1
|
Gau BC, Sharp JS, Rempel DL, Gross ML. Fast photochemical oxidation of protein footprints faster than protein unfolding. Anal Chem 2010; 81:6563-71. [PMID: 20337372 DOI: 10.1021/ac901054w] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fast photochemical oxidation of proteins (FPOP) is a chemical footprinting method whereby exposed amino-acid residues are covalently labeled by oxidation with hydroxyl radicals produced by the photolysis of hydrogen peroxide. Modified residues can be detected by standard trypsin proteolysis followed by LC/MS/MS, providing information about solvent accessibility at the peptide and even the amino-acid level. Like other chemical footprinting techniques, FPOP must ensure only the native conformation is labeled. Although oxidation via hydroxyl radical induces unfolding in proteins on a time scale of milliseconds or longer, FPOP is designed to limit (*)OH exposure to 1 micros or less by employing a pulsed laser for initiation to produce the radicals and a radical-scavenger to limit their lifetimes. We applied FPOP to three oxidation-sensitive proteins and found that the distribution of modification (oxidation) states is Poisson when a scavenger is present, consistent with a single conformation protein modification model. This model breaks down when a scavenger is not used and/or hydrogen peroxide is not removed following photolysis. The outcome verifies that FPOP occurs on a time scale faster than conformational changes in these proteins.
Collapse
|
Journal Article |
15 |
164 |
2
|
Chen J, Rempel DL, Gau BC, Gross ML. Fast photochemical oxidation of proteins and mass spectrometry follow submillisecond protein folding at the amino-acid level. J Am Chem Soc 2012; 134:18724-31. [PMID: 23075429 DOI: 10.1021/ja307606f] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a study of submillisecond protein folding with amino-acid residue resolution achieved with a two-laser pump/probe experiment with analysis by mass spectrometry. The folding of a test protein, barstar, can be triggered by a laser-induced temperature jump (T jump) from ∼0 °C to ∼room temperature. Subsequent reactions via fast photochemical oxidation of proteins (FPOP) at various fractional millisecond points after the T jump lead to oxidative modification of solvent-accessible side chains whose "protection" changes with time and extent of folding. The modifications are identified and quantified by LC-MS/MS following proteolysis. Among all the segments that form secondary structure in the native state, helix(1) shows a decreasing trend of oxidative modification during the first 0.1-1 ms of folding while others do not change in this time range. Residues I5, H17, L20, L24 and F74 are modified less in the intermediate state than the denatured state, likely due to full or partial protection of these residues as folding occurs. We propose that in the early folding stage, barstar forms a partially solvent-accessible hydrophobic core consisting of several residues that have long-range interaction with other, more remote residues in the protein sequence. Our data not only are consistent with the previous conclusion that barstar fast folding follows the nucleation-condensation mechanism with the nucleus centered on helix(1) formed in a folding intermediate but also show the efficacy of this new approach to following protein folding on the submillisecond time range.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
86 |
3
|
Eichenbaum-Voline S, Olivier M, Jones EL, Naoumova RP, Jones B, Gau B, Patel HN, Seed M, Betteridge DJ, Galton DJ, Rubin EM, Scott J, Shoulders CC, Pennacchio LA. Linkage and association between distinct variants of the APOA1/C3/A4/A5 gene cluster and familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol 2003; 24:167-74. [PMID: 14551155 PMCID: PMC2773540 DOI: 10.1161/01.atv.0000099881.83261.d4] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Combined hyperlipidemia is a common disorder, characterized by a highly atherogenic lipoprotein profile and a substantially increased risk of coronary heart disease. The purpose of this study was to establish whether variations of apolipoprotein A5 (APOA5), a newly discovered gene of lipid metabolism located 30 kbp downstream of the APOA1/C3/A4 gene cluster, contributes to the transmission of familial combined hyperlipidemia (FCHL). METHODS AND RESULTS We performed linkage and association tests on 128 families. Two independent alleles, APOA5c.56G and APOC3c.386G, of the APOA1/C3/A4/A5 gene cluster were overtransmitted in FCHL (P=0.004 and 0.007, respectively). This was paired with reduced transmission of the common APOA1/C3/A4/A5 haplotype (frequency 0.4461) to affected subjects (P=0.012). The APOA5c.56G genotype accounted for 7.3% to 13.8% of the variance in plasma triglyceride levels in probands (P<0.004). The APOC3c.386G genotypes accounted for 4.4% to 5.1% of the variance in triglyceride levels in FCHL spouses (P<0.007), suggesting that this allele marks a FCHL quantitative trait as well as representing a susceptibility locus for the condition. CONCLUSIONS A combined linkage and association analysis establishes that variation at the APOA1/C3/A4/A5 gene cluster contributes to FCHL transmission in a substantial proportion of northern European families.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
83 |
4
|
Olivier M, Wang X, Cole R, Gau B, Kim J, Rubin EM, Pennacchio LA. Haplotype analysis of the apolipoprotein gene cluster on human chromosome 11. Genomics 2004; 83:912-23. [PMID: 15081120 PMCID: PMC2771640 DOI: 10.1016/j.ygeno.2003.11.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2003] [Accepted: 11/24/2003] [Indexed: 11/17/2022]
Abstract
Members of the apolipoprotein gene cluster (APOA1/C3/A4/A5) on human chromosome 11q23 play an important role in lipid metabolism. Polymorphisms in both APOA5 and APOC3 are strongly associated with plasma triglyceride concentrations. The close genomic locations of these two genes as well as their functional similarity have hindered efforts to define whether each gene independently influences human triglyceride concentrations. In this study, we examined the linkage disequilibrium and haplotype structure of 49 SNPs in a 150-kb region spanning the gene cluster. We identified a total of five common APOA5 haplotypes with a frequency of greater than 8% in samples of northern European origin. The APOA5 haplotype block did not extend past the 7 SNPs in the gene and was separated from the other apolipoprotein gene in the cluster by a region of significantly increased recombination. Furthermore, one previously identified triglyceride risk haplotype of APOA5 (APOA5*3) showed no association with three APOC3 SNPs previously associated with triglyceride concentrations, in contrast to the other risk haplotype (APOA5*2), which was associated with all three minor APOC3 SNP alleles. These results highlight the complex genetic relationship between APOA5 and APOC3 and support the notion that APOA5 represents an independent risk gene affecting plasma triglyceride concentrations in humans.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
82 |
5
|
Wang H, Gau B, Slade WO, Juergens M, Li P, Hicks LM. The global phosphoproteome of Chlamydomonas reinhardtii reveals complex organellar phosphorylation in the flagella and thylakoid membrane. Mol Cell Proteomics 2014; 13:2337-53. [PMID: 24917610 DOI: 10.1074/mcp.m114.038281] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chlamydomonas reinhardtii is the most intensively-studied and well-developed model for investigation of a wide-range of microalgal processes ranging from basic development through understanding triacylglycerol production. Although proteomic technologies permit interrogation of these processes at the protein level and efforts to date indicate phosphorylation-based regulation of proteins in C. reinhardtii is essential for its underlying biology, characterization of the C. reinhardtii phosphoproteome has been limited. Herein, we report the richest exploration of the C. reinhardtii proteome to date. Complementary enrichment strategies were used to detect 4588 phosphoproteins distributed among every cellular component in C. reinhardtii. Additionally, we report 18,160 unique phosphopeptides at <1% false discovery rate, which comprise 15,862 unique phosphosites - 98% of which are novel. Given that an estimated 30% of proteins in a eukaryotic cell are subject to phosphorylation, we report the majority of the phosphoproteome (23%) of C. reinhardtii. Proteins in key biological pathways were phosphorylated, including photosynthesis, pigment production, carbon assimilation, glycolysis, and protein and carbohydrate metabolism, and it is noteworthy that hyperphosphorylation was observed in flagellar proteins. This rich data set is available via ProteomeXchange (ID: PXD000783) and will significantly enhance understanding of a range of regulatory mechanisms controlling a variety of cellular process and will serve as a critical resource for the microalgal community.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
76 |
6
|
De Leoz MLA, Duewer DL, Fung A, Liu L, Yau HK, Potter O, Staples GO, Furuki K, Frenkel R, Hu Y, Sosic Z, Zhang P, Altmann F, Grunwald-Grube C, Shao C, Zaia J, Evers W, Pengelley S, Suckau D, Wiechmann A, Resemann A, Jabs W, Beck A, Froehlich JW, Huang C, Li Y, Liu Y, Sun S, Wang Y, Seo Y, An HJ, Reichardt NC, Ruiz JE, Archer-Hartmann S, Azadi P, Bell L, Lakos Z, An Y, Cipollo JF, Pucic-Bakovic M, Štambuk J, Lauc G, Li X, Wang PG, Bock A, Hennig R, Rapp E, Creskey M, Cyr TD, Nakano M, Sugiyama T, Leung PKA, Link-Lenczowski P, Jaworek J, Yang S, Zhang H, Kelly T, Klapoetke S, Cao R, Kim JY, Lee HK, Lee JY, Yoo JS, Kim SR, Suh SK, de Haan N, Falck D, Lageveen-Kammeijer GSM, Wuhrer M, Emery RJ, Kozak RP, Liew LP, Royle L, Urbanowicz PA, Packer NH, Song X, Everest-Dass A, Lattová E, Cajic S, Alagesan K, Kolarich D, Kasali T, Lindo V, Chen Y, Goswami K, Gau B, Amunugama R, Jones R, Stroop CJM, Kato K, Yagi H, Kondo S, Yuen CT, Harazono A, Shi X, Magnelli PE, Kasper BT, Mahal L, Harvey DJ, O'Flaherty R, et alDe Leoz MLA, Duewer DL, Fung A, Liu L, Yau HK, Potter O, Staples GO, Furuki K, Frenkel R, Hu Y, Sosic Z, Zhang P, Altmann F, Grunwald-Grube C, Shao C, Zaia J, Evers W, Pengelley S, Suckau D, Wiechmann A, Resemann A, Jabs W, Beck A, Froehlich JW, Huang C, Li Y, Liu Y, Sun S, Wang Y, Seo Y, An HJ, Reichardt NC, Ruiz JE, Archer-Hartmann S, Azadi P, Bell L, Lakos Z, An Y, Cipollo JF, Pucic-Bakovic M, Štambuk J, Lauc G, Li X, Wang PG, Bock A, Hennig R, Rapp E, Creskey M, Cyr TD, Nakano M, Sugiyama T, Leung PKA, Link-Lenczowski P, Jaworek J, Yang S, Zhang H, Kelly T, Klapoetke S, Cao R, Kim JY, Lee HK, Lee JY, Yoo JS, Kim SR, Suh SK, de Haan N, Falck D, Lageveen-Kammeijer GSM, Wuhrer M, Emery RJ, Kozak RP, Liew LP, Royle L, Urbanowicz PA, Packer NH, Song X, Everest-Dass A, Lattová E, Cajic S, Alagesan K, Kolarich D, Kasali T, Lindo V, Chen Y, Goswami K, Gau B, Amunugama R, Jones R, Stroop CJM, Kato K, Yagi H, Kondo S, Yuen CT, Harazono A, Shi X, Magnelli PE, Kasper BT, Mahal L, Harvey DJ, O'Flaherty R, Rudd PM, Saldova R, Hecht ES, Muddiman DC, Kang J, Bhoskar P, Menard D, Saati A, Merle C, Mast S, Tep S, Truong J, Nishikaze T, Sekiya S, Shafer A, Funaoka S, Toyoda M, de Vreugd P, Caron C, Pradhan P, Tan NC, Mechref Y, Patil S, Rohrer JS, Chakrabarti R, Dadke D, Lahori M, Zou C, Cairo C, Reiz B, Whittal RM, Lebrilla CB, Wu L, Guttman A, Szigeti M, Kremkow BG, Lee KH, Sihlbom C, Adamczyk B, Jin C, Karlsson NG, Örnros J, Larson G, Nilsson J, Meyer B, Wiegandt A, Komatsu E, Perreault H, Bodnar ED, Said N, Francois YN, Leize-Wagner E, Maier S, Zeck A, Heck AJR, Yang Y, Haselberg R, Yu YQ, Alley W, Leone JW, Yuan H, Stein SE. NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods. Mol Cell Proteomics 2020; 19:11-30. [PMID: 31591262 PMCID: PMC6944243 DOI: 10.1074/mcp.ra119.001677] [Show More Authors] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/26/2019] [Indexed: 01/24/2023] Open
Abstract
Glycosylation is a topic of intense current interest in the development of biopharmaceuticals because it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy-six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submitted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide community-derived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
72 |
7
|
Gau BC, Chen H, Zhang Y, Gross ML. Sulfate radical anion as a new reagent for fast photochemical oxidation of proteins. Anal Chem 2010; 82:7821-7. [PMID: 20738105 PMCID: PMC2939269 DOI: 10.1021/ac101760y] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The focus is to expand the original design of fast photochemical oxidation of proteins (FPOP) and introduce SO(4)(-•), generated by 248 nm homolysis of low millimolar levels of persulfate, as a radical reactant in protein footprinting. FPOP is a chemical approach to footprinting proteins and protein complexes by "snapshot" reaction with free radicals. The radical used until now is the OH radical, and it provides a measure of residue-resolved solvent accessibility of the native protein. We show that FPOP can accommodate other reagents, increasing its versatility. The new persulfate FPOP system is a potent, nonspecific, and tunable footprinting method; 3-5 times less persulfate is needed to give the same global levels of modification as seen with OH radicals. Although solvent-exposed His and Tyr residues are more reactive with SO(4)(-•) than with (•)OH, oxidation of apomyoglobin and calmodulin shows that (•)OH probes smaller accessible areas than SO(4)(-•), with the possible exception of histidine. His64, an axial ligand in the heme-binding pocket of apomyoglobin, is substantially up-labeled by SO(4)(-•) relative to (•)OH. Nevertheless, the kinds of modification and residue selectivity for both reagent radicals are strikingly similar. Thus, the choice of these reagents relies on the physical properties, particularly the membrane permeability, of the radical precursors.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
63 |
8
|
Zhang H, Gau BC, Jones LM, Vidavsky I, Gross ML. Fast photochemical oxidation of proteins for comparing structures of protein-ligand complexes: the calmodulin-peptide model system. Anal Chem 2011; 83:311-8. [PMID: 21142124 PMCID: PMC3078576 DOI: 10.1021/ac102426d] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fast photochemical oxidation of proteins (FPOP) is a mass spectrometry-based protein footprinting method that modifies proteins on the microsecond time scale. Highly reactive (•)OH, produced by laser photolysis of hydrogen peroxide, oxidatively modifies the side chains of approximately one-half the common amino acids on this time scale. Because of the short labeling exposure, only solvent-accessible residues are sampled. Quantification of the modification extent for the apo and holo states of a protein-ligand complex provides structurally sensitive information at the amino-acid level to compare the structures of unknown protein complexes with known ones. We report here the use of FPOP to monitor the structural changes of calmodulin in its established binding to M13 of the skeletal muscle myosin light chain kinase. We use the outcome to establish the unknown structures resulting from binding with melittin and mastoparan. The structural comparison follows a comprehensive examination of the extent of FPOP modifications as measured by proteolysis and LC-MS/MS for each protein-ligand equilibrium. The results not only show that the three calmodulin-peptide complexes have similar structures but also reveal those regions of the protein that became more or less solvent-accessible upon binding. This approach has the potential for relatively high throughput, information-dense characterization of a series of protein-ligand complexes in biochemistry and drug discovery when the structure of one reference complex is known, as is the case for calmodulin and M13 of the skeletal muscle myosin light chain kinase, and the structures of related complexes are not.
Collapse
|
Comparative Study |
14 |
61 |
9
|
Gau B, Garai K, Frieden C, Gross ML. Mass spectrometry-based protein footprinting characterizes the structures of oligomeric apolipoprotein E2, E3, and E4. Biochemistry 2011; 50:8117-26. [PMID: 21848287 DOI: 10.1021/bi200911c] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The three common isoforms of apolipoprotein E (ApoE) differ at two sites in their 299 amino acid sequence; these differences modulate the structure of ApoE to affect profoundly the isoform associations with disease. The ε4 allele in particular is strongly associated with Alzheimer's disease. The study of the structural effects of these mutation sites in aqueous media is hampered by the aggregation proclivity of each ApoE isoform. Hence, understanding the differences between isoforms has thus far relied on lower resolution biophysical measurements, mutagenesis, homology studies, and the use of truncated ApoE variants. In this study, we report two comparative studies of the ApoE family by using the mass spectrometry-based protein footprinting methods of FPOP and glycine ethyl ester (GEE) labeling. The first experiment examines the three full-length WT isoforms in their tetrameric state and finds that the overall structures are similar, with the exception of M108 in ApoE4 which is more solvent-accessible in this isoform than in ApoE2 and ApoE3. The second experiment provides clear evidence, from a comparison of the footprinting results of the wild-type proteins and a monomeric mutant, that several residues in regions 183-205 and 232-251 are involved in self-association.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
57 |
10
|
Lin N, Mascarenhas J, Sealover NR, George HJ, Brooks J, Kayser KJ, Gau B, Yasa I, Azadi P, Archer-Hartmann S. Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression. Biotechnol Prog 2015; 31:334-46. [PMID: 25641927 DOI: 10.1002/btpr.2038] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/26/2014] [Indexed: 12/12/2022]
Abstract
N-Glycans of human proteins possess both α2,6- and α2,3-linked terminal sialic acid (SA). Recombinant glycoproteins produced in Chinese hamster overy (CHO) only have α2,3-linkage due to the absence of α2,6-sialyltransferase (St6gal1) expression. The Chinese hamster ST6GAL1 was successfully overexpressed using a plasmid expression vector in three recombinant immunoglobulin G (IgG)-producing CHO cell lines. The stably transfected cell lines were enriched for ST6GAL1 overexpression using FITC-Sambucus nigra (SNA) lectin that preferentially binds α2,6-linked SA. The presence of α2,6-linked SA was confirmed using a novel LTQ Linear Ion Trap Mass Spectrometry (LTQ MS) method including MSn fragmentation in the enriched ST6GAL1 Clone 27. Furthermore, the total SA (mol/mol) in IgG produced by the enriched ST6GAL1 Clone 27 increased by 2-fold compared to the control. For host cell engineering, the CHOZN(®) GS host cell line was transfected and enriched for ST6GAL1 overexpression. Single-cell clones were derived from the enriched population and selected based on FITC-SNA staining and St6gal1 expression. Two clones ("ST6GAL1 OE Clone 31 and 32") were confirmed for the presence of α2,6-linked SA in total host cell protein extracts. ST6GAL1 OE Clone 32 was subsequently used to express SAFC human IgG1. The recombinant IgG expressed in this host cell line was confirmed to have α2,6-linked SA and increased total SA content. In conclusion, overexpression of St6gal1 is sufficient to produce recombinant proteins with increased sialylation and more human-like glycoprofiles without combinatorial engineering of other sialylation pathway genes. This work represents our ongoing effort of glycoengineering in CHO host cell lines for the development of "bio-better" protein therapeutics and cell culture vaccine production.
Collapse
|
Journal Article |
10 |
53 |
11
|
Gau BC, Chen J, Gross ML. Fast photochemical oxidation of proteins for comparing solvent-accessibility changes accompanying protein folding: data processing and application to barstar. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:1230-8. [PMID: 23485913 PMCID: PMC3663899 DOI: 10.1016/j.bbapap.2013.02.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 11/21/2022]
Abstract
Mass spectrometry-based protein footprinting reveals regional and even amino-acid structural changes and fills the gap for many proteins and protein interactions that cannot be studied by X-ray crystallography or NMR spectroscopy. Hydroxyl radical-mediated labeling has proven to be particularly informative in this pursuit because many solvent-accessible residues can be labeled by OH in a protein or protein complex, thus providing more coverage than does specific amino-acid modifications. Finding all the OH-labeling sites requires LC/MS/MS analysis of a proteolyzed sample, but data processing is daunting without the help of automated software. We describe here a systematic means for achieving a comprehensive residue-resolved analysis of footprinting data in an efficient manner, utilizing software common to proteomics core laboratories. To demonstrate the method and the utility of OH-mediated labeling, we show that FPOP easily distinguishes the buried and exposed residues of barstar in its folded and unfolded states. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
41 |
12
|
Gau BC, Dawdy AW, Wang HL, Bare B, Castaneda CH, Friese OV, Thompson MS, Lerch TF, Cirelli DJ, Rouse JC. Oligonucleotide mapping via mass spectrometry to enable comprehensive primary structure characterization of an mRNA vaccine against SARS-CoV-2. Sci Rep 2023; 13:9038. [PMID: 37270636 DOI: 10.1038/s41598-023-36193-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023] Open
Abstract
Oligonucleotide mapping via liquid chromatography with UV detection coupled to tandem mass spectrometry (LC-UV-MS/MS) was recently developed to support development of Comirnaty, the world's first commercial mRNA vaccine which immunizes against the SARS-CoV-2 virus. Analogous to peptide mapping of therapeutic protein modalities, oligonucleotide mapping described here provides direct primary structure characterization of mRNA, through enzymatic digestion, accurate mass determinations, and optimized collisionally-induced fragmentation. Sample preparation for oligonucleotide mapping is a rapid, one-pot, one-enzyme digestion. The digest is analyzed via LC-MS/MS with an extended gradient and resulting data analysis employs semi-automated software. In a single method, oligonucleotide mapping readouts include a highly reproducible and completely annotated UV chromatogram with 100% maximum sequence coverage, and a microheterogeneity assessment of 5' terminus capping and 3' terminus poly(A)-tail length. Oligonucleotide mapping was pivotal to ensure the quality, safety, and efficacy of mRNA vaccines by providing: confirmation of construct identity and primary structure and assessment of product comparability following manufacturing process changes. More broadly, this technique may be used to directly interrogate the primary structure of RNA molecules in general.
Collapse
|
|
2 |
4 |
13
|
Chen CM, Wang LF, Cheng KT, Hsu HH, Gau B, Su B. Effects of Anoectochilus formosanus Hayata extract and glucocorticoid on lung maturation in preterm rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2004; 11:509-515. [PMID: 15500262 DOI: 10.1016/j.phymed.2003.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We investigated the effects of maternal administration of Anoectochilus formosanus extract and dexamethasone on lung maturation in preterm rats. A. formosanus group mothers were tube-fed A. formosanus extract (300 mg/kg body wt./day) for 7 days from days 12-18 of gestation. Dexamethasone group mothers were injected intraperitoneally with dexamethasone (0.2 mg/kg body wt.) in saline on day 18 of gestation. Control group mothers were similarly injected with saline alone. On day 19 of gestation, fetuses were delivered by cesarean section. A. formosanus treatment significantly increased the fetal lung/body weight ratio, as compared to dexamethasone treatment. Saturated phosphatidylcholine levels in fetal lung tissue and growth hormone levels in maternal serum were significantly increased in the A. formosanus- and dexamethasone-treated groups as compared to controls. The histological appearance of preterm rat lungs revealed extensive branching of intermediate airways, denser mesenchyme, and more epithelial tubules in the dexamethasone and A. formosanus groups as compared with the control group. These results suggest that antenatal A. formosanus treatment may play a role in accelerating fetal rat lung maturation.
Collapse
|
|
21 |
2 |
14
|
Chipley M, Gau B, Allen C, Neuschwander G, Shields T, Sullivan J, Powers TW. Double-stranded RNA sequencing via RNase III E38A digestion followed by HPLC-MS/MS analysis. J Pharm Sci 2025; 114:103803. [PMID: 40288754 DOI: 10.1016/j.xphs.2025.103803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Double-stranded RNA (dsRNA) is a product related impurity introduced during the production of mRNA that is challenging to detect, isolate and characterize. Ribonuclease III (RNase III) with a single amino acid substitution (E38A) has previously been reported to generate dsRNA fragments with a consistent number of nucleotides according to the divalent cation used. In this work, we investigate the utility of RNase III E38A to detect and identify potential dsRNA in RNA molecules in combination with liquid chromatography tandem mass spectrometry (LC-MS/MS). Model dsRNA was prepared by annealing complementary strands of various lengths, followed by RNase If and RNase III E38A digestion. Digestion products were characterized by gel electrophoresis and LC-MS/MS. Using model dsRNA, we demonstrated that it is possible to sequence dsRNA by LC-MS/MS when digested by RNase III E38A.
Collapse
|
|
1 |
|
15
|
Wang HL, Kajbaf K, Gau BC, Dawdy AW, Edwards R, Bare B, Raymundo G, Iturrizaga J, Ernsky C, Walker M, Byrne EB, Boslett J, Campbell A, Matthessen R, Goffin B, Cirelli D, Rouse JC, Van Pottelberge R, Friese OV. A novel in-vitro expression assay by LC/MS/MS enables multi-antigen mRNA vaccine characterization. Sci Rep 2025; 15:10336. [PMID: 40133349 PMCID: PMC11937333 DOI: 10.1038/s41598-025-94616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
The new era of messenger RNA (mRNA) vaccines has led to development of a novel, state-of-the-art characterization method for this class of molecules. Currently, flow cytometry-based assays with antigen-specific antibodies are utilized for monitoring in-vitro expression (IVE) of mRNA. Here we present development, optimization, and application of an in-vitro expression liquid chromatography tandem mass spectrometry (IVE-LC/MS/MS) assay as an orthogonal method to IVE-flow cytometry that can be used for in-depth characterization of the expressed protein antigens and monitoring their relative expression levels in the cell post-mRNA transfection. The IVE-LC/MS/MS assessment accomplished the detection of influenza hemagglutinin (HA) antigens of four distinct strains simultaneously. The workflow is presented here, highlighting the optimization of all necessary steps required for protein purification and mass spectrometry method setup. The IVE-LC/MS/MS assay is a robust and versatile technique that complements the IVE-flow cytometry method and offers several advantages, such as being antibody-free, capable of multiplexing, and highly sensitive and selective. The various studies in this work, including evaluating dose-response relationships, refining transfection protocols, and examining mRNA-LNP stability under various conditions showcase the significant benefits of applying IVE-LC/MS/MS across different experimental settings. IVE-LC/MS/MS is a powerful tool for understanding and improving the performance and quality of mRNA LNPs.
Collapse
|
research-article |
1 |
|
16
|
Wilken D, Preisser A, Gau B, Velasco Garrido M, Hausner T, Baur X. Untersuchung von berufstätigen Bäckern mit Mehlstauballergie. Pneumologie 2011. [DOI: 10.1055/s-0031-1272149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
|
14 |
|
17
|
Gau B. A taste of Italy. Nursing 1999; 29:104. [PMID: 10418520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
Case Reports |
26 |
|