1
|
Emsley R, Chiliza B, Asmal L, Harvey BH. The nature of relapse in schizophrenia. BMC Psychiatry 2013; 13:50. [PMID: 23394123 PMCID: PMC3599855 DOI: 10.1186/1471-244x-13-50] [Citation(s) in RCA: 319] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 01/25/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Multiple relapses characterise the course of illness in most patients with schizophrenia, yet the nature of these episodes has not been extensively researched and clinicians may not always be aware of important implications. METHODS We critically review selected literature regarding the nature and underlying neurobiology of relapse. RESULTS Relapse rates are very high when treatment is discontinued, even after a single psychotic episode; a longer treatment period prior to discontinuation does not reduce the risk of relapse; many patients relapse soon after treatment reduction and discontinuation; transition from remission to relapse may be abrupt and with few or no early warning signs; once illness recurrence occurs symptoms rapidly return to levels similar to the initial psychotic episode; while most patients respond promptly to re-introduction of antipsychotic treatment after relapse, the response time is variable and notably, treatment failure appears to emerge in about 1 in 6 patients. These observations are consistent with contemporary thinking on the dopamine hypothesis, including the aberrant salience hypothesis. CONCLUSIONS Given the difficulties in identifying those at risk of relapse, the ineffectiveness of rescue medications in preventing full-blown psychotic recurrence and the potentially serious consequences, adherence and other factors predisposing to relapse should be a major focus of attention in managing schizophrenia. The place of antipsychotic treatment discontinuation in clinical practice and in placebo-controlled clinical trials needs to be carefully reconsidered.
Collapse
|
review-article |
12 |
319 |
2
|
Möller M, Du Preez JL, Viljoen FP, Berk M, Emsley R, Harvey BH. Social isolation rearing induces mitochondrial, immunological, neurochemical and behavioural deficits in rats, and is reversed by clozapine or N-acetyl cysteine. Brain Behav Immun 2013; 30:156-67. [PMID: 23270677 DOI: 10.1016/j.bbi.2012.12.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/04/2012] [Accepted: 12/14/2012] [Indexed: 02/01/2023] Open
Abstract
Apart from altered dopamine (DA) function, schizophrenia displays mitochondrial and immune-inflammatory abnormalities, evidenced by oxidative stress, altered kynurenine metabolism and cytokine release. N-acetyl cysteine (NAC), an antioxidant and glutamate modulator, is effective in the adjunctive treatment of schizophrenia. Social isolation rearing (SIR) in rats is a valid neurodevelopmental animal model of schizophrenia. This study evaluated whether SIR-induced behavioural deficits may be explained by altered plasma pro- and anti-inflammatory cytokines, kynurenine metabolism, and cortico-striatal DA and mitochondrial function (via adenosine triphosphate (ATP) release), and if clozapine or NAC (alone and in combination) reverses these changes. SIR induced pronounced deficits in social interactive behaviours, object recognition memory, and prepulse inhibition (PPI), while simultaneously increasing striatal but reducing frontal cortical accumulation of ATP as well as DA. SIR increased pro- vs. anti-inflammatory cytokine balance and altered kynurenine metabolism with a decrease in neuroprotective ratio. Clozapine (5mg/kg/day×14days) as well as clozapine+NAC (5mg/kg/day and 150mg/kg/day×14days) reversed these changes, with NAC (150mg/kg/day) alone significantly but partially effective in some parameters. Clozapine+NAC was more effective than clozapine alone in reversing SIR-induced PPI, mitochondrial, immune and DA changes. In conclusion, SIR induces mitochondrial and immune-inflammatory changes that underlie cortico-striatal DA perturbations and subsequent behavioural deficits, and responds to treatment with clozapine or NAC, with an additive effect following combination treatment. The data provides insight into the mechanisms that might underlie the utility of NAC as an adjunctive treatment in schizophrenia.
Collapse
|
|
12 |
137 |
3
|
Davis J, Moylan S, Harvey BH, Maes M, Berk M. Neuroprogression in schizophrenia: Pathways underpinning clinical staging and therapeutic corollaries. Aust N Z J Psychiatry 2014; 48:512-29. [PMID: 24803587 DOI: 10.1177/0004867414533012] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Whilst dopaminergic dysfunction remains a necessary component involved in the pathogenesis of schizophrenia, our current pharmacological armoury of dopamine antagonists does little to control the negative symptoms of schizophrenia. This suggests other pathological processes must be implicated. This paper aims to elaborate on such theories. METHODS Data for this review were sourced from the electronic database PUBMED, and was not limited by language or date of publication. RESULTS It has been suggested that multiple 'hits' may be required to unveil the clinical syndrome in susceptible individuals. Such hits potentially first occur in utero, leading to neuronal disruption, epigenetic changes and the establishment of an abnormal inflammatory response. The development of schizophrenia may therefore potentially be viewed as a neuroprogressive response to these early stressors, driven on by changes in tryptophan catabolite (TRYCAT) metabolism, reactive oxygen species handling and N-methyl d-aspartate (NMDA) circuitry. Given the potential for such progression over time, it is prudent to explore the new treatment strategies which may be implemented before such changes become established. CONCLUSIONS Outside of the dopaminergic model, the potential pathogenesis of schizophrenia has yet to be fully elucidated, but common themes include neuropil shrinkage, the development of abnormal neuronal circuitry, and a chronic inflammatory state which further disrupts neuronal function. Whilst some early non-dopaminergic treatments show promise, none have yet to be fully studied in appropriately structured randomized controlled trials and they remain little more than potential attractive targets.
Collapse
|
Review |
11 |
112 |
4
|
Wegener G, Volke V, Harvey BH, Rosenberg R. Local, but not systemic, administration of serotonergic antidepressants decreases hippocampal nitric oxide synthase activity. Brain Res 2003; 959:128-34. [PMID: 12480166 DOI: 10.1016/s0006-8993(02)03738-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO) is an unconventional transmitter molecule in the nervous system, synthesized by nitric oxide synthase (NOS) following activation of the N-methyl-D-aspartate (NMDA) receptor. Several in vivo studies have demonstrated that NO modulates the extracellular levels of various neurotransmitters in the central nervous system, while serotonin (5-HT) re-uptake may be influenced by the NO pathway. Moreover, inhibitors of NOS exhibit antidepressant-like and anxiolytic-like properties in various animal models. Therefore, the aims of the present study were to clarify the involvement of distinct antidepressants acting on the serotonin re-uptake site in the regulation of the activity of hippocampal NOS in vitro, in vivo and ex vivo. We found that citalopram, paroxetine, imipramine and N(G)-nitro-L-arginine dose dependently decreased the hippocampal NOS activity in vitro. Moreover, local administration of citalopram, paroxetine, tianeptine, imipramine and N(G)-nitro-L-arginine significantly decreased the hippocampal NOS activity in vivo at a concentration significantly lower than in vitro. No effect on NOS activity following retrodialysis with 5-HT was observed. Acute (5 mg/kg, s.c.) and chronic (3 weeks, 20 mg/kg/24 h) systemic administration of citalopram did not influence NOS activity ex vivo. The effects on NOS represent a response to structurally dissimilar serotonergic antidepressants. However, since these data reflect effects on basal NOS activity, we believe that serotonergic antidepressants do not directly affect NOS at dosages used clinically, but the findings may reflect a secondary action of antidepressants on the glutamate NMDA receptor following their primary inhibitory action at the 5-HT transporter.
Collapse
|
Comparative Study |
22 |
107 |
5
|
Korff S, Harvey BH. Animal models of obsessive-compulsive disorder: rationale to understanding psychobiology and pharmacology. Psychiatr Clin North Am 2006; 29:371-90. [PMID: 16650714 DOI: 10.1016/j.psc.2006.02.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Animal models have shown progressive development and have undoubtedly proven their supportive value in OCD research. Thus, various animal models have confirmed the importance of the 5-HT [72-74] and dopamine systems [104,111] in the neurobiology and treatment of OCD. Given the neurochemical, emotional, and cognitive complexity of the disorder, how-ever, animal models are being used to investigate more and more complicated neurochemical and behavioral theories purported to underlie OCD. The lever-press model, for example, has implicated deficient response feed-back in a neural system that regulates operant behavior [74]. Studies on stereotypic movement disorder [89] have opened a new avenue of investigation into the neurobiology of stereotypy that may be applicable to more complex syndromes such as OCD. Models that have focused on specific neuropsychologic aspects of OCD such as reward [74], displacement behavior[63,101], perseveration and indecisiveness [73,102], and spontaneous stereotypy [90,94] are important in their attempt to unify the diverse behavioral manifestations of this disorder. It is clear that for a deeper, more holistic understanding of OCD, multiple animal models will be needed to allow investigation of the various aspects of the disorder and to provide convergent validation of the research findings. The heterogeneous nature of OCD, the various subtypes that exist within the disorder, and the range of obsessive-compulsive spectrum disorders suggest that particular questions regarding OCD may be addressed best by us-ing a particular ethologic model, whereas other questions might require a pharmacologic model or a combination of both for meaningful results[62,115]. Genetic models will be extremely useful for studying the genetics of pathologic behavior and for relating these findings to neuroanatomic and neurochemical changes in the model (eg, DICT-7 mice as a model for Tourette's syndrome and OCD). Neither ethologic nor pharmacologic models, however, can assess whether the "compulsive" behavior is a response to an "obsessive" anxiety or fear. Perhaps the symptoms seen in patients who have OCD, which may be exacerbated by everyday stress, are analogous to displacement behaviors in animals and also reflect some form of anxiety or stress [98]. In this regard, the bank vole model [116]has provided evidence that previously developed stereotypies increase markedly after acute stress and argues that healthy individuals "habituate" to everyday stress, whereas patients who have OCD do not. Interindividual variation in behavioral response and attempts to replicate studies in different laboratories often is the nemesis of the behavioral scientist. Small within- and between-subject variability is usually desirable, how-ever, because there are cases in which the study of the variability of the model could lead to a better understanding of the disorder. Variability can-not always be considered an error; it is possible that previously disregarded neuronal systems may have a place in the observed variation and, indeed, in the pathophysiology of OCD. In this regard, SRIs are not always effective for OCD [6,29,30] such that a lack of effect in a model may reflect an un-known neurobiological basis for compulsive behavior in a sub-group of SRI refractory patients. Similarly, separating the afflicted (ie, working with animals that show greater behavioral change in a model and/or after drug treatment) would have distinct benefits. To increase successful implementation of an ethologic animal model, especially when reinforcement models or signal attenuation models are used,the laboratory must be equipped with the essential behavioral testing apparatus as well as the operant chambers/rooms in which to conduct the train-ing and data collection. Quantification of certain stereotypy behaviors also requires experienced or trained observers. An illustration of the difficulty in measuring behavioral changes is that in the rewarded alternation model,a good response to behavioral treatment (alternation training) may lead to a floor effect [73] which, after successful drug treatment of the animal,produces no residual persistence (ie, measurable behavioral change) on which a drug treatment can be tested. Clearly, the choice of ethologic, pharmacologic, or genetic models should be considered carefully. A well-validated model may quell many of the limitations and considerations described previously. Noninvasive neuroimaging(eg, the use of small-animal single-photon emission CT) to explore the neuroanatomic basis of OCD offers an exciting future challenge, especially if combined with pharmacologic or ethologic models, and could confirm or ex-tend knowledge of the neuroanatomy of OCD. Although studies to investigate further the interactive role of 5-HT, dopamine, GABA, and glutamate are still needed, the role of neuroactive peptides such as cholecystokinin, corticotrophin-releasing factor, neuropeptide Y, tachykinins (ie, substance P),and natriuretic peptides in OCD should also be considered. Genetically engineered animal models will become increasingly valuable in combination with new technologies such as gene-chip microarrays, RNA interference, and advanced proteomics that will help further the understanding of OCD. Animal models of OCD are poised to play a vital role in extending the knowledge of the disorder now and in the future.
Collapse
|
Review |
19 |
103 |
6
|
Harvey BH, Brand L, Jeeva Z, Stein DJ. Cortical/hippocampal monoamines, HPA-axis changes and aversive behavior following stress and restress in an animal model of post-traumatic stress disorder. Physiol Behav 2006; 87:881-90. [PMID: 16546226 DOI: 10.1016/j.physbeh.2006.01.033] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 01/30/2006] [Indexed: 02/02/2023]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by monoaminergic and hypothalamic-pituitary-adrenal (HPA)-axis abnormalities. Understanding monoamine-HPA-axis responses following stress and restress may provide a greater understanding of the neurobiology of PTSD and of its treatment. Hippocampal and frontal cortex serotonin, noradrenaline and dopamine, plasma corticosterone and aversive behavior were studied in rats on day 1 and day 7 post acute stress (AS = sequential restraint stress, swim stress and halothane exposure), and on day 1 and day 7 post restress (RS = swim stress). After AS, there was an early increase in both avoidant behavior and corticosterone (1 h after stress), with subsequent normalisation (day 7), suggesting an adequate adaptive response to the stressor. However, restress (RS) evoked a significant early HPA-axis hyporesponsiveness (1 h after RS) and a later significant increase in avoidant behavior on day 7 post RS. Hippocampal serotonin, noradrenaline and dopamine concentrations were unchanged 1 h post AS, but were significantly raised on day 7 post AS. Restress, however, reduced serotonin and noradrenaline levels 1 h after and on day 7 post RS, respectively, while dopamine was unchanged. In the frontal cortex only dopamine levels were altered, being significantly elevated 1 h after AS, and reduced on day 7 post RS. AS and RS thus differently effect the HPA-axis, evoking regional-specific brain monoamine changes that underlie maladaptive behavior and other post stress-related sequelae.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
93 |
7
|
Möller M, Du Preez JL, Emsley R, Harvey BH. Isolation rearing-induced deficits in sensorimotor gating and social interaction in rats are related to cortico-striatal oxidative stress, and reversed by sub-chronic clozapine administration. Eur Neuropsychopharmacol 2011; 21:471-83. [PMID: 20965701 DOI: 10.1016/j.euroneuro.2010.09.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 08/16/2010] [Accepted: 09/09/2010] [Indexed: 11/15/2022]
Abstract
Social isolation rearing (SIR) in rats induces behavioral and glutamatergic changes akin to schizophrenia. We studied the effects of 8 weeks SIR on cortico-striatal redox and social and cognitive behaviors in rats. SIR increased superoxide dismutase activity, decreased oxidized:reduced glutathione ratio and increased lipid peroxidation in both brain regions, and induced deficits in prepulse inhibition and social and self-directed interactive behaviors. Both behavioral and cortico-striatal redox disturbances were corrected by clozapine (5 mg/kg/day×11days). Behavioral changes evoked by SIR are associated with cortico-striatal oxidative stress that is reversed by clozapine treatment, providing novel insight into the neurobiology and treatment of schizophrenia.
Collapse
|
|
14 |
87 |
8
|
Petzer A, Harvey BH, Wegener G, Petzer JP. Azure B, a metabolite of methylene blue, is a high-potency, reversible inhibitor of monoamine oxidase. Toxicol Appl Pharmacol 2011; 258:403-9. [PMID: 22197611 DOI: 10.1016/j.taap.2011.12.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 11/25/2022]
Abstract
Methylene blue (MB) has been shown to act at multiple cellular and molecular targets and as a result possesses diverse medical applications. Among these is a high potency reversible inhibition of monoamine oxidase A (MAO-A) that may, at least in part, underlie its adverse effects but also its psycho- and neuromodulatory actions. MB is metabolized to yield N-demethylated products of which azure B, the monodemethyl species, is the major metabolite. Similar to MB, azure B also displays a variety of biological activities and may therefore contribute to the pharmacological profile of MB. Based on these observations, the present study examines the interactions of azure B with recombinant human MAO-A and -B. The results show that azure B is a potent MAO-A inhibitor (IC₅₀=11 nM), approximately 6-fold more potent than is MB (IC₅₀=70 nM) under identical conditions. Measurements of the time-dependency of inhibition suggest that the interaction of azure B with MAO-A is reversible. Azure B also reversibly inhibits the MAO-B isozyme with an IC₅₀ value of 968 nM. These results suggest that azure B may be a hitherto under recognized contributor to the pharmacology and toxicology of MB by blocking central and peripheral MAO-A activity and as such needs to be considered during its use in humans and animals.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
84 |
9
|
Harvey BH, Naciti C, Brand L, Stein DJ. Endocrine, cognitive and hippocampal/cortical 5HT 1A/2A receptor changes evoked by a time-dependent sensitisation (TDS) stress model in rats. Brain Res 2003; 983:97-107. [PMID: 12914970 DOI: 10.1016/s0006-8993(03)03033-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Post traumatic stress disorder (PTSD) is characterised by hyperarousal, anxiety and amnesic symptoms. Deficits in explicit memory recall have been causally related to volume reductions of the hippocampus and prefrontal cortex. While stress-related glucocorticoid secretion appears involved in this apparent atrophy, there is also evidence for low plasma cortisol in PTSD. Prior exposure to trauma is an important risk factor for PTSD, suggesting a role for sensitisation. Using Sprague-Dawley rats, we studied the effects of a time-dependent sensitisation (TDS) model of stress on spatial memory deficits, 1 week post-stress, using the Morris water maze. Basal and 7-day post-stress plasma corticosterone levels were also determined. Due to the putative role of serotonin in anxiety and stress, and in the treatment of PTSD, hippocampal 5HT(1A) and prefrontal cortex 5HT(2A) radioligand binding studies were performed. TDS stress evoked a marked deficit in spatial memory on day 7 post TDS stress, coupled with significantly depressed plasma corticosterone levels. Cognitive and endocrine changes at day 7 post stress were associated with a significant increase in receptor density (B(max)) and a significant decrease in receptor affinity (K(d)) for hippocampal 5HT(1A) receptors. The B(max) of prefrontal cortex 5HT(2A) receptors were unaffected, but K(d) was significantly increased. We conclude that TDS stress evokes cognitive and endocrine changes characteristic of PTSD. Moreover, TDS stress induces diverse adaptive 5HT receptor changes in critical brain areas involved in emotion and memory that may underlie the effect of stress on cognitive function.
Collapse
|
|
22 |
83 |
10
|
Korff S, Stein DJ, Harvey BH. Stereotypic behaviour in the deer mouse: pharmacological validation and relevance for obsessive compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:348-55. [PMID: 17888556 DOI: 10.1016/j.pnpbp.2007.08.032] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 08/20/2007] [Accepted: 08/22/2007] [Indexed: 11/18/2022]
Abstract
Stereotypy is an important manifestation of obsessive compulsive disorder (OCD). OCD involves disturbed serotonin and dopamine pathways, and demonstrates a selective response to serotonin reuptake inhibitors (SRI), with limited to no response to noradrenaline reuptake inhibitors (NRI). Deer mice (Peromyscus maniculatus bairdii) engage in various spontaneous stereotypic behaviours, including somersaulting, jumping and pattern running, and has to date not been explored for possible relevance for OCD. We studied the population diversity of spontaneous stereotypy in these animals, followed by assessing behavioural response to chronic high and low dose SRI (viz. fluoxetine) and NRI (viz. desipramine) treatment (both 10 mg/kg; 20 mg/kg x 21 days). We also studied behavioural responses to the 5-HT(2A/C) agonist, meta-chlorophenylpiperazine (mCPP) and the D2 agonist, quinpirole (2 mg/kg and 5 mg/kg respectively x 4 days). Deer mice showed a distinct separation into high and low stereotypic behaviour populations, with high and low dose fluoxetine, but not desipramine, significantly reducing stereotypic behaviour in both populations. A significant attenuation of stereotypy was also observed in both groups following quinpirole or mCPP challenge. In its response to drug treatment, spontaneous stereotypic behaviour in deer mice demonstrates predictive validity for OCD. States of spontaneous stereotypy are attenuated by 5-HT(2A/C) and dopamine D2 receptor agonists.
Collapse
|
|
17 |
76 |
11
|
Harvey BH, Bouwer CD. Neuropharmacology of paradoxic weight gain with selective serotonin reuptake inhibitors. Clin Neuropharmacol 2000; 23:90-7. [PMID: 10803799 DOI: 10.1097/00002826-200003000-00006] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It has been suggested that weight gain associated with tricyclic antidepressants (TCA) reflect actions on dopamine (DA) and histamine receptors. However, a definitive cause is purely assumptive given the nonselective pharmacology of these agents. The selective serotonin reuptake inhibitors (SSRIs), as well as agents like dexfenfluramine (DFF), have emphasized the pivotal role of serotonin (5HT) in reducing carbohydrate (CHO) intake, and have provided a more selective tool with which to study appetite regulation. It would be expected that all SSRIs should exert a similar anorectic action. However, recent reports provide evidence to the contrary. Despite their claimed selectivity, SSRIs still interact, either directly or indirectly, with various critical neurotransmitter systems. In addition, although the anorectic action of fluoxetine (FLX) is well recognized, long-term follow-up studies in depressed patients and in obese nondepressed patients reveal that its weight-reducing effects are transient, even leading to a gain in body weight. Similarly, paroxetine (PRX) and citalopram (CTP) have also been associated with weight gain. These latter observations are unexpected because PRX and CTP are highly potent and selective SSRIs. A neuropharmacologic rationale for the apparent paradoxic effects of SSRIs on appetite not a review of neuronal regulation of appetite is presented in this article. As with the regulation of feeding, paradoxic weight gain observed with SSRIs appears to rest on the interaction of 5HT with multiple mechanisms, with the extent of weight gain observed being dependent on subtle, yet important pharmacologic differences within the group. Finally, the neurobiology of depressive illness itself, and of recovery from it, is a major contributing factor to individual response to these drugs.
Collapse
|
Review |
25 |
66 |
12
|
Brand SJ, Moller M, Harvey BH. A Review of Biomarkers in Mood and Psychotic Disorders: A Dissection of Clinical vs. Preclinical Correlates. Curr Neuropharmacol 2015; 13:324-68. [PMID: 26411964 PMCID: PMC4812797 DOI: 10.2174/1570159x13666150307004545] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/04/2015] [Accepted: 03/06/2015] [Indexed: 11/23/2022] Open
Abstract
Despite significant research efforts aimed at understanding the neurobiological underpinnings of mood (depression, bipolar disorder) and psychotic disorders, the diagnosis and evaluation of treatment of these disorders are still based solely on relatively subjective assessment of symptoms as well as psychometric evaluations. Therefore, biological markers aimed at improving the current classification of psychotic and mood-related disorders, and that will enable patients to be stratified on a biological basis into more homogeneous clinically distinct subgroups, are urgently needed. The attainment of this goal can be facilitated by identifying biomarkers that accurately reflect pathophysiologic processes in these disorders. This review postulates that the field of psychotic and mood disorder research has advanced sufficiently to develop biochemical hypotheses of the etiopathology of the particular illness and to target the same for more effective disease modifying therapy. This implies that a "one-size fits all" paradigm in the treatment of psychotic and mood disorders is not a viable approach, but that a customized regime based on individual biological abnormalities would pave the way forward to more effective treatment. In reviewing the clinical and preclinical literature, this paper discusses the most highly regarded pathophysiologic processes in mood and psychotic disorders, thereby providing a scaffold for the selection of suitable biomarkers for future studies in this field, to develope biomarker panels, as well as to improve diagnosis and to customize treatment regimens for better therapeutic outcomes.
Collapse
|
Review |
10 |
65 |
13
|
Carey PD, Warwick J, Niehaus DJH, van der Linden G, van Heerden BB, Harvey BH, Seedat S, Stein DJ. Single photon emission computed tomography (SPECT) of anxiety disorders before and after treatment with citalopram. BMC Psychiatry 2004; 4:30. [PMID: 15482603 PMCID: PMC529251 DOI: 10.1186/1471-244x-4-30] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Accepted: 10/14/2004] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Several studies have now examined the effects of selective serotonin reuptake inhibitor (SSRI) treatment on brain function in a variety of anxiety disorders including obsessive-compulsive disorder (OCD), posttraumatic stress disorder (PTSD), and social anxiety disorder (social phobia) (SAD). Regional changes in cerebral perfusion following SSRI treatment have been shown for all three disorders. The orbitofrontal cortex (OFC) (OCD), caudate (OCD), medial pre-frontal/cingulate (OCD, SAD, PTSD), temporal (OCD, SAD, PTSD) and, thalamic regions (OCD, SAD) are some of those implicated. Some data also suggests that higher perfusion pre-treatment in the anterior cingulate (PTSD), OFC, caudate (OCD) and antero-lateral temporal region (SAD) predicts subsequent treatment response. This paper further examines the notion of overlap in the neurocircuitry of treatment and indeed treatment response across anxiety disorders with SSRI treatment. METHODS Single photon emission computed tomography (SPECT) using Tc-99 m HMPAO to assess brain perfusion was performed on subjects with OCD, PTSD, and SAD before and after 8 weeks (SAD) and 12 weeks (OCD and PTSD) treatment with the SSRI citalopram. Statistical parametric mapping (SPM) was used to compare scans (pre- vs post-medication, and responders vs non-responders) in the combined group of subjects. RESULTS Citalopram treatment resulted in significant deactivation (p = 0.001) for the entire group in the superior (t = 4.78) and anterior (t = 4.04) cingulate, right thalamus (t = 4.66) and left hippocampus (t = 3.96). Deactivation (p = 0.001) within the left precentral (t = 4.26), right mid-frontal (t = 4.03), right inferior frontal (t = 3.99), left prefrontal (3.81) and right precuneus (t= 3.85) was more marked in treatment responders. No pattern of baseline activation distinguished responders from non-responders to subsequent pharmacotherapy. CONCLUSIONS Although each of the anxiety disorders may be mediated by different neurocircuits, there is some overlap in the functional neuro-anatomy of their response to SSRI treatment. The current data are consistent with previous work demonstrating the importance of limbic circuits in this spectrum of disorders. These play a crucial role in cognitive-affective processing, are innervated by serotonergic neurons, and changes in their activity during serotonergic pharmacotherapy seem crucial.
Collapse
|
research-article |
21 |
65 |
14
|
Harvey BH, Shahid M. Metabotropic and ionotropic glutamate receptors as neurobiological targets in anxiety and stress-related disorders: Focus on pharmacology and preclinical translational models. Pharmacol Biochem Behav 2012; 100:775-800. [DOI: 10.1016/j.pbb.2011.06.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/24/2011] [Accepted: 06/09/2011] [Indexed: 11/29/2022]
|
|
13 |
64 |
15
|
Abildgaard A, Solskov L, Volke V, Harvey BH, Lund S, Wegener G. A high-fat diet exacerbates depressive-like behavior in the Flinders Sensitive Line (FSL) rat, a genetic model of depression. Psychoneuroendocrinology 2011; 36:623-33. [PMID: 20888697 DOI: 10.1016/j.psyneuen.2010.09.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/21/2010] [Accepted: 09/06/2010] [Indexed: 11/24/2022]
Abstract
Major depressive disorder (MDD) and diabetes mellitus type II (T2DM) are two of the major health challenges of our time. It has been shown that MDD and T2DM are highly co-morbid, and recent work has proposed a bi-directional connection between the diseases. The aim of the current study was to investigate the effect of a high-fat diet (HFD) on behavior and metabolism in a genetic rat model of depression, the Flinders Sensitive and Resistant Line (FSL/FRL) rats. Age and weight matched rats were fed a HFD or control diet for 10 weeks and subjected to behavioral testing and metabolic assessment. We found that HFD exacerbated the depressive-like behavior of the FSL rat in the Forced Swim Test (FST), a depression screening tool, although it did not affect the non-depressed FRL rat despite a higher caloric intake. Moreover, the depressive-like phenotype was associated with reduced anxiety and impairment in novel object recognition memory, while HFD consumption led to diminished object recognition memory as well. In both strains HFD increased insulin levels during an oral glucose tolerance test, although fasting blood glucose levels were only significantly increased by HFD in the FSL rat, suggesting a greater metabolic susceptibility in this rat strain. We conclude that compared with the FRL rat, the FSL rat is more susceptible to developing aberrant behaviors related to depression following metabolic stress induced by HFD. Further studies with a mechanistic focus could potentially lead to a better understanding of a possible pathophysiological link between T2DM and MDD.
Collapse
|
Evaluation Study |
14 |
63 |
16
|
Sarris J, Ravindran A, Yatham LN, Marx W, Rucklidge JJ, McIntyre RS, Akhondzadeh S, Benedetti F, Caneo C, Cramer H, Cribb L, de Manincor M, Dean O, Deslandes AC, Freeman MP, Gangadhar B, Harvey BH, Kasper S, Lake J, Lopresti A, Lu L, Metri NJ, Mischoulon D, Ng CH, Nishi D, Rahimi R, Seedat S, Sinclair J, Su KP, Zhang ZJ, Berk M. Clinician guidelines for the treatment of psychiatric disorders with nutraceuticals and phytoceuticals: The World Federation of Societies of Biological Psychiatry (WFSBP) and Canadian Network for Mood and Anxiety Treatments (CANMAT) Taskforce. World J Biol Psychiatry 2022; 23:424-455. [PMID: 35311615 DOI: 10.1080/15622975.2021.2013041] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The therapeutic use of nutrient-based 'nutraceuticals' and plant-based 'phytoceuticals' for the treatment of mental disorders is common; however, despite recent research progress, there have not been any updated global clinical guidelines since 2015. To address this, the World Federation of Societies of Biological Psychiatry (WFSBP) and the Canadian Network for Mood and Anxiety Disorders (CANMAT) convened an international taskforce involving 31 leading academics and clinicians from 15 countries, between 2019 and 2021. These guidelines are aimed at providing a definitive evidence-informed approach to assist clinicians in making decisions around the use of such agents for major psychiatric disorders. We also provide detail on safety and tolerability, and clinical advice regarding prescription (e.g. indications, dosage), in addition to consideration for use in specialised populations. METHODS The methodology was based on the WFSBP guidelines development process. Evidence was assessed based on the WFSBP grading of evidence (and was modified to focus on Grade A level evidence - meta-analysis or two or more RCTs - due to the breadth of data available across all nutraceuticals and phytoceuticals across major psychiatric disorders). The taskforce assessed both the 'level of evidence' (LoE) (i.e. meta-analyses or RCTs) and the assessment of the direction of the evidence, to determine whether the intervention was 'Recommended' (+++), 'Provisionally Recommended' (++), 'Weakly Recommended' (+), 'Not Currently Recommended' (+/-), or 'Not Recommended' (-) for a particular condition. Due to the number of clinical trials now available in the field, we firstly examined the data from our two meta-reviews of meta-analyses (nutraceuticals conducted in 2019, and phytoceuticals in 2020). We then performed a search of additional relevant RCTs and reported on both these data as the primary drivers supporting our clinical recommendations. Lower levels of evidence, including isolated RCTs, open label studies, case studies, preclinical research, and interventions with only traditional or anecdotal use, were not assessed. RESULTS Amongst nutraceuticals with Grade A evidence, positive directionality and varying levels of support (recommended, provisionally recommended, or weakly recommended) was found for adjunctive omega-3 fatty acids (+++), vitamin D (+), adjunctive probiotics (++), adjunctive zinc (++), methylfolate (+), and adjunctive s-adenosyl methionine (SAMe) (+) in the treatment of unipolar depression. Monotherapy omega-3 (+/-), folic acid (-), vitamin C (-), tryptophan (+/-), creatine (+/-), inositol (-), magnesium (-), and n-acetyl cysteine (NAC) (+/-) and SAMe (+/-) were not supported for this use. In bipolar disorder, omega-3 had weak support for bipolar depression (+), while NAC was not currently recommended (+/-). NAC was weakly recommended (+) in the treatment of OCD-related disorders; however, no other nutraceutical had sufficient evidence in any anxiety-related disorder. Vitamin D (+), NAC (++), methylfolate (++) were recommended to varying degrees in the treatment of the negative symptoms in schizophrenia, while omega-3 fatty acids were not, although evidence suggests a role for prevention of transition to psychosis in high-risk youth, with potential pre-existing fatty acid deficiency. Micronutrients (+) and vitamin D (+) were weakly supported in the treatment of ADHD, while omega-3 (+/-) and omega-9 fatty acids (-), acetyl L carnitine (-), and zinc (+/-) were not supported. Phytoceuticals with supporting Grade A evidence and positive directionality included St John's wort (+++), saffron (++), curcumin (++), and lavender (+) in the treatment of unipolar depression, while rhodiola use was not supported for use in mood disorders. Ashwagandha (++), galphimia (+), and lavender (++) were modestly supported in the treatment of anxiety disorders, while kava (-) and chamomile (+/-) were not recommended for generalised anxiety disorder. Ginkgo was weakly supported in the adjunctive treatment of negative symptoms of schizophrenia (+), but not supported in the treatment of ADHD (+/-). With respect to safety and tolerability, all interventions were deemed to have varying acceptable levels of safety and tolerability for low-risk over-the-counter use in most circumstances. Quality and standardisation of phytoceuticals was also raised by the taskforce as a key limiting issue for firmer confidence in these agents. Finally, the taskforce noted that such use of nutraceuticals or phytoceuticals be primarily recommended (where supportive evidence exists) adjunctively within a standard medical/health professional care model, especially in cases of more severe mental illness. Some meta-analyses reviewed contained data from heterogenous studies involving poor methodology. Isolated RCTs and other data such as open label or case series were not included, and it is recognised that an absence of data does not imply lack of efficacy. CONCLUSIONS Based on the current data and clinician input, a range of nutraceuticals and phytoceuticals were given either a supportive recommendation or a provisional recommendation across a range of various psychiatric disorders. However several had only a weak endorsement for potential use; for a few it was not possible to reach a clear recommendation direction, largely due to mixed study findings; while some other agents showed no obvious therapeutic benefit and were clearly not recommended for use. It is the intention of these guidelines to inform psychiatric/medical, and health professional practice globally.
Collapse
|
Meta-Analysis |
3 |
62 |
17
|
Harvey BH, Joubert C, du Preez JL, Berk M. Effect of Chronic N-Acetyl Cysteine Administration on Oxidative Status in the Presence and Absence of Induced Oxidative Stress in Rat Striatum. Neurochem Res 2007; 33:508-17. [PMID: 17763945 DOI: 10.1007/s11064-007-9466-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 07/31/2007] [Indexed: 10/22/2022]
Abstract
Antioxidants have possible therapeutic value in neurodegenerative disorders, although they may have pro-oxidant effects under certain conditions. Glutathione (GSH) is a key free radical scavenger. N-acetylcysteine (NAC) bolsters GSH and intracellular cysteine and also has effective free radical scavenger properties. The effects of chronic NAC administration (50 mg/kg/day, 500 mg/kg/day, 1500 mg/kg/day x 21 days) on cellular markers of oxidative status was studied in striatum of healthy male Sprague-Dawley rats as well as in animals with apparent striatal oxidative stress following chronic haloperidol treatment (1.5 mg/kg/day x 3 weeks). In non-haloperidol treated animals, NAC 50 and 500 mg/kg did not affect oxidative status, although NAC 1,500 mg/kg significantly increased striatal superoxide levels, decreased lipid peroxidation and increased consumption of reduced glutathione (GSH). Haloperidol alone evoked a significant increase in superoxide and lipid peroxidation. All NAC doses blocked haloperidol induced increases in superoxide levels, while NAC 500 mg/kg and 1,500 mg/kg prevented haloperidol-associated lipid peroxidation levels and also increased the GSSG/GSH ratio. NAC may protect against conditions of striatal oxidative stress, although possible pro-oxidative actions at high doses in otherwise healthy individuals, e.g. to offset worsening of neurodegenerative illness, should be viewed with caution.
Collapse
|
|
18 |
59 |
18
|
Szechtman H, Ahmari SE, Beninger RJ, Eilam D, Harvey BH, Edemann-Callesen H, Winter C. Obsessive-compulsive disorder: Insights from animal models. Neurosci Biobehav Rev 2017; 76:254-279. [PMID: 27168347 PMCID: PMC5833926 DOI: 10.1016/j.neubiorev.2016.04.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 01/15/2023]
Abstract
Research with animal models of obsessive-compulsive disorder (OCD) shows the following: (1) Optogenetic studies in mice provide evidence for a plausible cause-effect relation between increased activity in cortico-basal ganglia-thalamo-cortical (CBGTC) circuits and OCD by demonstrating the induction of compulsive behavior with the experimental manipulation of the CBGTC circuit. (2) Parallel use of several animal models is a fruitful paradigm to examine the mechanisms of treatment effects of deep brain stimulation in distinct OCD endophenotypes. (3) Features of spontaneous behavior in deer mice constitute a rich platform to investigate the neurobiology of OCD, social ramifications of a compulsive phenotype, and test novel drugs. (4) Studies in animal models for psychiatric disorders comorbid with OCD suggest comorbidity may involve shared neural circuits controlling expression of compulsive behavior. (5) Analysis of compulsive behavior into its constitutive components provides evidence from an animal model for a motivational perspective on OCD. (6) Methods of behavioral analysis in an animal model translate to dissection of compulsive rituals in OCD patients, leading to diagnostic tests.
Collapse
|
Review |
8 |
58 |
19
|
Jansen van Vuren E, Steyn SF, Brink CB, Möller M, Viljoen FP, Harvey BH. The neuropsychiatric manifestations of COVID-19: Interactions with psychiatric illness and pharmacological treatment. Biomed Pharmacother 2021; 135:111200. [PMID: 33421734 PMCID: PMC7834135 DOI: 10.1016/j.biopha.2020.111200] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
The recent outbreak of the corona virus disease (COVID-19) has had major global impact. The relationship between severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection and psychiatric diseases is of great concern, with an evident link between corona virus infections and various central and peripheral nervous system manifestations. Unmitigated neuro-inflammation has been noted to underlie not only the severe respiratory complications of the disease but is also present in a range of neuro-psychiatric illnesses. Several neurological and psychiatric disorders are characterized by immune-inflammatory states, while treatments for these disorders have distinct anti-inflammatory properties and effects. With inflammation being a common contributing factor in SARS-CoV-2, as well as psychiatric disorders, treatment of either condition may affect disease progression of the other or alter response to pharmacological treatment. In this review, we elucidate how viral infections could affect pre-existing psychiatric conditions and how pharmacological treatments of these conditions may affect overall progress and outcome in the treatment of SARS-CoV-2. We address whether any treatment-induced benefits and potential adverse effects may ultimately affect the overall treatment approach, considering the underlying dysregulated neuro-inflammatory processes and potential drug interactions. Finally, we suggest adjunctive treatment options for SARS-CoV-2-associated neuro-psychiatric symptoms.
Collapse
|
Review |
4 |
54 |
20
|
Mokoena ML, Harvey BH, Viljoen F, Ellis SM, Brink CB. Ozone exposure of Flinders Sensitive Line rats is a rodent translational model of neurobiological oxidative stress with relevance for depression and antidepressant response. Psychopharmacology (Berl) 2015; 232:2921-38. [PMID: 25877744 DOI: 10.1007/s00213-015-3928-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/24/2015] [Indexed: 12/18/2022]
Abstract
RATIONALE Major depression has been associated with higher levels of air pollution that in turn leads to neurodegeneration via increased oxidative stress. There is a need for suitable translational animal models to study the role of oxidative stress in depression and antidepressant action. OBJECTIVE Considering the gene X environment hypothesis of depression, the present study investigated the effect of chronic ozone inhalation on depression and anxiety-related behavior, cognition, and brain markers of oxidative stress in the Flinders Sensitive Line (FSL) rat. In addition, response to the antioxidant melatonin, and the antidepressants desipramine or escitalopram, was assessed. METHODS Rats were exposed to ozone (0.0 or 0.3 parts per million (ppm)) per inhalation for 4 h daily for a period of 15 days, while simultaneously receiving saline or the above-mentioned drugs. RESULTS The data indicate that chronic ozone inhalation induced memory impairment, anxiety and depression-like effects, reduced cortical and hippocampal superoxide dismutase and catalase activity, and compromised central monoamine levels similar to that noted in depression. Moreover, the behavioral and neurochemical effects of melatonin, desipramine, and escitalopram were mostly attenuated in the presence of ozone. CONCLUSION Thus, genetically susceptible individuals exposed to high levels of oxidative stress are at higher risk of developing mood and/or an anxiety disorders, showing greater redox imbalance and altered behavior. These animals are also more resistant to contemporary antidepressant treatment. The presented model provides robust face, construct, and predictive validity, suitable for studying neuronal oxidative stress in depression, antidepressant action and mechanisms to prevent neuronal oxidative stress.
Collapse
|
|
10 |
51 |
21
|
Oosthuizen F, Wegener G, Harvey BH. Nitric oxide as inflammatory mediator in post-traumatic stress disorder (PTSD): evidence from an animal model. Neuropsychiatr Dis Treat 2005; 1:109-23. [PMID: 18568056 PMCID: PMC2413191 DOI: 10.2147/nedt.1.2.109.61049] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a severe anxiety disorder that may develop after experiencing or witnessing a traumatic event. Recent clinical evidence has suggested the involvement of neurodegenerative pathology in the illness, particularly with brain imaging studies revealing a marked reduction in hippocampal volume. Of greater significance is that these anatomical changes appear to be positively correlated with the degree of cognitive deficit noted in these patients. Stress-induced increases in plasma cortisol have been implicated in this apparent atrophy. Although not definitive, clinical studies have observed a marked suppression of plasma cortisol in PTSD. The basis for hippocampal neurodegeneration and cognitive decline therefore remains unclear. Stress and glucocorticoids increase glutamate release, which is recognized as an important mediator of glucocorticoid-induced neurotoxicity. Recent preclinical studies have also noted that glutamate and nitric oxide (NO) play a causal role in anxiety-related behaviors. Because of the prominent role of NO in neuronal toxicity, cellular memory processes, and as a neuromodulator, nitrergic pathways may have an important role in stress-related hippocampal degenerative pathology and cognitive deficits seen in patients with PTSD. This paper reviews the preclinical evidence for involvement of the NO-pathway in PTSD, and emphasizes studies that have addressed these issues using time-dependent sensitization - a putative animal model of PTSD.
Collapse
|
review-article |
20 |
50 |
22
|
Emsley R, Chiliza B, Asmal L, du Plessis S, Phahladira L, van Niekerk E, van Rensburg SJ, Harvey BH. A randomized, controlled trial of omega-3 fatty acids plus an antioxidant for relapse prevention after antipsychotic discontinuation in first-episode schizophrenia. Schizophr Res 2014; 158:230-5. [PMID: 24996507 DOI: 10.1016/j.schres.2014.06.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/09/2014] [Accepted: 06/01/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND While antipsychotics are effective in the maintenance treatment of schizophrenia they have safety and tolerability risks. We investigated whether a combination of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and a metabolic antioxidant, alpha-lipoic acid (α-LA), is effective in preventing relapse after antipsychotic discontinuation in subjects who were successfully treated for 2-3 years after a first-episode of schizophrenia, schizo-affective or schizophreniform disorder. METHODS In this randomized, double-blind, placebo controlled study antipsychotic treatment was tapered and discontinued and participants received either ω-3 PUFAs (eicosapentaenoic acid 2g/day and docosahexaenoic acid 1g/day)+α-LA 300 mg/day or placebo. Subjects were followed up for two years, or until relapse. RESULTS Recruitment was terminated prematurely due to the high relapse rates in both treatment groups as well as the severity of some of the relapse episodes. Of the 33 participants, 19/21(90%) randomized to ω-3 PUFAs+α-LA relapsed and one (5%) completed two years without relapse (p=0.6); and 9/12 (75%) randomized to placebo relapsed and none completed two years without relapse. Mean times to relapse were 39.8 ± 25.4 and 38.3 ± 26.6 weeks for the ω-3 PUFAs+α-LA and placebo groups, respectively (p=0.9). There were no significant differences between the groups in relapse symptom severity. CONCLUSIONS We found no evidence that ω-3 PUFAs+α-LA could be a suitable alternative to maintenance antipsychotic treatment in relapse prevention, in this small study. Antipsychotic discontinuation after a single episode of schizophrenia carries a very high risk of relapse, and treatment guidelines endorsing this practice should be revised.
Collapse
|
Randomized Controlled Trial |
11 |
48 |
23
|
Uys JDK, Muller CJF, Marais L, Harvey BH, Stein DJ, Daniels WMU. Early life trauma decreases glucocorticoid receptors in rat dentate gyrus upon adult re-stress: reversal by escitalopram. Neuroscience 2005; 137:619-25. [PMID: 16310967 DOI: 10.1016/j.neuroscience.2005.08.089] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 07/22/2005] [Accepted: 08/15/2005] [Indexed: 12/26/2022]
Abstract
Early exposure to adverse experiences may lead to specific changes in hippocampal glucocorticoid function resulting in abnormalities within the hypothalamic-adrenal axis. Given interactions between the neuroendocrine and central serotonergic systems, we hypothesized that exposure to early trauma would lead to abnormal hypothalamic-adrenal axis activity that would be normalized by pretreatment with a selective serotonin re-uptake inhibitor. Hypothalamic-adrenal axis function was assessed by determining basal corticosterone levels and hippocampal glucocorticoid receptor immunoreactivity. Rats were subjected to a triple stressor on postnatal day 28, and again to a single swim re-stress session on postnatal day 35 and postnatal day 60. On postnatal day 61 i.e. 24 h after the last re-stress, trunk blood was collected for serum corticosterone determinations and hippocampal tissue was collected for immunohistochemistry of glucocorticoid receptors. Escitalopram (5mg/kg) or saline vehicle was administered from postnatal day 47-postnatal day 60 via osmotic mini-pumps. Animals exposed to early life trauma showed an increase in basal corticosterone levels, and a significant decrease in the ratio of glucocorticoid receptor positive cells to total cells in the hilus, granule cell layer and the dentate gyrus. Both the increase in basal corticosterone and decrease in glucocorticoid receptor immunoreactivity were reversed by escitalopram pretreatment. These data confirm alterations in hypothalamic-adrenalaxis function that may stem from decreases in glucocorticoid receptor levels, in response to early adverse experiences, and demonstrate that these alterations are reversed by serotonin re-uptake inhibitor pretreatment.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Citalopram/pharmacology
- Dentate Gyrus/drug effects
- Dentate Gyrus/growth & development
- Dentate Gyrus/metabolism
- Disease Models, Animal
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Glucocorticoids/blood
- Glucocorticoids/metabolism
- Hypothalamo-Hypophyseal System/drug effects
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamo-Hypophyseal System/physiopathology
- Male
- Neurons/drug effects
- Neurons/metabolism
- Pituitary-Adrenal System/drug effects
- Pituitary-Adrenal System/metabolism
- Pituitary-Adrenal System/physiopathology
- Rats
- Rats, Sprague-Dawley
- Receptors, Glucocorticoid/drug effects
- Receptors, Glucocorticoid/metabolism
- Serotonin/metabolism
- Selective Serotonin Reuptake Inhibitors/pharmacology
- Stress Disorders, Post-Traumatic/drug therapy
- Stress Disorders, Post-Traumatic/metabolism
- Stress Disorders, Post-Traumatic/physiopathology
- Stress, Psychological/drug therapy
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
47 |
24
|
Brink CB, Clapton JD, Eagar BE, Harvey BH. Appearance of antidepressant-like effect by sildenafil in rats after central muscarinic receptor blockade: evidence from behavioural and neuro-receptor studies. J Neural Transm (Vienna) 2007; 115:117-25. [PMID: 17823768 DOI: 10.1007/s00702-007-0806-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 08/22/2007] [Indexed: 12/24/2022]
Abstract
The phosphodiesterase (PDE) 5 inhibitor sildenafil has been shown to display psychotropic actions in humans and animals, and has been used for the treatment of antidepressant-associated erectile dysfunction. However, its effects on the neurobiology of depression are unknown. Nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) inhibition is anti-depressant in animals, and increasing cGMP with sildenafil is anxiogenic in rodents. Substantial cholinergic-nitrergic interaction exists in the brain, while sildenafil shows modulatory actions on cholinergic transmission. Depression is also associated with increased cholinergic drive. Here we report that sildenafil increases muscarinic acetylcholine receptor (mAChR) signaling in human neuroblastoma cells. We also show that fluoxetine (20 mg/kg/day x 7 days), as well as a combination of sildenafil (10 mg/kg/day x 7 days) plus the antimuscarinic atropine (1 mg/kg/day x 7 days) demonstrates significant, comparable antidepressant-like effects in the rat forced swim test (FST) and also reduces cortical beta-adrenergic receptor (beta-AR) density, while sildenafil or atropine alone did not. Importantly, sildenafil did not modify fluoxetine's response. Sildenafil thus demonstrates antidepressant-like effects but only after central muscarinic receptor blockade, providing evidence for cholinergic-nitrergic interactions in the neurobiology of depression.
Collapse
|
|
18 |
45 |
25
|
Brink CB, Harvey BH, Bodenstein J, Venter DP, Oliver DW. Recent advances in drug action and therapeutics: relevance of novel concepts in G-protein-coupled receptor and signal transduction pharmacology. Br J Clin Pharmacol 2004; 57:373-87. [PMID: 15025734 PMCID: PMC1884481 DOI: 10.1111/j.1365-2125.2003.02046.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Accepted: 11/03/2003] [Indexed: 12/23/2022] Open
Abstract
PROBLEM STATEMENT During especially the past two decades many discoveries in biological sciences, and in particular at the molecular and genetic level, have greatly impacted on our knowledge and understanding of drug action and have helped to develop new drugs and therapeutic strategies. Furthermore, many exciting new drugs acting via novel pharmacological mechanisms are expected to be in clinical use in the not too distant future. SCOPE AND CONTENTS OF REVIEW In this educational review, these concepts are explained and their relevance illustrated by examples of drugs used commonly in the clinical setting, with special reference to the pharmacology of G-protein-coupled receptors. The review also addresses the basic theoretical concepts of full and partial agonism, neutral antagonism, inverse agonism and protean and ligand-selective agonism, and the relevance of these concepts in current rational drug therapy. Moreover, the mechanisms whereby receptor signalling (and eventually response to drugs) is fine-tuned, such as receptor promiscuity, agonist-directed trafficking of receptor signalling, receptor trafficking, receptor 'cross-talk' and regulators of G-protein signalling (RGSs) are discussed, from theory to proposed therapeutic implications. CONCLUSIONS It is concluded that the understanding of molecular receptor and signal transduction pharmacology enables clinicians to improve their effective implementation of current and future pharmacotherapy, ultimately enhancing the quality of life of their patients.
Collapse
|
Review |
21 |
43 |