dorsomedial nucleus of the hypothalamus (DMH) developed obesity and reduced energy expenditure without hyperphagia. Although maternal Gnas deletion impaired activation of brown adipose tissue (BAT) in mice, their responses to cold environment remained intact. Similar findings were observed in mice with DMH-specific deficiency of melanocortin MC4R receptors, which are known to activate Gsα. Our results show that Gsα imprinting in the DMH underlies the parent-of-origin metabolic phenotype that results from Gsα mutations and that DMH MC4R/Gsα signaling is important for regulation of energy expenditure and BAT activation, but not the metabolic response to cold.
Collapse
|
Journal Article |
9 |
30 |
3
|
Podyma B, Sun H, Wilson EA, Carlson B, Pritikin E, Gavrilova O, Weinstein LS, Chen M. The stimulatory G protein G sα is required in melanocortin 4 receptor-expressing cells for normal energy balance, thermogenesis, and glucose metabolism. J Biol Chem 2018; 293:10993-11005. [PMID: 29794140 DOI: 10.1074/jbc.ra118.003450] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/21/2018] [Indexed: 01/05/2023] Open
Abstract
Central melanocortin 4 receptors (MC4Rs) stimulate energy expenditure and inhibit food intake. MC4Rs activate the G protein Gsα, but whether Gsα mediates all MC4R actions has not been established. Individuals with Albright hereditary osteodystrophy (AHO), who have heterozygous Gsα-inactivating mutations, only develop obesity when the Gsα mutation is present on the maternal allele because of tissue-specific genomic imprinting. Furthermore, evidence in mice implicates Gsα imprinting within the central nervous system (CNS) in this disorder. In this study, we examined the effects of Gsα in MC4R-expressing cells on metabolic regulation. Mice with homozygous Gsα deficiency in MC4R-expressing cells (MC4RGsKO) developed significant obesity with increased food intake and decreased energy expenditure, along with impaired insulin sensitivity and cold-induced thermogenesis. Moreover, the ability of the MC4R agonist melanotan-II (MTII) to stimulate energy expenditure and to inhibit food intake was impaired in MC4RGsKO mice. MTII failed to stimulate the secretion of the anorexigenic hormone peptide YY (PYY) from enteroendocrine L cells, a physiological response mediated by MC4R-Gsα signaling, even though baseline PYY levels were elevated in these mice. In Gsα heterozygotes, mild obesity and reduced energy expenditure were present only in mice with a Gsα deletion on the maternal allele in MC4R-expressing cells, whereas food intake was unaffected. These results demonstrate that Gsα signaling in MC4R-expressing cells is required for controlling energy balance, thermogenesis, and peripheral glucose metabolism. They further indicate that Gsα imprinting in MC4R-expressing cells contributes to obesity in Gsα knockout mice and probably in individuals with Albright hereditary osteodystrophy as well.
Collapse
|
Research Support, N.I.H., Intramural |
7 |
30 |
4
|
Berger A, Kablan A, Yao C, Ho T, Podyma B, Weinstein LS, Chen M. Gsα Deficiency in the Ventromedial Hypothalamus Enhances Leptin Sensitivity and Improves Glucose Homeostasis in Mice on a High-Fat Diet. Endocrinology 2016; 157:600-10. [PMID: 26671183 PMCID: PMC4733121 DOI: 10.1210/en.2015-1700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In both mice and patients with Albright hereditary osteodystrophy, heterozygous inactivating mutations of Gsα, a ubiquitously expressed G protein that mediates receptor-stimulated intracellular cAMP production, lead to obesity and insulin resistance but only when the mutation is present on the maternal allele. This parent-of-origin effect in mice was shown to be due to Gsα imprinting in one or more brain regions. The ventromedial hypothalamus (VMH) is involved in the regulation of energy and glucose homeostasis, but the role of Gsα in VMH on metabolic regulation is unknown. To examine this, we created VMH-specific Gsα-deficient mice by mating Gsα-floxed mice with SF1-cre mice. Heterozygotes with Gsα mutation on either the maternal or paternal allele had a normal metabolic phenotype, and there was no molecular evidence of Gsα imprinting, indicating that the parent-of-origin metabolic effects associated with Gsα mutations is not due to Gsα deficiency in VMH SF1 neurons. Homozygous VMH Gsα knockout mice (VMHGsKO) showed no changes in body weight on either a regular or high-fat diet. However, glucose metabolism (fasting glucose, glucose tolerance, insulin sensitivity) was significantly improved in male VMHGsKO mice, with the difference more dramatic on the high-fat diet. In addition, male VMHGsKO mice on the high-fat diet showed a greater anorexigenic effect and increased VMH signal transducer and activator of transcription-3 phosphorylation in response to leptin. These results indicate that VMH Gsα/cyclic AMP signaling regulates glucose homeostasis and alters leptin sensitivity in mice, particularly in the setting of excess caloric intake.
Collapse
|
Research Support, N.I.H., Intramural |
9 |
10 |
5
|
Chen M, Wilson EA, Cui Z, Sun H, Shrestha YB, Podyma B, Le CH, Naglieri B, Pacak K, Gavrilova O, Weinstein LS. G sα deficiency in the dorsomedial hypothalamus leads to obesity, hyperphagia, and reduced thermogenesis associated with impaired leptin signaling. Mol Metab 2019; 25:142-153. [PMID: 31014927 PMCID: PMC6601467 DOI: 10.1016/j.molmet.2019.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Gsα couples multiple receptors, including the melanocortin 4 receptor (MC4R), to intracellular cAMP generation. Germline inactivating Gsα mutations lead to obesity in humans and mice. Mice with brain-specific Gsα deficiency also develop obesity with reduced energy expenditure and locomotor activity, and impaired adaptive thermogenesis, but the underlying mechanisms remain unclear. METHODS We created mice (DMHGsKO) with Gsα deficiency limited to the dorsomedial hypothalamus (DMH) and examined the effects on energy balance and thermogenesis. RESULTS DMHGsKO mice developed severe, early-onset obesity associated with hyperphagia and reduced energy expenditure and locomotor activity, along with impaired brown adipose tissue thermogenesis. Studies in mice with loss of MC4R in the DMH suggest that defective DMH MC4R/Gsα signaling contributes to abnormal energy balance but not to abnormal locomotor activity or cold-induced thermogenesis. Instead, DMHGsKO mice had impaired leptin signaling along with increased expression of the leptin signaling inhibitor protein tyrosine phosphatase 1B in the DMH, which likely contributes to the observed hyperphagia and reductions in energy expenditure, locomotor activity, and cold-induced thermogenesis. CONCLUSIONS DMH Gsα signaling is critical for energy balance, thermogenesis, and leptin signaling. This study provides insight into how distinct signaling pathways can interact to regulate energy homeostasis and temperature regulation.
Collapse
|
Research Support, N.I.H., Intramural |
6 |
9 |
6
|
Podyma B, Johnson DA, Sipe L, Remcho TP, Battin K, Liu Y, Yoon SO, Deppmann CD, Güler AD. The p75 neurotrophin receptor in AgRP neurons is necessary for homeostatic feeding and food anticipation. eLife 2020; 9:e52623. [PMID: 31995032 PMCID: PMC7056271 DOI: 10.7554/elife.52623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/27/2020] [Indexed: 12/31/2022] Open
Abstract
Networks of neurons control feeding and activity patterns by integrating internal metabolic signals of energy balance with external environmental cues such as time-of-day. Proper circadian alignment of feeding behavior is necessary to prevent metabolic disease, and thus it is imperative that molecular players that maintain neuronal coordination of energy homeostasis are identified. Here, we demonstrate that mice lacking the p75 neurotrophin receptor, p75NTR, decrease their feeding and food anticipatory behavior (FAA) in response to daytime, but not nighttime, restricted feeding. These effects lead to increased weight loss, but do not require p75NTR during development. Instead, p75NTR is required for fasting-induced activation of neurons within the arcuate hypothalamus. Indeed, p75NTR specifically in AgRP neurons is required for FAA in response to daytime restricted feeding. These findings establish p75NTR as a novel regulator gating behavioral response to food scarcity and time-of-day dependence of circadian food anticipation.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
7 |
7
|
Podyma B, Johnson D, Sipe L, Battin K, Remcho P, Deppmann CD, Güler AD. SAT-602 Hypothalamic P75 Neurotrophin Receptor Regulates Homeostatic Feeding and Food Anticipation. J Endocr Soc 2020. [PMCID: PMC7208797 DOI: 10.1210/jendso/bvaa046.520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Proper circadian alignment of feeding behavior is necessary to prevent metabolic disease, and thus it is imperative to identify the neural circuits and molecular players that coordinate energy homeostasis. Neurotrophin signaling has been implicated in both metabolic and circadian processes, thereby representing a good candidate for regulating neural circuits driving time-of-day dependent feeding and foraging behavior. Here, we demonstrate that mice lacking the p75 neurotrophin receptor, p75NTR, have a behavioral defect in their ability to adequately respond to energy deficit. In response to fasting, p75KO mice (1) decrease their refeeding food intake compared to controls. Furthermore, following several days of restricted feeding, they (2) are unable to develop food anticipatory behavior (FAA), a phenomenon believed to be the output of a food-entrained circadian oscillator that has yet to be anatomically defined. Strikingly, these two phenotypes are observed only during the daytime, and not at night. These defects lead to increased weight loss, but do not appear to be mediated by changes in peripheral hormones. Notably, these effects are also independent of a role of p75NTR in development, as a global, adult-inducible p75NTR knockout recapitulates the feeding behavior of germline knockout mice. Rather, we demonstrate that p75NTR is discretely expressed in two hypothalamic regions known to be important for feeding behavior, the arcuate (ARC) and dorsomedial (DMH) hypothalamus. We find that p75KO mice have reduced fasting-induced activation of ARC, but not DMH, neurons. In addition, we show that ARC AgRP neuron p75NTR is necessary for fasting-induced refeeding and daytime FAA. We further suggest that AgRP-p75NTR is necessary to mediate AgRP neuron phospho-CREB signaling in response to energy deficit. Finally, given previous reports of involvement of the DMH in food anticipation, we asked whether DMH-p75NTR is necessary for feeding behavior and food anticipation. Strikingly, we find that p75NTR in the DMH is also necessary for FAA, but not for the control of homeostatic feeding. These data establish p75NTR as a novel regulator of energy homeostasis that acts to gate behavioral responses to food scarcity. It further posits that p75NTR may functionally link two independent hypothalamic regions to a time-of-day dependence of circadian food anticipation.
Collapse
|
|
5 |
|
8
|
Tang Q, Godschall E, Brennan CD, Zhang Q, Abraham-Fan RJ, Williams SP, Güngül TB, Onoharigho R, Buyukaksakal A, Salinas R, Sajonia IR, Olivieri JJ, Calhan OY, Deppmann CD, Campbell JN, Podyma B, Güler AD. Leptin receptor neurons in the dorsomedial hypothalamus input to the circadian feeding network. SCIENCE ADVANCES 2023; 9:eadh9570. [PMID: 37624889 PMCID: PMC10456850 DOI: 10.1126/sciadv.adh9570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Salient cues, such as the rising sun or availability of food, entrain biological clocks for behavioral adaptation. The mechanisms underlying entrainment to food availability remain elusive. Using single-nucleus RNA sequencing during scheduled feeding, we identified a dorsomedial hypothalamus leptin receptor-expressing (DMHLepR) neuron population that up-regulates circadian entrainment genes and exhibits calcium activity before an anticipated meal. Exogenous leptin, silencing, or chemogenetic stimulation of DMHLepR neurons disrupts the development of molecular and behavioral food entrainment. Repetitive DMHLepR neuron activation leads to the partitioning of a secondary bout of circadian locomotor activity that is in phase with the stimulation and dependent on an intact suprachiasmatic nucleus (SCN). Last, we found a DMHLepR neuron subpopulation that projects to the SCN with the capacity to influence the phase of the circadian clock. This direct DMHLepR-SCN connection is well situated to integrate the metabolic and circadian systems, facilitating mealtime anticipation.
Collapse
|
research-article |
2 |
|
9
|
Tang Q, Godschall E, Brennan CD, Zhang Q, Abraham-Fan RJ, Williams SP, Güngül TB, Onoharigho R, Buyukaksakal A, Salinas R, Olivieri JJ, Deppmann CD, Campbell JN, Podyma B, Güler AD. A leptin-responsive hypothalamic circuit inputs to the circadian feeding network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529901. [PMID: 36865258 PMCID: PMC9980144 DOI: 10.1101/2023.02.24.529901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Salient cues, such as the rising sun or the availability of food, play a crucial role in entraining biological clocks, allowing for effective behavioral adaptation and ultimately, survival. While the light-dependent entrainment of the central circadian pacemaker (suprachiasmatic nucleus, SCN) is relatively well defined, the molecular and neural mechanisms underlying entrainment associated with food availability remains elusive. Using single nucleus RNA sequencing during scheduled feeding (SF), we identified a leptin receptor (LepR) expressing neuron population in the dorsomedial hypothalamus (DMH) that upregulates circadian entrainment genes and exhibits rhythmic calcium activity prior to an anticipated meal. We found that disrupting DMHLepR neuron activity had a profound impact on both molecular and behavioral food entrainment. Specifically, silencing DMHLepR neurons, mis-timed exogenous leptin administration, or mis-timed chemogenetic stimulation of these neurons all interfered with the development of food entrainment. In a state of energy abundance, repetitive activation of DMHLepR neurons led to the partitioning of a secondary bout of circadian locomotor activity that was in phase with the stimulation and dependent on an intact SCN. Lastly, we discovered that a subpopulation of DMHLepR neurons project to the SCN with the capacity to influence the phase of the circadian clock. This leptin regulated circuit serves as a point of integration between the metabolic and circadian systems, facilitating the anticipation of meal times.
Collapse
|
Preprint |
2 |
|