1
|
Schubert D, Bode C, Kenefeck R, Hou TZ, Wing JB, Kennedy A, Bulashevska A, Petersen BS, Schäffer AA, Grüning BA, Unger S, Frede N, Baumann U, Witte T, Schmidt RE, Dueckers G, Niehues T, Seneviratne S, Kanariou M, Speckmann C, Ehl S, Rensing-Ehl A, Warnatz K, Rakhmanov M, Thimme R, Hasselblatt P, Emmerich F, Cathomen T, Backofen R, Fisch P, Seidl M, May A, Schmitt-Graeff A, Ikemizu S, Salzer U, Franke A, Sakaguchi S, Walker LS, Sansom DM, Grimbacher B. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med 2014; 20:1410-1416. [PMID: 25329329 PMCID: PMC4668597 DOI: 10.1038/nm.3746] [Citation(s) in RCA: 622] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/14/2014] [Indexed: 12/14/2022]
Abstract
The protein cytotoxic T lymphocyte antigen-4 (CTLA-4) is an essential negative regulator of immune responses, and its loss causes fatal autoimmunity in mice. We studied a large family in which five individuals presented with a complex, autosomal dominant immune dysregulation syndrome characterized by hypogammaglobulinemia, recurrent infections and multiple autoimmune clinical features. We identified a heterozygous nonsense mutation in exon 1 of CTLA4. Screening of 71 unrelated patients with comparable clinical phenotypes identified five additional families (nine individuals) with previously undescribed splice site and missense mutations in CTLA4. Clinical penetrance was incomplete (eight adults of a total of 19 genetically proven CTLA4 mutation carriers were considered unaffected). However, CTLA-4 protein expression was decreased in regulatory T cells (Treg cells) in both patients and carriers with CTLA4 mutations. Whereas Treg cells were generally present at elevated numbers in these individuals, their suppressive function, CTLA-4 ligand binding and transendocytosis of CD80 were impaired. Mutations in CTLA4 were also associated with decreased circulating B cell numbers. Taken together, mutations in CTLA4 resulting in CTLA-4 haploinsufficiency or impaired ligand binding result in disrupted T and B cell homeostasis and a complex immune dysregulation syndrome.
Collapse
MESH Headings
- Adolescent
- Adult
- Agammaglobulinemia/genetics
- Agammaglobulinemia/immunology
- Anemia, Hemolytic, Autoimmune/genetics
- Anemia, Hemolytic, Autoimmune/immunology
- Animals
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- B-Lymphocytes/immunology
- B7-1 Antigen/metabolism
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- Child
- Codon, Nonsense
- Endocytosis/genetics
- Endocytosis/immunology
- Exons
- Female
- Granuloma/genetics
- Granuloma/immunology
- Heterozygote
- Humans
- Immune System Diseases/genetics
- Lung Diseases, Interstitial/genetics
- Lung Diseases, Interstitial/immunology
- Male
- Mice
- Middle Aged
- Mutation, Missense
- Pedigree
- Polyendocrinopathies, Autoimmune/genetics
- Polyendocrinopathies, Autoimmune/immunology
- Purpura, Thrombocytopenic, Idiopathic/genetics
- Purpura, Thrombocytopenic, Idiopathic/immunology
- Recurrence
- Respiratory Tract Infections/genetics
- Respiratory Tract Infections/immunology
- Syndrome
- T-Lymphocytes, Regulatory/immunology
- Young Adult
Collapse
|
research-article |
11 |
622 |
2
|
Huang YH, Zhu C, Kondo Y, Anderson AC, Gandhi A, Russell A, Dougan SK, Petersen BS, Melum E, Pertel T, Clayton KL, Raab M, Chen Q, Beauchemin N, Yazaki PJ, Pyzik M, Ostrowski MA, Glickman JN, Rudd CE, Ploegh HL, Franke A, Petsko GA, Kuchroo VK, Blumberg RS. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 2015; 517:386-90. [PMID: 25363763 PMCID: PMC4297519 DOI: 10.1038/nature13848] [Citation(s) in RCA: 521] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 09/08/2014] [Indexed: 02/05/2023]
Abstract
T-cell immunoglobulin domain and mucin domain-3 (TIM-3, also known as HAVCR2) is an activation-induced inhibitory molecule involved in tolerance and shown to induce T-cell exhaustion in chronic viral infection and cancers. Under some conditions, TIM-3 expression has also been shown to be stimulatory. Considering that TIM-3, like cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death 1 (PD-1), is being targeted for cancer immunotherapy, it is important to identify the circumstances under which TIM-3 can inhibit and activate T-cell responses. Here we show that TIM-3 is co-expressed and forms a heterodimer with carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1), another well-known molecule expressed on activated T cells and involved in T-cell inhibition. Biochemical, biophysical and X-ray crystallography studies show that the membrane-distal immunoglobulin-variable (IgV)-like amino-terminal domain of each is crucial to these interactions. The presence of CEACAM1 endows TIM-3 with inhibitory function. CEACAM1 facilitates the maturation and cell surface expression of TIM-3 by forming a heterodimeric interaction in cis through the highly related membrane-distal N-terminal domains of each molecule. CEACAM1 and TIM-3 also bind in trans through their N-terminal domains. Both cis and trans interactions between CEACAM1 and TIM-3 determine the tolerance-inducing function of TIM-3. In a mouse adoptive transfer colitis model, CEACAM1-deficient T cells are hyper-inflammatory with reduced cell surface expression of TIM-3 and regulatory cytokines, and this is restored by T-cell-specific CEACAM1 expression. During chronic viral infection and in a tumour environment, CEACAM1 and TIM-3 mark exhausted T cells. Co-blockade of CEACAM1 and TIM-3 leads to enhancement of anti-tumour immune responses with improved elimination of tumours in mouse colorectal cancer models. Thus, CEACAM1 serves as a heterophilic ligand for TIM-3 that is required for its ability to mediate T-cell inhibition, and this interaction has a crucial role in regulating autoimmunity and anti-tumour immunity.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Autoimmunity/immunology
- Cell Adhesion Molecules/chemistry
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Cell Line
- Colorectal Neoplasms/immunology
- Disease Models, Animal
- Female
- Hepatitis A Virus Cellular Receptor 2
- Humans
- Immune Tolerance/immunology
- Inflammation/immunology
- Inflammation/pathology
- Ligands
- Male
- Membrane Proteins/chemistry
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Models, Molecular
- Mucous Membrane/immunology
- Mucous Membrane/pathology
- Protein Conformation
- Protein Multimerization
- Receptors, Virus/chemistry
- Receptors, Virus/immunology
- Receptors, Virus/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
|
Research Support, N.I.H., Extramural |
10 |
521 |
3
|
Stanulla M, Dagdan E, Zaliova M, Möricke A, Palmi C, Cazzaniga G, Eckert C, Te Kronnie G, Bourquin JP, Bornhauser B, Koehler R, Bartram CR, Ludwig WD, Bleckmann K, Groeneveld-Krentz S, Schewe D, Junk SV, Hinze L, Klein N, Kratz CP, Biondi A, Borkhardt A, Kulozik A, Muckenthaler MU, Basso G, Valsecchi MG, Izraeli S, Petersen BS, Franke A, Dörge P, Steinemann D, Haas OA, Panzer-Grümayer R, Cavé H, Houlston RS, Cario G, Schrappe M, Zimmermann M. IKZF1 plus Defines a New Minimal Residual Disease-Dependent Very-Poor Prognostic Profile in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. J Clin Oncol 2018; 36:1240-1249. [PMID: 29498923 DOI: 10.1200/jco.2017.74.3617] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose Somatic deletions that affect the lymphoid transcription factor-coding gene IKZF1 have previously been reported as independently associated with a poor prognosis in pediatric B-cell precursor (BCP) acute lymphoblastic leukemia (ALL). We have now refined the prognostic strength of IKZF1 deletions by analyzing the effect of co-occurring deletions. Patients and Methods The analysis involved 991 patients with BCP ALL treated in the Associazione Italiana Ematologia ed Oncologia Pediatrica-Berlin-Frankfurt-Muenster (AIEOP-BFM) ALL 2000 trial with complete information for copy number alterations of IKZF1, PAX5, ETV6, RB1, BTG1, EBF1, CDKN2A, CDKN2B, Xp22.33/Yp11.31 (PAR1 region; CRLF2, CSF2RA, and IL3RA), and ERG; replication of findings involved 417 patients from the same trial. Results IKZF1 deletions that co-occurred with deletions in CDKN2A, CDKN2B, PAX5, or PAR1 in the absence of ERG deletion conferred the worst outcome and, consequently, were grouped as IKZF1plus. The IKZF1plus group comprised 6% of patients with BCP ALL, with a 5-year event-free survival of 53 ± 6% compared with 79 ± 5% in patients with IKZF1 deletion who did not fulfill the IKZF1plus definition and 87 ± 1% in patients who lacked an IKZF1 deletion ( P ≤ .001). Respective 5-year cumulative relapse incidence rates were 44 ± 6%, 11 ± 4%, and 10 ± 1% ( P ≤ .001). Results were confirmed in the replication cohort, and multivariable analyses demonstrated independence of IKZF1plus. The IKZF1plus prognostic effect differed dramatically in analyses stratified by minimal residual disease (MRD) levels after induction treatment: 5-year event-free survival for MRD standard-risk IKZF1plus patients was 94 ± 5% versus 40 ± 10% in MRD intermediate- and 30 ± 14% in high-risk IKZF1plus patients ( P ≤ .001). Corresponding 5-year cumulative incidence of relapse rates were 6 ± 6%, 60 ± 10%, and 60 ± 17% ( P ≤ .001). Conclusion IKZF1plus describes a new MRD-dependent very-poor prognostic profile in BCP ALL. Because current AIEOP-BFM treatment is largely ineffective for MRD-positive IKZF1plus patients, new experimental treatment approaches will be evaluated in our upcoming trial AIEOP-BFM ALL 2017.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
209 |
4
|
Petersen BS, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet 2017; 18:14. [PMID: 28193154 PMCID: PMC5307692 DOI: 10.1186/s12863-017-0479-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
Recent advances in the development of sequencing technologies provide researchers with unprecedented possibilities for genetic analyses. In this review, we will discuss the history of genetic studies and the progress driven by next-generation sequencing (NGS), using complex inflammatory bowel diseases as an example. We focus on the opportunities, but also challenges that researchers are facing when working with NGS data to unravel the genetic causes underlying diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
142 |
5
|
Zeissig Y, Petersen BS, Milutinovic S, Bosse E, Mayr G, Peuker K, Hartwig J, Keller A, Kohl M, Laass MW, Billmann-Born S, Brandau H, Feller AC, Röcken C, Schrappe M, Rosenstiel P, Reed JC, Schreiber S, Franke A, Zeissig S. XIAP variants in male Crohn's disease. Gut 2015; 64:66-76. [PMID: 24572142 DOI: 10.1136/gutjnl-2013-306520] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The genetic basis of inflammatory bowel disease (IBD) is incompletely understood. The aim of this study was to identify rare genetic variants involved in the pathogenesis of IBD. DESIGN Exome sequencing and immunological profiling were performed in a patient with early onset Crohn's disease (CD). The coding region of the gene encoding X-linked inhibitor of apoptosis protein (XIAP) was sequenced in samples of 275 paediatric IBD and 1047 adult-onset CD patients. XIAP genotyping was performed in samples of 2680 IBD patients and 2864 healthy controls. Functional effects of the variants identified were investigated in primary cells and cultured cell lines. RESULTS Our results demonstrate the frequent occurrence of private variants in XIAP in about four percent of male patients with paediatric-onset CD. While XIAP mutations are known to be associated with the primary immunodeficiency (PID) X-linked lymphoproliferative disease type 2 (XLP2), CD patients described here exhibited intestinal inflammation in the absence of XLP2 and harboured a spectrum of mutations partially distinct from that observed in XLP2. The majority of XIAP variants identified was associated with a selective defect in NOD1/2 signalling, impaired NOD1/2-mediated activation of NF-κB, and altered NF-κB-dependent cytokine production. CONCLUSIONS This study reveals the unanticipated, frequent occurrence of XIAP variants in male paediatric-onset CD. The link between XIAP and NOD1/2, and the association of XIAP variants with XLP2, support the concept of PID in a subset of IBD patients. Moreover, these studies provide a rationale for the implementation of XIAP sequencing in clinical diagnostics in male patients with severe CD.
Collapse
|
|
10 |
113 |
6
|
Janecke AR, Heinz-Erian P, Yin J, Petersen BS, Franke A, Lechner S, Fuchs I, Melancon S, Uhlig HH, Travis S, Marinier E, Perisic V, Ristic N, Gerner P, Booth IW, Wedenoja S, Baumgartner N, Vodopiutz J, Frechette-Duval MC, De Lafollie J, Persad R, Warner N, Tse CM, Sud K, Zachos NC, Sarker R, Zhu X, Muise AM, Zimmer KP, Witt H, Zoller H, Donowitz M, Müller T. Reduced sodium/proton exchanger NHE3 activity causes congenital sodium diarrhea. Hum Mol Genet 2015; 24:6614-23. [PMID: 26358773 DOI: 10.1093/hmg/ddv367] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023] Open
Abstract
Congenital sodium diarrhea (CSD) refers to an intractable diarrhea of intrauterine onset with high fecal sodium loss. CSD is clinically and genetically heterogeneous. Syndromic CSD is caused by SPINT2 mutations. While we recently described four cases of the non-syndromic form of CSD that were caused by dominant activating mutations in intestinal receptor guanylate cyclase C (GC-C), the genetic cause for the majority of CSD is still unknown. Therefore, we aimed to determine the genetic cause for non-GC-C non-syndromic CSD in 18 patients from 16 unrelated families applying whole-exome sequencing and/or chromosomal microarray analyses and/or direct Sanger sequencing. SLC9A3 missense, splicing and truncation mutations, including an instance of uniparental disomy, and whole-gene deletion were identified in nine patients from eight families with CSD. Two of these nine patients developed inflammatory bowel disease (IBD) at 4 and 16 years of age. SLC9A3 encodes Na(+)/H(+) antiporter 3 (NHE3), which is the major intestinal brush-border Na(+)/H(+) exchanger. All mutations were in the NHE3 N-terminal transport domain, and all missense mutations were in the putative membrane-spanning domains. Identified SLC9A3 missense mutations were functionally characterized in plasma membrane NHE null fibroblasts. SLC9A3 missense mutations compromised NHE3 activity by reducing basal surface expression and/or loss of basal transport function of NHE3 molecules, whereas acute regulation was normal. This study identifies recessive mutations in NHE3, a downstream target of GC-C, as a cause of CSD and implies primary basal NHE3 malfunction as a predisposition for IBD in a subset of patients.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
104 |
7
|
Zeissig S, Petersen BS, Tomczak M, Melum E, Huc-Claustre E, Dougan SK, Laerdahl JK, Stade B, Forster M, Schreiber S, Weir D, Leichtner AM, Franke A, Blumberg RS. Early-onset Crohn's disease and autoimmunity associated with a variant in CTLA-4. Gut 2015; 64:1889-97. [PMID: 25367873 PMCID: PMC4512923 DOI: 10.1136/gutjnl-2014-308541] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/09/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVE IBD is a group of complex, systemic disorders associated with intestinal inflammation and extraintestinal manifestations. Recent studies revealed Mendelian forms of IBD, which contributed significantly to our understanding of disease pathogenesis and the heritability of IBD. DESIGN We performed exome sequencing in a family with Crohn's disease (CD) and severe autoimmunity, analysed immune cell phenotype and function in affected and non-affected individuals, and performed in silico and in vitro analyses of cytotoxic T lymphocyte-associated protein 4 (CTLA-4) structure and function. RESULTS A novel missense variant was identified in CTLA4 encoding CTLA-4, a coinhibitory protein expressed by T cells and required for regulation of T cell activation. The residue affected by the mutation, CTLA-4 Tyr60, is evolutionarily highly conserved, and the identified Y60C variant is predicted to affect protein folding and structural stability and demonstrated to cause impaired CTLA-4 dimerisation and CD80 binding. Intestinal inflammation and autoimmunity in carriers of CTLA-4 Y60C exhibit incomplete penetrance with a spectrum of clinical presentations ranging from asymptomatic carrier status to fatal autoimmunity and intestinal inflammation. In a clinically affected CTLA-4 Y60C carrier, T cell proliferation was increased in vitro and associated with an increased ratio of memory to naive T cells in vivo, consistent with impaired regulation of T cell activation. CONCLUSIONS Our results support the concept that variants in CTLA4 provide the basis for a novel Mendelian form of early-onset CD associated with systemic autoimmunity. Incomplete penetrance of autoimmunity further indicates the presence of other genetic and/or environmental modifiers.
Collapse
|
research-article |
10 |
97 |
8
|
Zimoń M, Baets J, Almeida-Souza L, De Vriendt E, Nikodinovic J, Parman Y, Battaloğlu E, Matur Z, Guergueltcheva V, Tournev I, Auer-Grumbach M, De Rijk P, Petersen BS, Müller T, Fransen E, Van Damme P, Löscher WN, Barišić N, Mitrovic Z, Previtali SC, Topaloğlu H, Bernert G, Beleza-Meireles A, Todorovic S, Savic-Pavicevic D, Ishpekova B, Lechner S, Peeters K, Ooms T, Hahn AF, Züchner S, Timmerman V, Van Dijck P, Rasic VM, Janecke AR, De Jonghe P, Jordanova A. Loss-of-function mutations in HINT1 cause axonal neuropathy with neuromyotonia. Nat Genet 2012; 44:1080-3. [PMID: 22961002 DOI: 10.1038/ng.2406] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 08/10/2012] [Indexed: 01/14/2023]
Abstract
Inherited peripheral neuropathies are frequent neuromuscular disorders known for their clinical and genetic heterogeneity. In 33 families, we identified 8 mutations in HINT1 (encoding histidine triad nucleotide-binding protein 1) by combining linkage analyses with next-generation sequencing and subsequent cohort screening of affected individuals. Our study provides evidence that loss of functional HINT1 protein results in a distinct phenotype of autosomal recessive axonal neuropathy with neuromyotonia.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
88 |
9
|
Sebode M, Peiseler M, Franke B, Schwinge D, Schoknecht T, Wortmann F, Quaas A, Petersen BS, Ellinghaus E, Baron U, Olek S, Wiegard C, Weiler-Normann C, Lohse AW, Herkel J, Schramm C. Reduced FOXP3(+) regulatory T cells in patients with primary sclerosing cholangitis are associated with IL2RA gene polymorphisms. J Hepatol 2014; 60:1010-6. [PMID: 24412607 DOI: 10.1016/j.jhep.2013.12.027] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Recently, genome wide association studies in primary sclerosing cholangitis (PSC) revealed associations with gene polymorphisms that potentially could affect the function of regulatory T cells (Treg). The aim of this study was to investigate Treg in patients with PSC and to associate their numbers with relevant gene polymorphisms. METHODS Treg frequency in blood was assessed by staining for CD4(+)CD25(high)FOXP3(+)CD127(low) lymphocytes and determination of Treg-specific FOXP3 gene locus demethylation. Single nucleotide polymorphisms (SNP) in the interleukin-2 receptor alpha (IL2RA), the interleukin-2 (IL2) and interleukin-21 (IL21) gene locus were analysed. Liver biopsies taken at the time of diagnosis were stained for FOXP3 and CD3. Treg function was assessed in a CFSE-based suppression assay. RESULTS The frequency of Treg in peripheral blood of PSC patients was significantly decreased. We confirmed this finding by demonstrating a reduction of non-methylated DNA in the Treg-specific demethylated FOXP3 gene region of peripheral blood cells in PSC patients. Reduced peripheral Treg numbers were significantly associated with homozygosity for the major allele of the SNP "rs10905718" in the IL2RA gene. Intrahepatic FOXP3(+) cell numbers at the time of initial diagnosis were decreased in PSC as compared to PBC. In addition to reduced numbers, the suppressive capacity of Treg isolated from PSC patients seemed to be impaired as compared to healthy controls. CONCLUSIONS Our findings indicate that Treg impairment may play a role in the immune dysregulation observed in PSC. Reduced Treg numbers in patients with PSC are associated with polymorphisms in the IL2RA gene.
Collapse
|
|
11 |
85 |
10
|
Kelsen JR, Dawany N, Moran CJ, Petersen BS, Sarmady M, Sasson A, Pauly-Hubbard H, Martinez A, Maurer K, Soong J, Rappaport E, Franke A, Keller A, Winter HS, Mamula P, Piccoli D, Artis D, Sonnenberg GF, Daly M, Sullivan KE, Baldassano RN, Devoto M. Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease. Gastroenterology 2015; 149:1415-24. [PMID: 26193622 PMCID: PMC4853027 DOI: 10.1053/j.gastro.2015.07.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/08/2015] [Accepted: 07/13/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Very early onset inflammatory bowel disease (VEO-IBD), IBD diagnosed at 5 years of age or younger, frequently presents with a different and more severe phenotype than older-onset IBD. We investigated whether patients with VEO-IBD carry rare or novel variants in genes associated with immunodeficiencies that might contribute to disease development. METHODS Patients with VEO-IBD and parents (when available) were recruited from the Children's Hospital of Philadelphia from March 2013 through July 2014. We analyzed DNA from 125 patients with VEO-IBD (age, 3 wk to 4 y) and 19 parents, 4 of whom also had IBD. Exome capture was performed by Agilent SureSelect V4, and sequencing was performed using the Illumina HiSeq platform. Alignment to human genome GRCh37 was achieved followed by postprocessing and variant calling. After functional annotation, candidate variants were analyzed for change in protein function, minor allele frequency less than 0.1%, and scaled combined annotation-dependent depletion scores of 10 or less. We focused on genes associated with primary immunodeficiencies and related pathways. An additional 210 exome samples from patients with pediatric IBD (n = 45) or adult-onset Crohn's disease (n = 20) and healthy individuals (controls, n = 145) were obtained from the University of Kiel, Germany, and used as control groups. RESULTS Four hundred genes and regions associated with primary immunodeficiency, covering approximately 6500 coding exons totaling more than 1 Mbp of coding sequence, were selected from the whole-exome data. Our analysis showed novel and rare variants within these genes that could contribute to the development of VEO-IBD, including rare heterozygous missense variants in IL10RA and previously unidentified variants in MSH5 and CD19. CONCLUSIONS In an exome sequence analysis of patients with VEO-IBD and their parents, we identified variants in genes that regulate B- and T-cell functions and could contribute to pathogenesis. Our analysis could lead to the identification of previously unidentified IBD-associated variants.
Collapse
|
research-article |
10 |
85 |
11
|
Chakievska L, Holtsche MM, Künstner A, Goletz S, Petersen BS, Thaci D, Ibrahim SM, Ludwig RJ, Franke A, Sadik CD, Zillikens D, Hölscher C, Busch H, Schmidt E. IL-17A is functionally relevant and a potential therapeutic target in bullous pemphigoid. J Autoimmun 2018; 96:104-112. [PMID: 30219389 DOI: 10.1016/j.jaut.2018.09.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 01/19/2023]
Abstract
IL-17A has been identified as key regulatory molecule in several autoimmune and chronic inflammatory diseases followed by the successful use of anti-IL-17 therapy, e.g. in ankylosing spondylitis and psoriasis. Bullous pemphigoid (BP) is the most frequent autoimmune blistering disease with a high need for more specific, effective and safe treatment options. The aim of this study was to clarify the pathophysiological importance of IL-17A in BP. We found elevated numbers of IL-17A+ CD4+ lymphocytes in the peripheral blood of BP patients and identified CD3+ cells as major source of IL-17A in early BP skin lesions. IL17A and related genes were upregulated in BP skin and exome sequencing of 51 BP patients revealed mutations in twelve IL-17-related genes in 18 patients. We have subsequently found several lines of evidence suggesting a significant role of IL-17A in the BP pathogenesis: (i) IL-17A activated human neutrophils in vitro, (ii) inhibition of dermal-epidermal separation in cryosections of human skin incubated with anti-BP180 IgG and subsequently with anti-IL-17A IgG-treated leukocytes, (iii) close correlation of serum IL-17A levels and diseases activity in a mouse model of BP, (iv) IL17A-deficient mice were protected against autoantibody-induced BP, and (v) pharmacological inhibition of lL-17A reduced the induction of BP in mice. Our data give evidence for a pivotal role of IL-17A in the pathophysiology of BP and advocate IL-17A inhibition as potential novel treatment for this disease.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
67 |
12
|
Ellinghaus D, Bethune J, Petersen BS, Franke A. The genetics of Crohn's disease and ulcerative colitis--status quo and beyond. Scand J Gastroenterol 2015; 50:13-23. [PMID: 25523552 DOI: 10.3109/00365521.2014.990507] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The two major subtypes of inflammatory bowel disease (IBD), ulcerative colitis (UC, MIM#191390) and Crohn's disease (CD, MIM#266600), are chronic relapsing-remitting inflammatory disorders affecting primarily the gastrointestinal tract. Prevalence rates in North America and Europe range from 21 to 246 per 100,000 for UC and 8 to 214 per 100,000 for CD. Although CD and UC share some clinical and pathological features, they can be distinguished by localization, endoscopic appearance, histology and behavior, which suggest differences in the underlying pathophysiology. The importance of genetic risk factors in disease etiology is high and has been documented more clearly for CD than for UC (relative sibling risks λ(s): 15-35 for CD, 6-9 for UC). The most recent and largest genetic association study for IBD, which employed genome-wide association data for over 75,000 patients and controls, established the association of 163 susceptibility loci with IBD. Although the disease variance explained by the 163 loci only amounts to 13.6% for CD and 7.5% for UC, the identified loci and the candidate genes within yielded valuable insights into the pathogenesis of IBD and the relevant disease pathways. We here review the current research on the genetics of IBD and provide insights into on current efforts as well as suggest topics for future research.
Collapse
|
Review |
10 |
64 |
13
|
Müller T, Rasool I, Heinz-Erian P, Mildenberger E, Hülstrunk C, Müller A, Michaud L, Koot BGP, Ballauff A, Vodopiutz J, Rosipal S, Petersen BS, Franke A, Fuchs I, Witt H, Zoller H, Janecke AR, Visweswariah SS. Congenital secretory diarrhoea caused by activating germline mutations in GUCY2C. Gut 2016; 65:1306-13. [PMID: 25994218 PMCID: PMC4975829 DOI: 10.1136/gutjnl-2015-309441] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 04/10/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Congenital sodium diarrhoea (CSD) refers to a form of secretory diarrhoea with intrauterine onset and high faecal losses of sodium without congenital malformations. The molecular basis for CSD remains unknown. We clinically characterised a cohort of infants with CSD and set out to identify disease-causing mutations by genome-wide genetic testing. DESIGN We performed whole-exome sequencing and chromosomal microarray analyses in 4 unrelated patients, followed by confirmatory Sanger sequencing of the likely disease-causing mutations in patients and in their family members, followed by functional studies. RESULTS We identified novel de novo missense mutations in GUCY2C, the gene encoding receptor guanylate cyclase C (GC-C) in 4 patients with CSD. One patient developed severe, early-onset IBD and chronic arthritis at 4 years of age. GC-C is an intestinal brush border membrane-bound guanylate cyclase, which functions as receptor for guanylin, uroguanylin and Escherichia coli heat-stable enterotoxin. Mutations in GUCY2C were present in different intracellular domains of GC-C, and were activating mutations that enhanced intracellular cyclic guanosine monophosphate accumulation in a ligand-independent and ligand-stimulated manner, following heterologous expression in HEK293T cells. CONCLUSIONS Dominant gain-of-function GUCY2C mutations lead to elevated intracellular cyclic guanosine monophosphate levels and could explain the chronic diarrhoea as a result of decreased intestinal sodium and water absorption and increased chloride secretion. Thus, mutations in GUCY2C indicate a role for this receptor in the pathogenesis of sporadic CSD.
Collapse
|
research-article |
9 |
63 |
14
|
Kunzmann LK, Schoknecht T, Poch T, Henze L, Stein S, Kriz M, Grewe I, Preti M, Hartl J, Pannicke N, Peiseler M, Sebode M, Zenouzi R, Horvatits T, Böttcher M, Petersen BS, Weiler-Normann C, Hess LU, Ahrenstorf AE, Lunemann S, Martrus G, Fischer L, Li J, Carambia A, Kluwe J, Huber S, Lohse AW, Franke A, Herkel J, Schramm C, Schwinge D. Monocytes as Potential Mediators of Pathogen-Induced T-Helper 17 Differentiation in Patients With Primary Sclerosing Cholangitis (PSC). Hepatology 2020; 72:1310-1326. [PMID: 33090557 DOI: 10.1002/hep.31140] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/22/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS T cells from patients with primary sclerosing cholangitis (PSC) show a prominent interleukin (IL)-17 response upon stimulation with bacteria or fungi, yet the reasons for this dominant T-helper 17 (Th17) response in PSC are not clear. Here, we analyzed the potential role of monocytes in microbial recognition and in skewing the T-cell response toward Th17. APPROACH AND RESULTS Monocytes and T cells from blood and livers of PSC patients and controls were analyzed ex vivo and in vitro using transwell experiments with cholangiocytes. Cytokine production was measured using flow cytometry, enzyme-linked immunosorbent assay, RNA in situ hybridization, and quantitative real-time PCR. Genetic polymorphisms were obtained from ImmunoChip analysis. Following ex vivo stimulation with phorbol myristate acetate/ionomycin, PSC patients showed significantly increased numbers of IL-17A-producing peripheral blood CD4+ T cells compared to PBC patients and healthy controls, indicating increased Th17 differentiation in vivo. Upon stimulation with microbes, monocytes from PSC patients produced significantly more IL-1β and IL-6, cytokines known to drive Th17 cell differentiation. Moreover, microbe-activated monocytes induced the secretion of Th17 and monocyte-recruiting chemokines chemokine (C-C motif) ligand (CCL)-20 and CCL-2 in human primary cholangiocytes. In livers of patients with PSC cirrhosis, CD14hiCD16int and CD14loCD16hi monocytes/macrophages were increased compared to alcoholic cirrhosis, and monocytes were found to be located around bile ducts. CONCLUSIONS PSC patients show increased Th17 differentiation already in vivo. Microbe-stimulated monocytes drive Th17 differentiation in vitro and induce cholangiocytes to produce chemokines mediating recruitment of Th17 cells and more monocytes into portal tracts. Taken together, these results point to a pathogenic role of monocytes in patients with PSC.
Collapse
|
|
5 |
58 |
15
|
Rivas MA, Avila BE, Koskela J, Huang H, Stevens C, Pirinen M, Haritunians T, Neale BM, Kurki M, Ganna A, Graham D, Glaser B, Peter I, Atzmon G, Barzilai N, Levine AP, Schiff E, Pontikos N, Weisburd B, Lek M, Karczewski KJ, Bloom J, Minikel EV, Petersen BS, Beaugerie L, Seksik P, Cosnes J, Schreiber S, Bokemeyer B, Bethge J, Heap G, Ahmad T, Plagnol V, Segal AW, Targan S, Turner D, Saavalainen P, Farkkila M, Kontula K, Palotie A, Brant SR, Duerr RH, Silverberg MS, Rioux JD, Weersma RK, Franke A, Jostins L, Anderson CA, Barrett JC, MacArthur DG, Jalas C, Sokol H, Xavier RJ, Pulver A, Cho JH, McGovern DPB, Daly MJ. Insights into the genetic epidemiology of Crohn's and rare diseases in the Ashkenazi Jewish population. PLoS Genet 2018; 14:e1007329. [PMID: 29795570 PMCID: PMC5967709 DOI: 10.1371/journal.pgen.1007329] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/22/2018] [Indexed: 02/05/2023] Open
Abstract
As part of a broader collaborative network of exome sequencing studies, we developed a jointly called data set of 5,685 Ashkenazi Jewish exomes. We make publicly available a resource of site and allele frequencies, which should serve as a reference for medical genetics in the Ashkenazim (hosted in part at https://ibd.broadinstitute.org, also available in gnomAD at http://gnomad.broadinstitute.org). We estimate that 34% of protein-coding alleles present in the Ashkenazi Jewish population at frequencies greater than 0.2% are significantly more frequent (mean 15-fold) than their maximum frequency observed in other reference populations. Arising via a well-described founder effect approximately 30 generations ago, this catalog of enriched alleles can contribute to differences in genetic risk and overall prevalence of diseases between populations. As validation we document 148 AJ enriched protein-altering alleles that overlap with "pathogenic" ClinVar alleles (table available at https://github.com/macarthur-lab/clinvar/blob/master/output/clinvar.tsv), including those that account for 10-100 fold differences in prevalence between AJ and non-AJ populations of some rare diseases, especially recessive conditions, including Gaucher disease (GBA, p.Asn409Ser, 8-fold enrichment); Canavan disease (ASPA, p.Glu285Ala, 12-fold enrichment); and Tay-Sachs disease (HEXA, c.1421+1G>C, 27-fold enrichment; p.Tyr427IlefsTer5, 12-fold enrichment). We next sought to use this catalog, of well-established relevance to Mendelian disease, to explore Crohn's disease, a common disease with an estimated two to four-fold excess prevalence in AJ. We specifically attempt to evaluate whether strong acting rare alleles, particularly protein-truncating or otherwise large effect-size alleles, enriched by the same founder-effect, contribute excess genetic risk to Crohn's disease in AJ, and find that ten rare genetic risk factors in NOD2 and LRRK2 are enriched in AJ (p < 0.005), including several novel contributing alleles, show evidence of association to CD. Independently, we find that genomewide common variant risk defined by GWAS shows a strong difference between AJ and non-AJ European control population samples (0.97 s.d. higher, p<10-16). Taken together, the results suggest coordinated selection in AJ population for higher CD risk alleles in general. The results and approach illustrate the value of exome sequencing data in case-control studies along with reference data sets like ExAC (sites VCF available via FTP at ftp.broadinstitute.org/pub/ExAC_release/release0.3/) to pinpoint genetic variation that contributes to variable disease predisposition across populations.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
50 |
16
|
Huang YH, Zhu C, Kondo Y, Anderson AC, Gandhi A, Russell A, Dougan SK, Petersen BS, Melum E, Pertel T, Clayton KL, Raab M, Chen Q, Beauchemin N, Yazaki PJ, Pyzik M, Ostrowski MA, Glickman JN, Rudd CE, Ploegh HL, Franke A, Petsko GA, Kuchroo VK, Blumberg RS. Corrigendum: CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 2016; 536:359. [PMID: 26982724 DOI: 10.1038/nature17421] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
Published Erratum |
9 |
36 |
17
|
Petersen BS, Spehlmann ME, Raedler A, Stade B, Thomsen I, Rabionet R, Rosenstiel P, Schreiber S, Franke A. Whole genome and exome sequencing of monozygotic twins discordant for Crohn's disease. BMC Genomics 2014; 15:564. [PMID: 24996980 PMCID: PMC4102722 DOI: 10.1186/1471-2164-15-564] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/27/2014] [Indexed: 12/30/2022] Open
Abstract
Background Crohn’s disease (CD) is an inflammatory bowel disease caused by genetic and environmental factors. More than 160 susceptibility loci have been identified for IBD, yet a large part of the genetic variance remains unexplained. Recent studies have demonstrated genetic differences between monozygotic twins, who were long thought to be genetically completely identical. Results We aimed to test if somatic mutations play a role in CD etiology by sequencing the genomes and exomes of directly affected tissue from the bowel and blood samples of one and the blood-derived exomes of two further monozygotic discordant twin pairs. Our goal was the identification of mutations present only in the affected twins, pointing to novel candidates for CD susceptibility loci. We present a thorough genetic characterization of the sequenced individuals but detected no consistent differences within the twin pairs. An estimate of the CD susceptibility based on known CD loci however hinted at a higher mutational load in all three twin pairs compared to 1,920 healthy individuals. Conclusion Somatic mosaicism does not seem to play a role in the discordance of monozygotic CD twins. Our study constitutes the first to perform whole genome sequencing for CD twins and therefore provides a valuable reference dataset for future studies. We present an example framework for mosaicism detection and point to the challenges in these types of analyses. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-564) contains supplementary material, which is available to authorized users.
Collapse
|
Twin Study |
11 |
36 |
18
|
Daneshjou R, Wang Y, Bromberg Y, Bovo S, Martelli PL, Babbi G, Lena PD, Casadio R, Edwards M, Gifford D, Jones DT, Sundaram L, Bhat RR, Li X, Pal LR, Kundu K, Yin Y, Moult J, Jiang Y, Pejaver V, Pagel KA, Li B, Mooney SD, Radivojac P, Shah S, Carraro M, Gasparini A, Leonardi E, Giollo M, Ferrari C, Tosatto SCE, Bachar E, Azaria JR, Ofran Y, Unger R, Niroula A, Vihinen M, Chang B, Wang MH, Franke A, Petersen BS, Pirooznia M, Zandi P, McCombie R, Potash JB, Altman RB, Klein TE, Hoskins RA, Repo S, Brenner SE, Morgan AA. Working toward precision medicine: Predicting phenotypes from exomes in the Critical Assessment of Genome Interpretation (CAGI) challenges. Hum Mutat 2017. [PMID: 28634997 DOI: 10.1002/humu.23280] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Precision medicine aims to predict a patient's disease risk and best therapeutic options by using that individual's genetic sequencing data. The Critical Assessment of Genome Interpretation (CAGI) is a community experiment consisting of genotype-phenotype prediction challenges; participants build models, undergo assessment, and share key findings. For CAGI 4, three challenges involved using exome-sequencing data: Crohn's disease, bipolar disorder, and warfarin dosing. Previous CAGI challenges included prior versions of the Crohn's disease challenge. Here, we discuss the range of techniques used for phenotype prediction as well as the methods used for assessing predictive models. Additionally, we outline some of the difficulties associated with making predictions and evaluating them. The lessons learned from the exome challenges can be applied to both research and clinical efforts to improve phenotype prediction from genotype. In addition, these challenges serve as a vehicle for sharing clinical and research exome data in a secure manner with scientists who have a broad range of expertise, contributing to a collaborative effort to advance our understanding of genotype-phenotype relationships.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
34 |
19
|
Baumann M, Steichen-Gersdorf E, Krabichler B, Petersen BS, Weber U, Schmidt WM, Zschocke J, Müller T, Bittner RE, Janecke AR. Homozygous SYNE1 mutation causes congenital onset of muscular weakness with distal arthrogryposis: a genotype-phenotype correlation. Eur J Hum Genet 2016; 25:262-266. [PMID: 27782104 DOI: 10.1038/ejhg.2016.144] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/07/2016] [Accepted: 09/20/2016] [Indexed: 01/15/2023] Open
Abstract
The exceptionally large SYNE1 (spectrin repeat-containing nuclear envelope protein 1) gene encodes different nesprin-1 isoforms, which are differentially expressed in striated muscle and in cerebellar and cerebral neurons. Nesprin-1 isoforms can function in cytoskeletal, nuclear, and vesicle anchoring. SYNE1 variants have been associated with a spectrum of neurological and neuromuscular disease. Homozygosity mapping combined with exome sequencing identified a disease-causing nonsense mutation in the ultimate exon of full-length SYNE1 transcript in an 8-year-old boy with distal arthrogryposis and muscular hypotonia. mRNA analysis showed that the mutant transcript is expressed at wild-type levels. The variant truncates nesprin-1 isoforms for the C-terminal KASH (Klarsicht-ANC-Syne homology) domain. This is the third family with recessive arthrogryposis caused by homozygous distal-truncating SYNE1 variants. There is a SYNE1 genotype-phenotype correlation emerging, with more proximal homozygous SYNE1 variants causing recessive cerebellar ataxia of variable onset (SCAR8; ARCA-1).
Collapse
|
Journal Article |
9 |
29 |
20
|
Taudien S, Lausser L, Giamarellos-Bourboulis EJ, Sponholz C, Schöneweck F, Felder M, Schirra LR, Schmid F, Gogos C, Groth S, Petersen BS, Franke A, Lieb W, Huse K, Zipfel PF, Kurzai O, Moepps B, Gierschik P, Bauer M, Scherag A, Kestler HA, Platzer M. Genetic Factors of the Disease Course After Sepsis: Rare Deleterious Variants Are Predictive. EBioMedicine 2016; 12:227-238. [PMID: 27639823 PMCID: PMC5078585 DOI: 10.1016/j.ebiom.2016.08.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by dysregulated host response to infection. For its clinical course, host genetic factors are important and rare genomic variants are suspected to contribute. We sequenced the exomes of 59 Greek and 15 German patients with bacterial sepsis divided into two groups with extremely different disease courses. Variant analysis was focusing on rare deleterious single nucleotide variants (SNVs). We identified significant differences in the number of rare deleterious SNVs per patient between the ethnic groups. Classification experiments based on the data of the Greek patients allowed discrimination between the disease courses with estimated sensitivity and specificity > 75%. By application of the trained model to the German patients we observed comparable discriminatory properties despite lower population-specific rare SNV load. Furthermore, rare SNVs in genes of cell signaling and innate immunity related pathways were identified as classifiers discriminating between the sepsis courses. Sepsis patients with favorable disease course after sepsis, even in the case of unfavorable preconditions, seem to be affected more often by rare deleterious SNVs in cell signaling and innate immunity related pathways, suggesting a protective role of impairments in these processes against a poor disease course.
Rare SNV load is higher in the Greek vs. German population. Subsets of rare deleterious SNVs are predictive for the disease course after sepsis. Patients with favorable disease course seem to carry protective deleterious variants in sepsis related pathways. Sepsis is a life-threatening disease caused by improper response to infection. Only little is known about the role of genetic factors. From > 4000 patients we selected the most extreme cases showing either a favorable or adverse disease course. We determined rare (< 1/200) protein-damaging genetic variants, as they may have a large effect. Using a computational model that includes knowledge on genes we can predict the disease course with > 75% accuracy. Surprisingly, favorable courses can be expected if defense mechanisms are damaged and prevented from overshooting. This underlines the relevance of rare variants for better understanding of sepsis and may offer new treatment options.
Collapse
|
Journal Article |
9 |
28 |
21
|
Manz J, Rodríguez E, ElSharawy A, Oesau EM, Petersen BS, Baurecht H, Mayr G, Weber S, Harder J, Reischl E, Schwarz A, Novak N, Franke A, Weidinger S. Targeted Resequencing and Functional Testing Identifies Low-Frequency Missense Variants in the Gene Encoding GARP as Significant Contributors to Atopic Dermatitis Risk. J Invest Dermatol 2016; 136:2380-2386. [DOI: 10.1016/j.jid.2016.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/14/2016] [Accepted: 07/05/2016] [Indexed: 02/07/2023]
|
|
9 |
26 |
22
|
Schaefer B, Haschka D, Finkenstedt A, Petersen BS, Theurl I, Henninger B, Janecke AR, Wang CY, Lin HY, Veits L, Vogel W, Weiss G, Franke A, Zoller H. Impaired hepcidin expression in alpha-1-antitrypsin deficiency associated with iron overload and progressive liver disease. Hum Mol Genet 2015; 24:6254-63. [PMID: 26310624 DOI: 10.1093/hmg/ddv348] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/19/2015] [Indexed: 01/25/2023] Open
Abstract
Liver disease due to alpha-1-antitrypsin deficiency (A1ATD) is associated with hepatic iron overload in a subgroup of patients. The underlying cause for this association is unknown. The aim of the present study was to define the genetics of this correlation and the effect of alpha-1-antitrypsin (A1AT) on the expression of the iron hormone hepcidin. Full exome and candidate gene sequencing were carried out in a family with A1ATD and hepatic iron overload. Regulation of hepcidin expression by A1AT was studied in primary murine hepatocytes. Cells co-transfected with hemojuvelin (HJV) and matriptase-2 (MT-2) were used as a model to investigate the molecular mechanism of this regulation. Observed familial clustering of hepatic iron overload with A1ATD suggests a genetic cause, but genotypes known to be associated with hemochromatosis were absent. Individuals homozygous for the A1AT Z-allele with environmental or genetic risk factors such as steatosis or heterozygosity for the HAMP non-sense mutation p.Arg59* presented with severe hepatic siderosis. In hepatocytes, A1AT induced hepcidin mRNA expression in a dose-dependent manner. Experiments in overexpressing cells show that A1AT reduces cleavage of the hepcidin inducing bone morphogenetic protein co-receptor HJV via inhibition of the membrane-bound serine protease MT-2. The acute-phase protein A1AT is an inducer of hepcidin expression. Through this mechanism, A1ATD could be a trigger of hepatic iron overload in genetically predisposed individuals or patients with environmental risk factors for hepatic siderosis.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
24 |
23
|
Petersen BS, August D, Abt R, Alddafari M, Atarod L, Baris S, Bhavsar H, Brinkert F, Buchta M, Bulashevska A, Chee R, Cordeiro AI, Dara N, Dückers G, Elmarsafy A, Frede N, Galal N, Gerner P, Glocker EO, Goldacker S, Hammermann J, Hasselblatt P, Havlicekova Z, Hübscher K, Jesenak M, Karaca NE, Karakoc-Aydiner E, Kharaghani MM, Kilic SS, Kiykim A, Klein C, Klemann C, Kobbe R, Kotlarz D, Laass MW, Leahy TR, Mesdaghi M, Mitton S, Neves JF, Öztürk B, Pereira LF, Rohr J, Restrepo JLR, Ruzaike G, Saleh N, Seneviratne S, Senol E, Speckmann C, Tegtmeyer D, Thankam P, van der Werff Ten Bosch J, von Bernuth H, Zeissig S, Zeissig Y, Franke A, Grimbacher B. Targeted Gene Panel Sequencing for Early-onset Inflammatory Bowel Disease and Chronic Diarrhea. Inflamm Bowel Dis 2017; 23:2109-2120. [PMID: 28930861 DOI: 10.1097/mib.0000000000001235] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND In contrast to adult-onset inflammatory bowel disease (IBD), where many genetic loci have been shown to be involved in complex disease etiology, early-onset IBD (eoIBD) and associated syndromes can sometimes present as monogenic conditions. As a result, the clinical phenotype and ideal disease management in these patients often differ from those in adult-onset IBD. However, due to high costs and the complexity of data analysis, high-throughput screening for genetic causes has not yet become a standard part of the diagnostic work-up of eoIBD patients. METHODS We selected 28 genes of interest associated with monogenic IBD and performed targeted panel sequencing in 71 patients diagnosed with eoIBD or early-onset chronic diarrhea to detect causative variants. We compared these results to whole-exome sequencing (WES) data available for 25 of these patients. RESULTS Target coverage was significantly higher in the targeted gene panel approach compared with WES, whereas the cost of the panel was considerably lower (approximately 25% of WES). Disease-causing variants affecting protein function were identified in 5 patients (7%), located in genes of the IL10 signaling pathway (3), WAS (1), and DKC1 (1). The functional effects of 8 candidate variants in 5 additional patients (7%) are under further investigation. WES did not identify additional causative mutations in 25 patients. CONCLUSIONS Targeted gene panel sequencing is a fast and effective screening method for monogenic causes of eoIBD that should be routinely established in national referral centers.
Collapse
|
|
8 |
23 |
24
|
Nørgaard JP, Hansen JH, Nielsen JB, Petersen BS, Knudsen N, Djurhuus JC. Simultaneous registration of sleep-stages and bladder activity in enuresis. Urology 1985; 26:316-9. [PMID: 4035854 DOI: 10.1016/0090-4295(85)90140-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A combined monitoring of sleep stages and bladder activity for the evaluation of enuresis is on trial. Polygraphic recordings in 7 patients, comprising the preliminary material, have shown single-event bladder contractions without forewarning or changes in sleep stages. A volume dependency of the enuresis episodes seems so far to be a major mechanism.
Collapse
|
|
40 |
22 |
25
|
Backes C, Harz C, Fischer U, Schmitt J, Ludwig N, Petersen BS, Mueller SC, Kim YJ, Wolf NM, Katus HA, Meder B, Furtwängler R, Franke A, Bohle R, Henn W, Graf N, Keller A, Meese E. New insights into the genetics of glioblastoma multiforme by familial exome sequencing. Oncotarget 2016; 6:5918-31. [PMID: 25537509 PMCID: PMC4467411 DOI: 10.18632/oncotarget.2950] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/09/2014] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and malignant subtype of human brain tumors. While a family clustering of GBM has long been acknowledged, relevant hereditary factors still remained elusive. Exome sequencing of families offers the option to discover respective genetic factors.We sequenced blood samples of one of the rare affected families: while both parents were healthy, both children were diagnosed with GBM. We report 85 homozygous non-synonymous single nucleotide variations (SNVs) in both siblings that were heterozygous in the parents. Beyond known key players for GBM such as ERBB2, PMS2, or CHI3L1, we identified over 50 genes that have not been associated to GBM so far. We also discovered three accumulative effects potentially adding to the tumorigenesis in the siblings: a clustering of multiple variants in single genes (e.g., PTPRB, CROCC), the aggregation of affected genes on specific molecular pathways (e.g., Focal adhesion or ECM receptor interaction) and genomic proximity (e.g., chr22.q12.2, chr1.p36.33). We found a striking accumulation of SNVs in specific genes for the daughter, who developed not only a GBM at the age of 12 years but was subsequently diagnosed with a pilocytic astrocytoma, a common acute lymphatic leukemia and a diffuse pontine glioma.The reported variants underline the relevance of genetic predisposition and cancer development in this family and demonstrate that GBM has a complex and heterogeneous genetic background. Sequencing of other affected families will help to further narrow down the driving genetic causes for this disease.
Collapse
|
Journal Article |
9 |
20 |