1
|
Theisen M, Roeffen W, Singh SK, Andersen G, Amoah L, van de Vegte-Bolmer M, Arens T, Tiendrebeogo RW, Jones S, Bousema T, Adu B, Dziegiel MH, Christiansen M, Sauerwein R. A multi-stage malaria vaccine candidate targeting both transmission and asexual parasite life-cycle stages. Vaccine 2014; 32:2623-30. [DOI: 10.1016/j.vaccine.2014.03.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 11/27/2022]
|
|
11 |
75 |
2
|
Tegally H, San JE, Cotten M, Moir M, Tegomoh B, Mboowa G, Martin DP, Baxter C, Lambisia AW, Diallo A, Amoako DG, Diagne MM, Sisay A, Zekri ARN, Gueye AS, Sangare AK, Ouedraogo AS, Sow A, Musa AO, Sesay AK, Abias AG, Elzagheid AI, Lagare A, Kemi AS, Abar AE, Johnson AA, Fowotade A, Oluwapelumi AO, Amuri AA, Juru A, Kandeil A, Mostafa A, Rebai A, Sayed A, Kazeem A, Balde A, Christoffels A, Trotter AJ, Campbell A, Keita AK, Kone A, Bouzid A, Souissi A, Agweyu A, Naguib A, Gutierrez AV, Nkeshimana A, Page AJ, Yadouleton A, Vinze A, Happi AN, Chouikha A, Iranzadeh A, Maharaj A, Batchi-Bouyou AL, Ismail A, Sylverken AA, Goba A, Femi A, Sijuwola AE, Marycelin B, Salako BL, Oderinde BS, Bolajoko B, Diarra B, Herring BL, Tsofa B, Lekana-Douki B, Mvula B, Njanpop-Lafourcade BM, Marondera BT, Khaireh BA, Kouriba B, Adu B, Pool B, McInnis B, Brook C, Williamson C, Nduwimana C, Anscombe C, Pratt CB, Scheepers C, Akoua-Koffi CG, Agoti CN, Mapanguy CM, Loucoubar C, Onwuamah CK, Ihekweazu C, Malaka CN, Peyrefitte C, Grace C, Omoruyi CE, Rafaï CD, Morang’a CM, Erameh C, Lule DB, Bridges DJ, Mukadi-Bamuleka D, Park D, Rasmussen DA, Baker D, Nokes DJ, Ssemwanga D, Tshiabuila D, Amuzu DSY, Goedhals D, Grant DS, Omuoyo DO, Maruapula D, Wanjohi DW, Foster-Nyarko E, Lusamaki EK, Simulundu E, Ong’era EM, Ngabana EN, Abworo EO, Otieno E, Shumba E, Barasa E, Ahmed EB, Ahmed EA, Lokilo E, Mukantwari E, Philomena E, Belarbi E, Simon-Loriere E, Anoh EA, Manuel E, Leendertz F, Taweh FM, Wasfi F, Abdelmoula F, Takawira FT, Derrar F, Ajogbasile FV, Treurnicht F, Onikepe F, Ntoumi F, Muyembe FM, Ragomzingba FEZ, Dratibi FA, Iyanu FA, Mbunsu GK, Thilliez G, Kay GL, Akpede GO, van Zyl GU, Awandare GA, Kpeli GS, Schubert G, Maphalala GP, Ranaivoson HC, Omunakwe HE, Onywera H, Abe H, Karray H, Nansumba H, Triki H, Kadjo HAA, Elgahzaly H, Gumbo H, Mathieu H, Kavunga-Membo H, Smeti I, Olawoye IB, Adetifa IMO, Odia I, Ben Boubaker IB, Mohammad IA, Ssewanyana I, Wurie I, Konstantinus IS, Halatoko JWA, Ayei J, Sonoo J, Makangara JCC, Tamfum JJM, Heraud JM, Shaffer JG, Giandhari J, Musyoki J, Nkurunziza J, Uwanibe JN, Bhiman JN, Yasuda J, Morais J, Kiconco J, Sandi JD, Huddleston J, Odoom JK, Morobe JM, Gyapong JO, Kayiwa JT, Okolie JC, Xavier JS, Gyamfi J, Wamala JF, Bonney JHK, Nyandwi J, Everatt J, Nakaseegu J, Ngoi JM, Namulondo J, Oguzie JU, Andeko JC, Lutwama JJ, Mogga JJH, O’Grady J, Siddle KJ, Victoir K, Adeyemi KT, Tumedi KA, Carvalho KS, Mohammed KS, Dellagi K, Musonda KG, Duedu KO, Fki-Berrajah L, Singh L, Kepler LM, Biscornet L, de Oliveira Martins L, Chabuka L, Olubayo L, Ojok LD, Deng LL, Ochola-Oyier LI, Tyers L, Mine M, Ramuth M, Mastouri M, ElHefnawi M, Mbanne M, Matsheka MI, Kebabonye M, Diop M, Momoh M, Lima Mendonça MDL, Venter M, Paye MF, Faye M, Nyaga MM, Mareka M, Damaris MM, Mburu MW, Mpina MG, Owusu M, Wiley MR, Tatfeng MY, Ayekaba MO, Abouelhoda M, Beloufa MA, Seadawy MG, Khalifa MK, Matobo MM, Kane M, Salou M, Mbulawa MB, Mwenda M, Allam M, Phan MVT, Abid N, Rujeni N, Abuzaid N, Ismael N, Elguindy N, Top NM, Dia N, Mabunda N, Hsiao NY, Silochi NB, Francisco NM, Saasa N, Bbosa N, Murunga N, Gumede N, Wolter N, Sitharam N, Ndodo N, Ajayi NA, Tordo N, Mbhele N, Razanajatovo NH, Iguosadolo N, Mba N, Kingsley OC, Sylvanus O, Femi O, Adewumi OM, Testimony O, Ogunsanya OA, Fakayode O, Ogah OE, Oludayo OE, Faye O, Smith-Lawrence P, Ondoa P, Combe P, Nabisubi P, Semanda P, Oluniyi PE, Arnaldo P, Quashie PK, Okokhere PO, Bejon P, Dussart P, Bester PA, Mbala PK, Kaleebu P, Abechi P, El-Shesheny R, Joseph R, Aziz RK, Essomba RG, Ayivor-Djanie R, Njouom R, Phillips RO, Gorman R, Kingsley RA, Neto Rodrigues RMDESA, Audu RA, Carr RAA, Gargouri S, Masmoudi S, Bootsma S, Sankhe S, Mohamed SI, Femi S, Mhalla S, Hosch S, Kassim SK, Metha S, Trabelsi S, Agwa SH, Mwangi SW, Doumbia S, Makiala-Mandanda S, Aryeetey S, Ahmed SS, Ahmed SM, Elhamoumi S, Moyo S, Lutucuta S, Gaseitsiwe S, Jalloh S, Andriamandimby SF, Oguntope S, Grayo S, Lekana-Douki S, Prosolek S, Ouangraoua S, van Wyk S, Schaffner SF, Kanyerezi S, Ahuka-Mundeke S, Rudder S, Pillay S, Nabadda S, Behillil S, Budiaki SL, van der Werf S, Mashe T, Mohale T, Le-Viet T, Velavan TP, Schindler T, Maponga TG, Bedford T, Anyaneji UJ, Chinedu U, Ramphal U, George UE, Enouf V, Nene V, Gorova V, Roshdy WH, Karim WA, Ampofo WK, Preiser W, Choga WT, Ahmed YA, Ramphal Y, Bediako Y, Naidoo Y, Butera Y, de Laurent ZR, Ouma AEO, von Gottberg A, Githinji G, Moeti M, Tomori O, Sabeti PC, Sall AA, Oyola SO, Tebeje YK, Tessema SK, de Oliveira T, Happi C, Lessells R, Nkengasong J, Wilkinson E. The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance. Science 2022; 378:eabq5358. [PMID: 36108049 PMCID: PMC9529057 DOI: 10.1126/science.abq5358] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022]
Abstract
Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century.
Collapse
|
research-article |
3 |
63 |
3
|
Adu B, Dodoo D, Adukpo S, Hedley PL, Arthur FKN, Gerds TA, Larsen SO, Christiansen M, Theisen M. Fc γ receptor IIIB (FcγRIIIB) polymorphisms are associated with clinical malaria in Ghanaian children. PLoS One 2012; 7:e46197. [PMID: 23049979 PMCID: PMC3458101 DOI: 10.1371/journal.pone.0046197] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/28/2012] [Indexed: 12/12/2022] Open
Abstract
Plasmodium falciparum malaria kills nearly a million people annually. Over 90% of these deaths occur in children under five years of age in sub-Saharan Africa. A neutrophil mediated mechanism, the antibody dependent respiratory burst (ADRB), was recently shown to correlate with protection from clinical malaria. Human neutrophils constitutively express Fc gamma receptor-FcγRIIA and FcγRIIIB by which they interact with immunoglobulin (Ig) G (IgG)-subclass antibodies. Polymorphisms in exon 4 of FCGR2A and exon 3 of FCGR3B genes encoding FcγRIIA and FcγRIIIB respectively have been described to alter the affinities of both receptors for IgG. Here, associations between specific polymorphisms, encoding FcγRIIA p.H166R and FcγRIIIB-NA1/NA2/SH variants with clinical malaria were investigated in a longitudinal malaria cohort study. FcγRIIA-p.166H/R was genotyped by gene specific polymerase chain reaction followed by allele specific restriction enzyme digestion. FCGR3B-exon 3 was sequenced in 585 children, aged 1 to 12 years living in a malaria endemic region of Ghana. Multivariate logistic regression analysis found no association between FcγRIIA-166H/R polymorphism and clinical malaria. The A-allele of FCGR3B-c.233C>A (rs5030738) was significantly associated with protection from clinical malaria under two out of three genetic models (additive: p=0.0061; recessive: p=0.097; dominant: p=0.0076) of inheritance. The FcγRIIIB-SH allotype (CTGAAA) containing the 233A-allele (in bold) was associated with protection from malaria (p=0.049). The FcγRIIIB-NA2*03 allotype (CTGCGA), a variant of the classical FcγRIIIB-NA2 (CTGCAA) was associated with susceptibility to clinical malaria (p=0.0092). The present study is the first to report an association between a variant of FcγRIIIB-NA2 and susceptibility to clinical malaria and provides justification for further functional characterization of variants of the classical FcγRIIIB allotypes. This would be crucial to the improvement of neutrophil mediated functional assays such as the ADRB assay aimed at assessing the functionality of antibodies induced by candidate malaria vaccines.
Collapse
|
research-article |
13 |
49 |
4
|
Ravens S, Fichtner AS, Willers M, Torkornoo D, Pirr S, Schöning J, Deseke M, Sandrock I, Bubke A, Wilharm A, Dodoo D, Egyir B, Flanagan KL, Steinbrück L, Dickinson P, Ghazal P, Adu B, Viemann D, Prinz I. Microbial exposure drives polyclonal expansion of innate γδ T cells immediately after birth. Proc Natl Acad Sci U S A 2020; 117:18649-18660. [PMID: 32690687 PMCID: PMC7414158 DOI: 10.1073/pnas.1922588117] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Starting at birth, the immune system of newborns and children encounters and is influenced by environmental challenges. It is still not completely understood how γδ T cells emerge and adapt during early life. Studying the composition of T cell receptors (TCRs) using next-generation sequencing (NGS) in neonates, infants, and children can provide valuable insights into the adaptation of T cell subsets. To investigate how neonatal γδ T cell repertoires are shaped by microbial exposure after birth, we monitored the γ-chain (TRG) and δ-chain (TRD) repertoires of peripheral blood T cells in newborns, infants, and young children from Europe and sub-Saharan Africa. We identified a set of TRG and TRD sequences that were shared by all children from Europe and Africa. These were primarily public clones, characterized by simple rearrangements of Vγ9 and Vδ2 chains with low junctional diversity and usage of non-TRDJ1 gene segments, reminiscent of early ontogenetic subsets of γδ T cells. Further profiling revealed that these innate, public Vγ9Vδ2+ T cells underwent an immediate TCR-driven polyclonal proliferation within the first 4 wk of life. In contrast, γδ T cells using Vδ1+ and Vδ3+TRD rearrangements did not significantly expand after birth. However, different environmental cues may lead to the observed increase of Vδ1+ and Vδ3+TRD sequences in the majority of African children. In summary, we show how dynamic γδ TCR repertoires develop directly after birth and present important differences among γδ T cell subsets.
Collapse
MESH Headings
- Africa South of the Sahara
- Bacteria/immunology
- Child
- Child, Preschool
- Europe
- Gene Rearrangement, T-Lymphocyte/genetics
- Gene Rearrangement, T-Lymphocyte/immunology
- Humans
- Infant
- Infant, Newborn
- Longitudinal Studies
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocyte Subsets/immunology
Collapse
|
research-article |
5 |
48 |
5
|
Tiendrebeogo RW, Adu B, Singh SK, Dziegiel MH, Nébié I, Sirima SB, Christiansen M, Dodoo D, Theisen M. Antibody-Dependent Cellular Inhibition Is Associated With Reduced Risk Against Febrile Malaria in a Longitudinal Cohort Study Involving Ghanaian Children. Open Forum Infect Dis 2015; 2:ofv044. [PMID: 26380342 PMCID: PMC4567085 DOI: 10.1093/ofid/ofv044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/30/2015] [Indexed: 11/13/2022] Open
Abstract
The antibody-dependent respiratory burst and opsonic phagocytosis assays have been associated with protection against malaria; however, other mechanisms may also be involved. The antibody-dependent cellular inhibition (ADCI) assay is yet to be correlated with protection in longitudinal cohort studies (LCS). We investigated the relationship between ADCI activity of immunoglobulin G before malaria season and risk of malaria in a LCS involving Ghanaian children. High ADCI activity was significantly associated with reduced risk against malaria. Findings here suggest a potential usefulness of the ADCI assay as a correlate of protection to guide malaria vaccine studies.
Collapse
|
Journal Article |
10 |
35 |
6
|
Lamptey H, Ofori MF, Kusi KA, Adu B, Owusu-Yeboa E, Kyei-Baafour E, Arku AT, Bosomprah S, Alifrangis M, Quakyi IA. The prevalence of submicroscopic Plasmodium falciparum gametocyte carriage and multiplicity of infection in children, pregnant women and adults in a low malaria transmission area in Southern Ghana. Malar J 2018; 17:331. [PMID: 30223841 PMCID: PMC6142636 DOI: 10.1186/s12936-018-2479-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The gametocyte stage of Plasmodium falciparum is considered an important target for disrupting malaria transmission. Indications are that various demographic groups, such as children and pregnant women may differ in risk of harbouring gametocytes, which may be crucial for targeted control. In this study, the relationship between the prevalence and multiplicity of P. falciparum, asexual parasite infections and gametocytaemia was assessed in three different demographic groups in an area of southern Ghana with low malaria endemicity. Levels of antibody responses to Pfs230 were also assessed as a proxy for the presence of gametocytes. METHODS The study involved multiple cross-sectional sampling of children (N = 184, aged 2-15 years), male and non-pregnant female adults (N = 154, aged 16-65 years) and pregnant women (N = 125, aged 18-45 years) from Asutsuare in the Shai Osudoku District of Greater Accra Region in Ghana. Asexual parasitaemia was detected by microscopy and PCR, and gametocytaemia was assessed by Pfs25-real time PCR. Multiclonal P. falciparum infections were estimated by msp2 genotyping and an indirect ELISA was used to measure plasma IgG antibodies to Pfs230 antigen. RESULTS Overall, children and pregnant women had higher prevalence of submicroscopic gametocytes (39.5% and 29.7%, respectively) compared to adults (17.4%). Multiplicity of infection observed amongst children (3.1) and pregnant women (3.9) were found to be significantly higher (P = 0.006) compared with adults (2.7). Risk of gametocyte carriage was higher in individuals infected with P. falciparum having both Pfmsp2 3D7 and FC27 parasite types (OR = 5.92, 95% CI 1.56-22.54, P = 0.009) compared with those infected with only 3D7 or FC27 parasite types. In agreement with the parasite prevalence data, anti-Pfs230 antibody levels were lower in gametocyte positive adults (β = - 0.57, 95% CI - 0.81, - 0.34, P < 0.001) compared to children. CONCLUSIONS These findings suggest that children and pregnant women are particularly important as P. falciparum submicroscopic gametocyte reservoirs and represent important focus groups for control interventions. The number of clones increased in individuals carrying gametocytes compared to those who did not carry gametocytes. The higher anti-gametocyte antibody levels in children suggests recent exposure and may be a marker of gametocyte carriage.
Collapse
|
research-article |
7 |
33 |
7
|
Theisen M, Adu B, Mordmüller B, Singh S. The GMZ2 malaria vaccine: from concept to efficacy in humans. Expert Rev Vaccines 2017; 16:907-917. [PMID: 28699823 DOI: 10.1080/14760584.2017.1355246] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION GMZ2 is a recombinant protein consisting of conserved domains of GLURP and MSP3, two asexual blood-stage antigens of Plasmodium falciparum, and is designed with the aim of mimicking naturally acquired anti-malarial immunity. The rationale for combining these two antigens is based on a series of immune epidemiological studies from geographically diverse malaria endemic regions; functional in vitro studies; and pre-clinical studies in rodents and New World monkeys. GMZ2 adjuvanted with alhydrogel® (alum) was well tolerated and immunogenic in three phase 1 studies. The recently concluded phase 2 trial of GMZ2/alum, involving 1849 participants 12 to 60 month of age in four countries in West, Central and Eastern Africa, showed that GMZ2 is well tolerated and has some, albeit modest, efficacy in the target population. Areas covered: PubMed ( www.ncbi.nlm.nih.gov/pubmed ) was searched to review the progress and future prospects for clinical development of GMZ2 sub-unit vaccine. We will focus on discovery, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production, pre-clinical and clinical studies. Expert commentary: GMZ2 is well tolerated and has some, albeit modest, efficacy in the target population. More immunogenic formulations should be developed.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
29 |
8
|
Frimpong A, Amponsah J, Adjokatseh AS, Agyemang D, Bentum-Ennin L, Ofori EA, Kyei-Baafour E, Akyea-Mensah K, Adu B, Mensah GI, Amoah LE, Kusi KA. Asymptomatic Malaria Infection Is Maintained by a Balanced Pro- and Anti-inflammatory Response. Front Microbiol 2020; 11:559255. [PMID: 33281757 PMCID: PMC7705202 DOI: 10.3389/fmicb.2020.559255] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/19/2020] [Indexed: 01/12/2023] Open
Abstract
Background Pro- and anti-inflammatory cytokines are important mediators of immunity and are associated with malaria disease outcomes. However, their role in the establishment of asymptomatic infections, which may precede the development of clinical symptoms, is not as well-understood. Methods We determined the association of pro and anti-inflammatory cytokines and other immune effector molecules with the development of asymptomatic malaria. We measured and compared the plasma levels of pro-inflammatory mediators including tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin (IL)-6, IL-12p70, IL-17A, and granzyme B, the anti-inflammatory cytokine IL-4 and the regulatory cytokine IL-10 from children with asymptomatic malaria infections (either microscopic or submicroscopic) and uninfected controls using Luminex. Results We show that individuals with microscopic asymptomatic malaria had significantly increased levels of TNF-α and IL-6 compared to uninfected controls. Children with either microscopic or submicroscopic asymptomatic malaria exhibited higher levels of IFN-γ, IL-17A, and IL-4 compared to uninfected controls. The levels of most of the pro and anti-inflammatory cytokines were comparable between children with microscopic and submicroscopic infections. The ratio of IFN-γ/IL-10, TNF-α/IL-10, IL-6/IL-10 as well as IFN-γ/IL-4 and IL-6/IL-4 did not differ significantly between the groups. Additionally, using a principal component analysis, the cytokines measured could not distinguish amongst the three study populations. This may imply that neither microscopic nor submicroscopic asymptomatic infections were polarized toward a pro-inflammatory or anti-inflammatory response. Conclusion The data show that asymptomatic malaria infections result in increased plasma levels of both pro and anti-inflammatory cytokines relative to uninfected persons. The balance between pro- and anti-inflammatory cytokines are, however, largely maintained and this may in part, explain the lack of clinical symptoms. This is consistent with the generally accepted observation that clinical symptoms develop as a result of immunopathology involving dysregulation of inflammatory mediator balance in favor of pro-inflammatory mediators.
Collapse
|
Journal Article |
5 |
29 |
9
|
Kana IH, Garcia-Senosiain A, Singh SK, Tiendrebeogo RW, Chourasia BK, Malhotra P, Sharma SK, Das MK, Singh S, Adu B, Theisen M. Cytophilic Antibodies Against Key Plasmodium falciparum Blood Stage Antigens Contribute to Protection Against Clinical Malaria in a High Transmission Region of Eastern India. J Infect Dis 2019; 218:956-965. [PMID: 29733355 DOI: 10.1093/infdis/jiy258] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
Background The collection of clinical data from a tribal population in a malaria-endemic area of India suggests the occurrence of naturally acquired immunity (NAI) against Plasmodium falciparum malaria. Methods Quantity and functionality of immunoglobulin G (IgG) antibodies against intact merozoites and recombinant proteins were assessed in a 13-month longitudinal cohort study of 121 individuals, 3-60 years of age. Results Opsonic phagocytosis of merozoites activity was strongly associated (hazard ratio [HR] = 0.34; 95% confidence interval [CI] = .18-.66; P = .0013) with protection against febrile malaria. Of the different IgG subclasses, only IgG3 antibodies against intact whole merozoites was significantly associated with protection against febrile malaria (HR = 0.47; 95% CI = .26-.86; P = .01). Furthermore, a combination of IgG3 antibody responses against Pf12, MSP3.7, MSP3.3, and MSP2FC27 was strongly associated with protection against febrile malaria (HR = 0.15; 95% CI, .06-.37; P = .0001). Conclusions These data suggest that NAI may, at least in part, be explained by opsonic phagocytosis of merozoites and IgG3 responses against whole merozoites, and in particular to a combination of 4 antigens is critical in this population. These results may have implications in the development of a subunit malaria vaccine. Opsonic phagocytosis of Plasmodium falciparum merozoites was associated with protection against clinical malaria in an India population. Antibody profiling identified four merozoite antigens (Pf12, MSP3.7, MSP3.3, and MSP2) as targets of protective Immunoglobuline G3 antibodies.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
29 |
10
|
Adu B, Cherif MK, Bosomprah S, Diarra A, Arthur FKN, Dickson EK, Corradin G, Cavanagh DR, Theisen M, Sirima SB, Nebie I, Dodoo D. Antibody levels against GLURP R2, MSP1 block 2 hybrid and AS202.11 and the risk of malaria in children living in hyperendemic (Burkina Faso) and hypo-endemic (Ghana) areas. Malar J 2016; 15:123. [PMID: 26921176 PMCID: PMC4769494 DOI: 10.1186/s12936-016-1146-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/04/2016] [Indexed: 12/31/2022] Open
Abstract
Background
Differences in parasite transmission intensity influence the process of acquisition of host immunity to Plasmodium falciparum malaria and ultimately, the rate of malaria related morbidity and mortality. Potential vaccines being designed to complement current intervention efforts therefore need to be evaluated against different malaria endemicity backgrounds. Methods The associations between antibody responses to the chimeric merozoite surface protein 1 block 2 hybrid (MSP1 hybrid), glutamate-rich protein region 2 (GLURP R2) and the peptide AS202.11, and the risk of malaria were assessed in children living in malaria hyperendemic (Burkina Faso, n = 354) and hypo-endemic (Ghana, n = 209) areas. Using the same reagent lots and standardized protocols for both study sites, immunoglobulin (Ig) M, IgG and IgG sub-class levels to each antigen were measured by ELISA in plasma from the children (aged 6–72 months). Associations between antibody levels and risk of malaria were assessed using Cox regression models adjusting for covariates. Results There was a significant association between GLURP R2 IgG3 and reduced risk of malaria after adjusting age of children in both the Burkinabe (hazard ratio 0.82; 95 % CI 0.74–0.91, p < 0.0001) and the Ghanaian (HR 0.48; 95 % CI 0.25–0.91, p = 0.02) cohorts. MSP1 hybrid IgM was associated (HR 0.85; 95 % CI 0.73–0.98, p = 0.02) with reduced risk of malaria in Burkina Faso cohort while IgG against AS202.11 in the Ghanaian children was associated with increased risk of malaria (HR 1.29; 95 % CI 1.01–1.65, p = 0.04). Conclusion These findings support further development of GLURP R2 and MSP1 block 2 hybrid, perhaps as a fusion vaccine antigen targeting malaria blood stage that can be deployed in areas of varying transmission intensity. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1146-4) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
27 |
11
|
Kana IH, Adu B, Tiendrebeogo RW, Singh SK, Dodoo D, Theisen M. Naturally Acquired Antibodies Target the Glutamate-Rich Protein on Intact Merozoites and Predict Protection Against Febrile Malaria. J Infect Dis 2017; 215:623-630. [PMID: 28329101 DOI: 10.1093/infdis/jiw617] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/05/2017] [Indexed: 11/14/2022] Open
Abstract
Background Plasmodium species antigens accessible at the time of merozoite release are likely targets of biologically functional antibodies. Methods Immunoglobulin G (IgG) antibodies against intact merozoites were quantified in the plasma of Ghanaian children from a longitudinal cohort using a novel flow cytometry-based immunofluorescence assay. Functionality of these antibodies, as well as glutamate-rich protein (GLURP)-specific affinity-purified IgG from malaria hyperimmune Liberian adults, was assessed by the opsonic phagocytosis (OP) assay. Results Opsonic phagocytosis activity was strongly associated (hazard ratio [HR] = 0.46; 95% confidence interval [CI] = .30-.73; P = .0008) with protection against febrile malaria. Of the antimerozoite-specific antibodies, only IgG3 was significantly associated with both OP and protection (HR = 0.53; 95% CI = .34-.84; Pcorrected = .03) against febrile malaria. Similarly, GLURP-specific antibodies previously shown to be protective against febrile malaria in this same cohort were significantly associated with OP activity in this study. GLURP-specific antibodies recognized merozoites and also mediated OP activity. Conclusions These findings support previous studies that found OP of merozoites to be associated with protection against malaria and further shows IgG3 and GLURP antibodies are key in the OP mechanism, thus giving further impetus for the development of malaria vaccines targeting GLURP.
Collapse
|
Journal Article |
8 |
27 |
12
|
Adu B, Jepsen MPG, Gerds TA, Kyei-Baafour E, Christiansen M, Dodoo D, Theisen M. Fc gamma receptor 3B (FCGR3B-c.233C>A-rs5030738) polymorphism modifies the protective effect of malaria specific antibodies in Ghanaian children. J Infect Dis 2013; 209:285-9. [PMID: 23935200 DOI: 10.1093/infdis/jit422] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Immunoglobulin G (IgG) cross-linking with Fc gamma receptor IIIB (FcγRIIIB) triggers neutrophil degranulation, releasing reactive oxygen species with high levels associated with protection against malaria. The FCGR3B-c.233C>A polymorphism thought to influence the interaction between IgG and FcγRIIIB was recently associated with malaria. We studied the statistical interaction between glutamate rich protein antibodies and FCGR3B-c.233C>A genotypes on risk of malaria in a cohort of Ghanaian children. The absolute risk of malaria decreased more rapidly with increasing antibody levels for 233AA/AC individuals compared with 233CC children. This genotype related effect modification may significantly influence malaria sero-epidemiological and vaccine trial studies.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
25 |
13
|
Singh SK, Plieskatt J, Chourasia BK, Singh V, Bolscher JM, Dechering KJ, Adu B, López-Méndez B, Kaviraj S, Locke E, King CR, Theisen M. The Plasmodium falciparum circumsporozoite protein produced in Lactococcus lactis is pure and stable. J Biol Chem 2019; 295:403-414. [PMID: 31792057 DOI: 10.1074/jbc.ra119.011268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/03/2019] [Indexed: 12/20/2022] Open
Abstract
The Plasmodium falciparum circumsporozoite protein (PfCSP) is a sporozoite surface protein whose role in sporozoite motility and cell invasion has made it the leading candidate for a pre-erythrocytic malaria vaccine. However, production of high yields of soluble recombinant PfCSP, including its extensive NANP and NVDP repeats, has proven problematic. Here, we report on the development and characterization of a secreted, soluble, and stable full-length PfCSP (containing 4 NVDP and 38 NANP repeats) produced in the Lactococcus lactis expression system. The recombinant full-length PfCSP, denoted PfCSP4/38, was produced initially with a histidine tag and purified by a simple two-step procedure. Importantly, the recombinant PfCSP4/38 retained a conformational epitope for antibodies as confirmed by both in vivo and in vitro characterizations. We characterized this complex protein by HPLC, light scattering, MS analysis, differential scanning fluorimetry, CD, SDS-PAGE, and immunoblotting with conformation-dependent and -independent mAbs, which confirmed it to be both pure and soluble. Moreover, we found that the recombinant protein is stable at both frozen and elevated-temperature storage conditions. When we used L. lactis-derived PfCSP4/38 to immunize mice, it elicited high levels of functional antibodies that had the capacity to modify sporozoite motility in vitro We concluded that the reported yield, purity, results of biophysical analyses, and stability of PfCSP4/38 warrant further consideration of using the L. lactis system for the production of circumsporozoite proteins for preclinical and clinical applications in malaria vaccine development.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
18 |
14
|
Adu B, Dodoo D, Adukpo S, Gyan BA, Hedley PL, Goka B, Adjei GO, Larsen SO, Christiansen M, Theisen M. Polymorphisms in the RNASE3 gene are associated with susceptibility to cerebral malaria in Ghanaian children. PLoS One 2011; 6:e29465. [PMID: 22216286 PMCID: PMC3246477 DOI: 10.1371/journal.pone.0029465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/29/2011] [Indexed: 12/24/2022] Open
Abstract
Background Cerebral malaria (CM) is the most severe outcome of Plasmodium falciparum infection and a major cause of death in children from 2 to 4 years of age. A hospital based study in Ghana showed that P. falciparum induces eosinophilia and found a significantly higher serum level of eosinophil cationic protein (ECP) in CM patients than in uncomplicated malaria (UM) and severe malaria anemia (SA) patients. Single nucleotide polymorphisms (SNPs) have been described in the ECP encoding-gene (RNASE3) of which the c.371G>C polymorphism (rs2073342) results in an arginine to threonine amino acid substitution p.R124T in the polypeptide and abolishes the cytotoxicity of ECP. The present study aimed to investigate the potential association between polymorphisms in RNASE3 and CM. Methodology/Principal Findings The RNASE3 gene and flanking regions were sequenced in 206 Ghanaian children enrolled in a hospital based malaria study. An association study was carried out to assess the significance of five SNPs in CM (n = 45) and SA (n = 56) cases, respectively. The two severe case groups (CM and SA) were compared with the non-severe control group comprising children suffering from UM (n = 105). The 371G allele was significantly associated with CM (p = 0.00945, OR = 2.29, 95% CI = 1.22–4.32) but not with SA. Linkage disequilibrium analysis demonstrated significant linkage between three SNPs and the haplotype combination 371G/*16G/*94A was strongly associated with susceptibility to CM (p = 0.000913, OR = 4.14, 95% CI = 1.79–9.56), thus, defining a risk haplotype. The RNASE3 371GG genotype was found to be under frequency-dependent selection. Conclusions/Significance The 371G allele of RNASE3 is associated with susceptibility to CM and forms part of a risk associated haplotype GGA defined by the markers: rs2073342 (G-allele), rs2233860 (G-allele) and rs8019343 (A-allele) respectively. Collectively, these results suggest a hitherto unrecognized role for eosinophils in CM pathogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
16 |
15
|
Kana IH, Singh SK, Garcia-Senosiain A, Dodoo D, Singh S, Adu B, Theisen M. Breadth of Functional Antibodies Is Associated With Plasmodium falciparum Merozoite Phagocytosis and Protection Against Febrile Malaria. J Infect Dis 2020; 220:275-284. [PMID: 30820557 DOI: 10.1093/infdis/jiz088] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/26/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The specific targets of functional antibodies against Plasmodium falciparum merozoites remain largely unexplored and, more importantly, their relevance to naturally acquired immunity in longitudinal cohort studies (LCSs) is yet to be tested. METHODS Functionality of immunoglobulin G (IgG) antibodies against 24 merozoite antigens was determined at the baseline of an LCS in Ghana using a bead-based opsonic phagocytosis assay (BPA). Antigen-specific IgG3 subclass antibodies were quantified in the same samples by the Luminex multiplex system. RESULTS A wide range of BPA activity was observed across the different antigens. High BPA responses of nMSP3K1, GLURP-R2, MSP23D7, MSP119k, and PfRh2-2030 coupled beads were significantly associated with a higher probability of children not experiencing febrile malaria. Children with high breadth of functional antibodies against these antigens together with cMSP33D7 had a significantly reduced risk of febrile malaria (adjusted hazard ratio, 0.36 [95% confidence interval, .18-.72]; P = .004). Five of the 6 BPA activities significantly (likelihood ratio rest, P ≤ .05) contributed to the protective immunity observed with the IgG3 antibodies. CONCLUSIONS The development of BPA allowed profiling of functional antibodies in an LCS. Identification of targets of opsonic phagocytosis may have implications in the development of a subunit malaria vaccine.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
16 |
16
|
Nlinwe ON, Kusi KA, Adu B, Sedegah M. T-cell responses against Malaria: Effect of parasite antigen diversity and relevance for vaccine development. Vaccine 2018; 36:2237-2242. [PMID: 29573877 DOI: 10.1016/j.vaccine.2018.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 01/21/2018] [Accepted: 03/07/2018] [Indexed: 11/24/2022]
Abstract
The on-going agenda for global malaria elimination will require the development of additional disease control and prevention measures since currently available tools are showing signs of inadequacy. Malaria vaccines are seen as one such important addition to the control arsenal since vaccines have proven to be highly effective public health tools against important human diseases. Both cell-mediated and antibody responses are generally believed to be important for malaria parasite control, although the exact targets of T and B cell responses against malaria have not been clearly defined. However, our current understanding of the immune response to malaria suggests that T cell responses against multiple antigenic targets may potentially be key for the development of a highly efficacious malaria vaccine. This review takes a comprehensive look at the available literature on T cell-mediated immunity against all human stages of the malaria parasite and the effect of antigen diversity on these responses. The implications of these interrelationships for the development of an effective vaccine for malaria are also highlighted.
Collapse
|
Review |
7 |
15 |
17
|
Das MK, Prajapati BK, Tiendrebeogo RW, Ranjan K, Adu B, Srivastava A, Khera HK, Chauhan N, Tevatiya S, Kana IH, Sharma SK, Singh S, Theisen M. Malaria epidemiology in an area of stable transmission in tribal population of Jharkhand, India. Malar J 2017; 16:181. [PMID: 28464875 PMCID: PMC5414148 DOI: 10.1186/s12936-017-1833-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/23/2017] [Indexed: 11/10/2022] Open
Abstract
Background Malaria remains an important health problem in India with approximately 1 million cases in 2014. Of these, 7% occurred in the Jharkhand state mainly in the tribal population. Methods This study was conducted in Dumargarhi, a tribal village about 42 km east of Ranchi city, Jharkhand, from May 2014 to September 2016. Four point prevalence surveys were carried out during consecutive high (October–December) and low (June–August) transmission seasons. Malaria cases were recorded from April 2015 to April 2016 through fortnightly visits to the village. Adult mosquito densities were monitored fortnightly by manual catching using suction tube method. Results The study area consists of five hamlets inhabited by 945 individuals living in 164 households as recorded through a house-to-house census survey performed at enrollment. The study population consisted predominantly of the Munda (n = 425, 45%) and Oraon (n = 217, 23%) ethnic groups. Study participants were categorized as per their age 0–5, 6–10, 11–15 and >15 years. There were 99 cases of clinical malaria from April 2015 to April 2016 and all malaria cases confirmed by microscopy were attributed to Plasmodium falciparum (94 cases) and Plasmodium vivax (5 cases), respectively. During the high transmission season the mean density of P. falciparum parasitaemia per age group increased to a peak level of 23,601 parasites/μl in the 6–10 years age group and gradually declined in the adult population. Malaria attack rates, parasite prevalence and density levels in the study population showed a gradual decrease with increasing age. This finding is consistent with the phenomenon of naturally acquired immunity against malaria. Three vector species were detected: Anopheles fluviatilis, Anopheles annularis, and Anopheles culicifacies. The incoherence or complete out of phase pattern of the vector density peaks together with a high prevalence of parasite positive individuals in the study population explains the year-round malaria transmission in the study region. Conclusions The collection of clinical data from a well-characterized tribal cohort from Jharkhand, India, has provided evidence for naturally acquired immunity against malaria in this hyperendemic region. The study also suggests that enforcement of existing control programmes can reduce the malaria burden further.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
14 |
18
|
Ngoi JM, Quashie PK, Morang'a CM, Bonney JHK, Amuzu DSY, Kumordjie S, Asante IA, Bonney EY, Eshun M, Boatemaa L, Magnusen V, Kotey EN, Ndam NT, Tei-Maya F, Arjarquah AK, Obodai E, Otchere ID, Bediako Y, Mutungi JK, Amenga-Etego LN, Odoom JK, Anang AK, Kyei GB, Adu B, Ampofo WK, Awandare GA. Genomic analysis of SARS-CoV-2 reveals local viral evolution in Ghana. Exp Biol Med (Maywood) 2021; 246:960-970. [PMID: 33325750 PMCID: PMC7746953 DOI: 10.1177/1535370220975351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 10/31/2020] [Indexed: 12/21/2022] Open
Abstract
The confirmed case fatality rate for the coronavirus disease 2019 (COVID-19) in Ghana has dropped from a peak of 2% in March to be consistently below 1% since May 2020. Globally, case fatality rates have been linked to the strains/clades of circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within a specific country. Here we present 46 whole genomes of SARS-CoV-2 circulating in Ghana, from two separate sequencing batches: 15 isolates from the early epidemic (March 12-April 1 2020) and 31 from later time-points ( 25-27 May 2020). Sequencing was carried out on an Illumina MiSeq system following an amplicon-based enrichment for SARS-CoV-2 cDNA. After genome assembly and quality control processes, phylogenetic analysis showed that the first batch of 15 genomes clustered into five clades: 19A, 19B, 20A, 20B, and 20C, whereas the second batch of 31 genomes clustered to only three clades 19B, 20A, and 20B. The imported cases (6/46) mapped to circulating viruses in their countries of origin, namely, India, Hungary, Norway, the United Kingdom, and the United States of America. All genomes mapped to the original Wuhan strain with high similarity (99.5-99.8%). All imported strains mapped to the European superclade A, whereas 5/9 locally infected individuals harbored the B4 clade, from the East Asian superclade B. Ghana appears to have 19B and 20B as the two largest circulating clades based on our sequence analyses. In line with global reports, the D614G linked viruses seem to be predominating. Comparison of Ghanaian SARS-CoV-2 genomes with global genomes indicates that Ghanaian strains have not diverged significantly from circulating strains commonly imported into Africa. The low level of diversity in our genomes may indicate lower levels of transmission, even for D614G viruses, which is consistent with the relatively low levels of infection reported in Ghana.
Collapse
|
research-article |
4 |
12 |
19
|
Dassah S, Adu B, Sirima SB, Mordmüller B, Ngoa UA, Atuguba F, Arthur FKN, Mensah BA, Kaddumukasa M, Bang P, Kremsner PG, Mategula D, Flach C, Milligan P, Theisen M. Extended follow-up of children in a phase2b trial of the GMZ2 malaria vaccine. Vaccine 2021; 39:4314-4319. [PMID: 34175127 DOI: 10.1016/j.vaccine.2021.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The GMZ2/alum candidate malaria vaccine had an efficacy of 14% (95% confidence interval [CI]: 3.6%, 23%) against clinical malaria over 6 months of follow-up in a phase2b multicentre trial in children 1-5 years of age. Here we report the extended follow up of safety and efficacy over 2 years. METHODS A total of 1849 (GMZ2 = 926, rabies = 923) children aged 12-60 months were randomized to receive intramuscularly, either 3 doses of 100 μg GMZ2/alum or 3 doses of rabies vaccine as control 28 days apart. The children were followed-up for 24 months for clinical malaria episodes and adverse events. The primary endpoint was documented fever with parasitaemia of at least 5000/μL. RESULTS There were 2,062 malaria episodes in the GMZ2/alum group and 2,115 in the rabies vaccine group in the intention-to-treat analysis, vaccine efficacy (VE) of 6.5% (95%: CI -1.6%, 14.0%). In children aged 1-2 years at enrolment, VE was 3.6% (95 %CI: -9.1%, 14.8%) in the first year and -4.1% (95 %CI: -18.7%, 87%) in the second year. In children aged 3-5 years at enrolment VE was 19.9% (95 %CI: 7.7%, 30.4%) in the first year and 6.3% (95 %CI: -10.2%, 20.3%) in the second year (interaction by year, P = 0.025, and by age group, P = 0.085). A total of 187 (GMZ2 = 91, rabies = 96) serious adverse events were recorded in 167 individuals over the entire period of the study. There were no GMZ2 vaccine related serious adverse events. CONCLUSIONS GMZ2/alum was well tolerated. Follow-up over 2 years confirmed a low level of vaccine efficacy with slightly higher efficacy in older children, which suggests GMZ2 may act in concert with naturally acquired immunity.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
11 |
20
|
Mama A, Ahiabor C, Tornyigah B, Frempong NA, Kusi KA, Adu B, Courtin D, Houzé S, Deloron P, Ofori MF, Anang AK, Ariey F, Ndam NT. Intermittent preventive treatment in pregnancy with sulfadoxine–pyrimethamine and parasite resistance: cross-sectional surveys from antenatal care visit and delivery in rural Ghana. Malar J 2022; 21:107. [PMID: 35346205 PMCID: PMC8962208 DOI: 10.1186/s12936-022-04124-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/13/2022] [Indexed: 11/28/2022] Open
Abstract
Background Despite decades of prevention efforts, the burden of malaria in pregnancy (MiP) remains a great public health concern. Sulfadoxine-pyrimethamine (SP), used as intermittent preventive treatment in pregnancy (IPTp-SP) is an important component of the malaria prevention strategy implemented in Africa. However, IPTp-SP is under constant threat from parasite resistance, thus requires regular evaluation to inform decision-making bodies. Methods In two malaria endemic communities in the Volta region (Adidome and Battor), a cross-sectional hospital-based study was conducted in pregnant women recruited at their first antenatal care (ANC) visit and at delivery. Basic clinical and demographic information were documented and their antenatal records were reviewed to confirm IPTp-SP adherence. Peripheral and placental blood were assayed for the presence of Plasmodium falciparum parasites by quantitative polymerase chain reaction (qPCR). One hundred and twenty (120) positive samples were genotyped for mutations associated with SP resistance. Results At first ANC visit, P. falciparum prevalence was 28.8% in Adidome and 18.2% in Battor. At delivery, this decreased to 14.2% and 8.2%, respectively. At delivery, 66.2% of the women had taken at least the recommended 3 or more doses of IPTp-SP and there was no difference between the two communities. Taking at least 3 IPTp-SP doses was associated with an average birth weight increase of more than 360 g at both study sites compared to women who did not take treatment (p = 0.003). The Pfdhfr/Pfdhps quintuple mutant IRNI-A/FGKAA was the most prevalent (46.7%) haplotype found and the nonsynonymous Pfdhps mutation at codon A581G was higher at delivery among post-SP treatment isolates (40.6%) compared to those of first ANC (10.22%). There was also an increase in the A581G mutation in isolates from women who took 3 or more IPTp-SP. Conclusions This study confirms a positive impact following the implementation of the new IPTp-SP policy in Ghana in increasing the birth weight of newborns. However, the selection pressure exerted by the recommended 3 or more doses of IPTp-SP results in the emergence of parasites carrying the non-synonymous mutation on codon A581G. This constant selective pressure calls into question the time remaining for the clinical utility of IPTp-SP treatment during pregnancy in Africa.
Collapse
|
|
3 |
10 |
21
|
Dwomoh D, Iddi S, Adu B, Aheto JM, Sedzro KM, Fobil J, Bosomprah S. Mathematical modeling of COVID-19 infection dynamics in Ghana: Impact evaluation of integrated government and individual level interventions. Infect Dis Model 2021; 6:381-397. [PMID: 33521403 PMCID: PMC7826007 DOI: 10.1016/j.idm.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/04/2021] [Accepted: 01/17/2021] [Indexed: 12/21/2022] Open
Abstract
The raging COVID-19 pandemic is arguably the most important threat to global health presently. Although there Although there is currently a a a vaccine, preventive measures have been proposed to reduce the spread of infection but the efficacy of these interventions, and their likely impact on the number of COVID-19 infections is unknown. In this study, we proposed the SEIQHRS model (susceptible-exposed-infectious-quarantine-hospitalized-recovered-susceptible) model that predicts the trajectory of the epidemic to help plan an effective control strategy for COVID-19 in Ghana. We provided a short-term forecast of the early phase of the epidemic trajectory in Ghana using the generalized growth model. We estimated the effective basic Reproductive number Re in real-time using three different estimation procedures and simulated worse case epidemic scenarios and the impact of integrated individual and government interventions on the epidemic in the long term using compartmental models. The maximum likelihood estimates of Re and the corresponding 95% confidence interval was 2.04 [95% CI: 1.82-2.27; 12th March-7th April 2020]. The Re estimate using the exponential growth method was 2.11 [95% CI: 2.00-2.24] within the same period. The Re estimate using time-dependent (TD) method showed a gradual decline of the Effective Reproductive Number since March 12, 2020 when the first 2 index cases were recorded but the rate of transmission remains high (TD: Re = 2.52; 95% CI: [1.87-3.49]). The current estimate of Re based on the TD method is 1.74 [95% CI: 1.41-2.10; (13th May 2020)] but with comprehensive integrated government and individual level interventions, the Re could reduce to 0.5 which is an indication of the epidemic dying out in the general population. Our results showed that enhanced government and individual-level interventions and the intensity of media coverage could have a substantial effect on suppressing transmission of new COVID-19 cases and reduced death rates in Ghana until such a time that a potent vaccine or drug is discovered.
Collapse
|
research-article |
4 |
9 |
22
|
Tchum SK, Arthur FK, Adu B, Sakyi SA, Abubakar LA, Atibilla D, Amenga-Etego S, Oppong FB, Dzabeng F, Amoani B, Gyan T, Arhin E, Poku-Asante K. Impact of iron fortification on anaemia and iron deficiency among pre-school children living in Rural Ghana. PLoS One 2021; 16:e0246362. [PMID: 33571267 PMCID: PMC7877575 DOI: 10.1371/journal.pone.0246362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Anaemia in young sub-Saharan African children may be due to the double burden of malaria and iron deficiency. Primary analysis of a double-blind, cluster randomized trial of iron containing micronutrient powder supplementation in Ghanaian children aged 6 to 35 months found no difference in malaria risk between intervention and placebo groups. Here, we performed a secondary analysis of the trial data to assess the impact of long-term prophylactic iron fortificant on the risk of iron deficiency and anaemia in trial subjects. This population-based randomized-cluster trial involved 1958 children aged between 6 to 35 months, identified at home and able to eat semi-solid foods. The intervention group (n = 967) received a daily dose containing 12.5 mg elemental iron (as ferrous fumarate), vitamin A (400 μg), ascorbic acid (30 mg) and zinc (5 mg). The placebo group (n = 991) received a similar micronutrient powder but without iron. Micronutrient powder was provided daily to both groups for 5 months. At baseline and endline, health assessment questionnaires were administered and blood samples collected for analysis. The two groups had similar baseline anthropometry, anaemia, iron status, demographic characteristics, and dietary intakes (p > 0.05). Of the 1904 (97.2%) children who remained at the end of the intervention, the intervention group had significantly higher haemoglobin (p = 0.0001) and serum ferritin (p = 0.0002) levels than the placebo group. Soluble transferrin receptor levels were more saturated among children from the iron group compared to non-iron group (p = 0.012). Anaemia status in the iron group improved compared to the placebo group (p = 0.03). Continued long-term routine use of micronutrient powder containing prophylactic iron reduced anaemia, iron deficiency and iron deficiency anaemia among pre-school children living in rural Ghana's malaria endemic area.
Collapse
|
Randomized Controlled Trial |
4 |
8 |
23
|
Amoani B, Adu B, Frempong MT, Sarkodie-Addo T, Nuvor SV, Wilson MD, Gyan B. Levels of serum eosinophil cationic protein are associated with hookworm infection and intensity in endemic communities in Ghana. PLoS One 2019; 14:e0222382. [PMID: 31513658 PMCID: PMC6742367 DOI: 10.1371/journal.pone.0222382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/28/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The eosinophil cationic protein (ECP) is a cytotoxic protein mainly secreted by eosinophils granulocytes and plays a role in host defense against parasitic infections. Infection with Necator americanus (hookworm) is traditionally diagnosed by the Kato-Katz method which is inherently tedious, subjective and known to underestimate infection intensity. This study aimed to assess levels of serum ECP in relation to hookworm infection intensity. METHODS Stool samples from 984 (aged 4 to 80 years) participants in a cross-sectional study conducted in the Kintampo North Municipality of Ghana were examined using the Kato-Katz and formol-ether concentration methods. Serum ECP levels were measured by ECP assay kit and compared between 40 individuals infected with hookworm only, 63 with hookworm- Plasmodium falciparum co-infection, 59 with P. falciparum infection and 36 with no infection. RESULTS Hookworm infection prevalence was 18.1% (178/984). ECP levels were significantly higher in individuals infected with hookworm only (β = 2.96, 95%CI = 2.69, 3.23, p<0.001) or co-infected with P. falciparum (β = 3.15, 95%CI = 2.91, 3.39, p<0.001) compared to the negative control. Levels of ECP were similar between those with only P. falciparum infection and the uninfected control (p>0.05). Increased hookworm intensity was associated with a significant increase in ECP level (β = 4.45, 95%CI = 2.25, 9.11, rs = 0.193, n = 103, p<0.01). ECP threshold of 84.98ng/ml was associated with a positive predictive value (PPV) of 98% (95% CI = 92, 100), and negative predictive value (NPV) of 76% (95% CI = 62, 87) in classifying hookworm infection status with an AUROC of 96.3%. CONCLUSION Serum ECP level may be a good biomarker of hookworm infection and intensity and warrant further investigations to help improve current hookworm diagnosis.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
8 |
24
|
Dassah S, Adu B, Tiendrebeogo RW, Singh SK, Arthur FKN, Sirima SB, Theisen M. GMZ2 Vaccine-Induced Antibody Responses, Naturally Acquired Immunity and the Incidence of Malaria in Burkinabe Children. Front Immunol 2022; 13:899223. [PMID: 35720297 PMCID: PMC9200992 DOI: 10.3389/fimmu.2022.899223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
GMZ2 is a malaria vaccine candidate evaluated in a phase 2b multi-centre trial. Here we assessed antibody responses and the association of naturally acquired immunity with incidence of malaria in one of the trial sites, Banfora in Burkina Faso. The analysis included 453 (GMZ2 = 230, rabies = 223) children aged 12-60 months old. Children were followed-up for clinical malaria episodes for 12 months after final vaccine administration. Antibody levels against GMZ2 and eleven non-GMZ2 antigens were measured on days 0 and 84 (one month after final vaccine dose). Vaccine efficacy (VE) differed by age group (interaction, (12-35 months compared to 36-60 months), p = 0.0615). During the twelve months of follow-up, VE was 1% (95% confidence interval [CI] -17%, 17%) and 23% ([CI] 3%, 40%) in the 12 - 35 and 36 - 60 months old children, respectively. In the GMZ2 group, day 84 anti-GMZ2 IgG levels were associated with reduced incidence of febrile malaria during the follow up periods of 1-6 months (hazard ratio (HR) = 0.87, 95%CI = (0.77, 0.98)) and 7-12 months (HR = 0.84, 95%CI = (0.71, 0.98)) in the 36-60 months old but not in 12-35 months old children. Multivariate analysis involving day 84 IgG levels to eleven non-vaccine antigens, identified MSP3-K1 and GLURP-R2 to be associated with reduced incidence of malaria during the 12 months of follow up. The inclusion of these antigens might improve GMZ2 vaccine efficacy.
Collapse
|
Multicenter Study |
3 |
8 |
25
|
Lambrecht NJ, Bridges D, Wilson ML, Adu B, Eisenberg JNS, Folson G, Baylin A, Jones AD. Associations of bacterial enteropathogens with systemic inflammation, iron deficiency, and anemia in preschool-age children in southern Ghana. PLoS One 2022; 17:e0271099. [PMID: 35802561 PMCID: PMC9269377 DOI: 10.1371/journal.pone.0271099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022] Open
Abstract
Anemia remains a pervasive public health problem among preschool-age children in Ghana. Recent analyses have found that anemia in Ghanaian children, particularly in Southern regions, is largely attributable to infectious causes, rather than nutritional factors. Infections with enteropathogens can reduce iron absorption and increase systemic inflammation, but few studies have examined direct links between enteropathogens and anemia. This study investigated associations between detection of individual bacterial enteropathogens and systemic inflammation, iron deficiency, and anemia among 6- to 59-month-old children in Greater Accra, Ghana. Serum samples were analyzed from a cross-sectional sample of 262 children for concentrations of hemoglobin (Hb), biomarkers of systemic inflammation [C-reactive protein (CRP) and α-1-acid glycoprotein (AGP)], and biomarkers of iron status [serum ferritin (SF) and serum transferrin receptor (sTfR)]. Stool samples were analyzed for ten bacterial enteropathogens using qPCR. We estimated associations between presence of each enteropathogen and elevated systemic inflammation (CRP > 5 mg/L and AGP > 1 g/L), iron deficiency (SF < 12 μg/L and sTfR > 8.3 mg/L) and anemia (Hb < 110 g/L). Enteropathogens were detected in 87% of children’s stool despite a low prevalence of diarrhea (6.5%). Almost half (46%) of children had anemia while one-quarter (24%) had iron deficiency (low SF). Despite finding no associations with illness symptoms, Campylobacter jejuni/coli detection was strongly associated with elevated CRP [Odds Ratio (95% CI): 3.49 (1.45, 8.41)] and elevated AGP [4.27 (1.85, 9.84)]. Of the pathogens examined, only enteroinvasive Escherichia coli/Shigella spp. (EIEC/Shigella) was associated with iron deficiency, and enteroaggregative Escherichia coli (EAEC) [1.69 (1.01, 2.84)] and EIEC/Shigella [2.34 (1.15, 4.76)] were associated with anemia. These results suggest that certain enteroinvasive pathogenic bacteria may contribute to child anemia. Reducing exposure to enteropathogens through improved water, sanitation, and hygiene practices may help reduce the burden of anemia in young Ghanaian children.
Collapse
|
|
3 |
7 |