1
|
Bhattacharya S, Esquivel BD, White TC. Overexpression or Deletion of Ergosterol Biosynthesis Genes Alters Doubling Time, Response to Stress Agents, and Drug Susceptibility in Saccharomyces cerevisiae. mBio 2018; 9:e01291-18. [PMID: 30042199 PMCID: PMC6058291 DOI: 10.1128/mbio.01291-18] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023] Open
Abstract
Ergosterol (ERG) is a critical sterol in the cell membranes of fungi, and its biosynthesis is tightly regulated by 25 known enzymes along the ERG production pathway. The effects of changes in expression of each ERG biosynthesis enzyme in Saccharomyces cerevisiae were analyzed by the use of gene deletion or plasmid-borne overexpression constructs. The strains overexpressing the ERG pathway genes were examined for changes in doubling time and responses to a variety of stress agents. In addition, ERG gene overexpression strains and ERG gene deletion strains were tested for alterations in antifungal drug susceptibility. The data show that disruptions in ergosterol biosynthesis regulation can affect a diverse set of cellular processes and can cause numerous phenotypic effects. Some of the phenotypes observed include dramatic increases in doubling times, respiratory deficiencies on glycerol media, cell wall insufficiencies on Congo red media, and disrupted ion homeostasis under iron or calcium starvation conditions. Overexpression or deletion of specific enzymes in the ERG pathway causes altered susceptibilities to a variety of classes of antifungal ergosterol inhibitors, including fluconazole, fenpropimorph, lovastatin, nystatin, amphotericin B, and terbinafine. This analysis of the effect of perturbations to the ERG pathway caused by systematic overexpression of each of the ERG pathway genes contributes significantly to the understanding of the ergosterol biosynthetic pathway and its relationship to stress response and basic biological processes. The data indicate that precise regulation of ERG genes is essential for cellular homeostasis and identify several ERG genes that could be exploited in future antifungal development efforts.IMPORTANCE A common target of antifungal drug treatment is the fungal ergosterol biosynthesis pathway. This report helps to identify ergosterol biosynthesis enzymes that have not previously been appreciated as drug targets. The effects of overexpression of each of the 25 ERG genes in S. cerevisiae were analyzed in the presence of six stress agents that target essential cellular processes (cell wall biosynthesis, protein translation, respiration, osmotic/ionic stress, and iron and calcium homeostasis), as well as six antifungal inhibitors that target ergosterol biosynthesis. The importance of identifying cell perturbations caused by gene overexpression or deletion is emphasized by the prevalence of gene expression alterations in many pathogenic and drug-resistant clinical isolates. Genes whose altered expression causes the most extensive phenotypic alterations in the presence of stressors or inhibitors have the potential to be drug targets.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
150 |
2
|
Rybak JM, Muñoz JF, Barker KS, Parker JE, Esquivel BD, Berkow EL, Lockhart SR, Gade L, Palmer GE, White TC, Kelly SL, Cuomo CA, Rogers PD. Mutations in TAC1B: a Novel Genetic Determinant of Clinical Fluconazole Resistance in Candida auris. mBio 2020; 11:e00365-20. [PMID: 32398311 PMCID: PMC7218281 DOI: 10.1128/mbio.00365-20] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/13/2020] [Indexed: 11/20/2022] Open
Abstract
Candida auris has emerged as a multidrug-resistant pathogen of great clinical concern. Approximately 90% of clinical C. auris isolates are resistant to fluconazole, the most commonly prescribed antifungal agent, and yet it remains unknown what mechanisms underpin this fluconazole resistance. To identify novel mechanisms contributing to fluconazole resistance in C. auris, fluconazole-susceptible C. auris clinical isolate AR0387 was passaged in media supplemented with fluconazole to generate derivative strains which had acquired increased fluconazole resistance in vitro Comparative analyses of comprehensive sterol profiles, [3H]fluconazole uptake, sequencing of C. auris genes homologous to genes known to contribute to fluconazole resistance in other species of Candida, and relative expression levels of C. aurisERG11, CDR1, and MDR1 were performed. All fluconazole-evolved derivative strains were found to have acquired mutations in the zinc-cluster transcription factor-encoding gene TAC1B and to show a corresponding increase in CDR1 expression relative to the parental clinical isolate, AR0387. Mutations in TAC1B were also identified in a set of 304 globally distributed C. auris clinical isolates representing each of the four major clades. Introduction of the most common mutation found among fluconazole-resistant clinical isolates of C. auris into fluconazole-susceptible isolate AR0387 was confirmed to increase fluconazole resistance by 8-fold, and the correction of the same mutation in a fluconazole-resistant isolate, AR0390, decreased fluconazole MIC by 16-fold. Taken together, these data demonstrate that C. auris can rapidly acquire resistance to fluconazole in vitro and that mutations in TAC1B significantly contribute to clinical fluconazole resistance.IMPORTANCECandida auris is an emerging multidrug-resistant pathogen of global concern, known to be responsible for outbreaks on six continents and to be commonly resistant to antifungals. While the vast majority of clinical C. auris isolates are highly resistant to fluconazole, an essential part of the available antifungal arsenal, very little is known about the mechanisms contributing to resistance. In this work, we show that mutations in the transcription factor TAC1B significantly contribute to clinical fluconazole resistance. These studies demonstrated that mutations in TAC1B can arise rapidly in vitro upon exposure to fluconazole and that a multitude of resistance-associated TAC1B mutations are present among the majority of fluconazole-resistant C. auris isolates from a global collection and appear specific to a subset of lineages or clades. Thus, identification of this novel genetic determinant of resistance significantly adds to the understanding of clinical antifungal resistance in C. auris.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
119 |
3
|
Khandelwal NK, Chauhan N, Sarkar P, Esquivel BD, Coccetti P, Singh A, Coste AT, Gupta M, Sanglard D, White TC, Chauvel M, d'Enfert C, Chattopadhyay A, Gaur NA, Mondal AK, Prasad R. Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling. J Biol Chem 2017; 293:412-432. [PMID: 29158264 DOI: 10.1074/jbc.m117.807032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/17/2017] [Indexed: 12/12/2022] Open
Abstract
ATP-binding cassette (ABC) transporters help export various substrates across the cell membrane and significantly contribute to drug resistance. However, a recent study reported an unusual case in which the loss of an ABC transporter in Candida albicans, orf19.4531 (previously named ROA1), increases resistance against antifungal azoles, which was attributed to an altered membrane potential in the mutant strain. To obtain further mechanistic insights into this phenomenon, here we confirmed that the plasma membrane-localized transporter (renamed CDR6/ROA1 for consistency with C. albicans nomenclature) could efflux xenobiotics such as berberine, rhodamine 123, and paraquat. Moreover, a CDR6/ROA1 null mutant, NKKY101, displayed increased susceptibility to these xenobiotics. Interestingly, fluorescence recovery after photobleaching (FRAP) results indicated that NKKY101 mutant cells exhibited increased plasma membrane rigidity, resulting in reduced azole accumulation and contributing to azole resistance. Transcriptional profiling revealed that ribosome biogenesis genes were significantly up-regulated in the NKKY101 mutant. As ribosome biogenesis is a well-known downstream phenomenon of target of rapamycin (TOR1) signaling, we suspected a link between ribosome biogenesis and TOR1 signaling in NKKY101. Therefore, we grew NKKY101 cells on rapamycin and observed TOR1 hyperactivation, which leads to Hsp90-dependent calcineurin stabilization and thereby increased azole resistance. This in vitro finding was supported by in vivo data from a mouse model of systemic infection in which NKKY101 cells led to higher fungal load after fluconazole challenge than wild-type cells. Taken together, our study uncovers a mechanism of azole resistance in C. albicans, involving increased membrane rigidity and TOR signaling.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
33 |
4
|
Esquivel BD, Rybak JM, Barker KS, Fortwendel JR, Rogers PD, White TC. Characterization of the Efflux Capability and Substrate Specificity of Aspergillus fumigatus PDR5-like ABC Transporters Expressed in Saccharomyces cerevisiae. mBio 2020; 11:e00338-20. [PMID: 32209680 PMCID: PMC7157516 DOI: 10.1128/mbio.00338-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022] Open
Abstract
This research analyzed six Aspergillus fumigatus genes encoding putative efflux proteins for their roles as transporters. TheA. fumigatus genes abcA, abcC, abcF, abcG, abcH, and abcI were cloned into plasmids and overexpressed in a Saccharomyces cerevisiae strain in which the highly active endogenous ABC transporter gene PDR5 was deleted. The activity of each transporter was measured by efflux of rhodamine 6G and accumulation of alanine β-naphthylamide. The transporters AbcA, AbcC, and AbcF had the strongest efflux activities of these compounds. All of the strains with plasmid-expressed transporters had more efflux activity than did the PDR5-deleted background strain. We performed broth microdilution drug susceptibility testing and agar spot assays using an array of compounds and antifungal drugs to determine the transporter specificity and drug susceptibility of the strains. The transporters AbcC and AbcF showed the broadest range of substrate specificity, while AbcG and AbcH had the narrowest range of substrates. Strains expressing the AbcA, AbcC, AbcF, or AbcI transporter were more resistant to fluconazole than was the PDR5-deleted background strain. Strains expressing AbcC and AbcF were additionally more resistant to clotrimazole, itraconazole, ketoconazole, and posaconazole than was the background strain. Finally, we analyzed the expression levels of the genes by reverse transcription-quantitative PCR (RT-qPCR) in triazole-susceptible and -resistant A. fumigatus clinical isolates. All of these transporters are expressed at a measurable level, and transporter expression varied significantly between strains, demonstrating the high degree of phenotypic variation, plasticity, and divergence of which this species is capable.IMPORTANCE One mechanism behind drug resistance is altered export out of the cell. This work is a multifaceted analysis of membrane efflux transporters in the human fungal pathogen A. fumigatus Bioinformatics evidence infers that there is a relatively large number of genes in A. fumigatus that encode ABC efflux transporters. However, very few of these transporters have been directly characterized and analyzed for their potential role in drug resistance.Our objective was to determine if these undercharacterized proteins function as efflux transporters and then to better define whether their efflux substrates include antifungal drugs used to treat fungal infections. We chose six A. fumigatus potential plasma membrane ABC transporter genes for analysis and found that all six genes produced functional transporter proteins. We used two fungal systems to look for correlations between transporter function and drug resistance. These transporters have the potential to produce drug-resistant phenotypes in A. fumigatus Continued characterization of these and other transporters may assist in the development of efflux inhibitor drugs.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
21 |
5
|
Rodríguez-Martín M, Sáez-Rodríguez M, Esquivel B, Gonzáalez RS, Cabrera AN, Herrera AM. Clear cell sarcoma: a case mimicking primary cutaneous malignant melanoma. Indian J Dermatol 2010; 54:168-72. [PMID: 20101313 PMCID: PMC2807157 DOI: 10.4103/0019-5154.53193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Clear cell sarcoma (CCS) is a recently described variant of sarcoma characterized by prominent clear cells showing features similar to clear cell melanoma. This neoplasm was first described by Dr. Franz M. Erzinger. Primary CCS usually arises in deeper soft tissues, in association with fascia, tendons, or aponeuroses. Characteristic translocation t(12;22) (q13;q12) has been considered pathognomonic for CCS. Prognosis is related to tumor size. An early recognition and initial radical surgery is the key to a favourable outcome. We present a patient with an unusual neoplasm that resembled malignant melanoma.
Collapse
|
Journal Article |
15 |
15 |
6
|
Beardmore RE, Cook E, Nilsson S, Smith AR, Tillmann A, Esquivel BD, Haynes K, Gow NAR, Brown AJP, White TC, Gudelj I. Drug-mediated metabolic tipping between antibiotic resistant states in a mixed-species community. Nat Ecol Evol 2018; 2:1312-1320. [PMID: 29988162 PMCID: PMC7614790 DOI: 10.1038/s41559-018-0582-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/17/2018] [Indexed: 01/07/2023]
Abstract
Microbes rarely exist in isolation, rather, they form intricate multi-species communities that colonize our bodies and inserted medical devices. However, the efficacy of antimicrobials is measured in clinical laboratories exclusively using microbial monocultures. Here, to determine how multi-species interactions mediate selection for resistance during antibiotic treatment, particularly following drug withdrawal, we study a laboratory community consisting of two microbial pathogens. Single-species dose responses are a poor predictor of community dynamics during treatment so, to better understand those dynamics, we introduce the concept of a dose-response mosaic, a multi-dimensional map that indicates how species' abundance is affected by changes in abiotic conditions. We study the dose-response mosaic of a two-species community with a 'Gene × Gene × Environment × Environment' ecological interaction whereby Candida glabrata, which is resistant to the antifungal drug fluconazole, competes for survival with Candida albicans, which is susceptible to fluconazole. The mosaic comprises several zones that delineate abiotic conditions where each species dominates. Zones are separated by loci of bifurcations and tipping points that identify what environmental changes can trigger the loss of either species. Observations of the laboratory communities corroborated theory, showing that changes in both antibiotic concentration and nutrient availability can push populations beyond tipping points, thus creating irreversible shifts in community composition from drug-sensitive to drug-resistant species. This has an important consequence: resistant species can increase in frequency even if an antibiotic is withdrawn because, unwittingly, a tipping point was passed during treatment.
Collapse
|
research-article |
7 |
14 |
7
|
White TC, Esquivel BD, Rouse Salcido EM, Schweiker AM, dos Santos AR, Gade L, Petro E, KuKanich B, KuKanich KS. Candida auris detected in the oral cavity of a dog in Kansas. mBio 2024; 15:e0308023. [PMID: 38193663 PMCID: PMC10865968 DOI: 10.1128/mbio.03080-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Candida auris is an emerging human fungal pathogen, first described in Japan in 2009, and first detected in the United States in 2016. Here, we report the first-ever description of C. auris colonizing a human pet, the first identification of C. auris in a non-human mammal in the United States and the first C. auris isolate from the state of Kansas. While analyzing the oral mycobiome of dogs from a shelter in Kansas, the oral swab from one dog was found to contain C. auris as well as three other fungal species. The presence of C. auris in a dog suggests the possibility of zoonotic transmission to humans. The isolate is a member of Clade IV, which has been found in patients in Chicago and Florida, while Clades I and III are the most prevalent in the United States. The isolate is resistant to fluconazole, terbinafine, and amphotericin B but susceptible to caspofungin, consistent with the drug-resistant characteristics of many human C. auris isolates. The source of C. auris transient colonization in this dog is unknown, and there is no evidence that it was further transmitted to humans, other dogs in the shelter, or pets in its adopted household. Isolation of C. auris from a dog in Kansas has public health implications as a potential emerging source for the zoonotic spread of this pathogenic fungus, and for the development of antifungal resistance.IMPORTANCECandida auris is an emerging fungal infection of humans and is particularly problematic because it is multi-drug resistant and difficult to treat. It is also known to be spread from person to person by contact and can remain on surfaces for long periods of time. In this report, a dog in a shelter in Kansas is found to be colonized with Candida auris. This is the first study to document the presence of Candida auris on a pet, the first to document C. auris presence on a non-human mammal in the United States, and the first to report an isolate of C. auris within the state of Kansas. The presence of C. auris in a pet dog raises the possibility of zoonotic transmission from pets to human or vice versa.
Collapse
|
brief-report |
1 |
12 |
8
|
Esquivel B, del Socorro Martínez N, Cárdenas J, Ramamoorthy TP, Rodríguez-Hahn L. The pimarane-type diterpenoids of Salvia microphylla var. neurepia. PLANTA MEDICA 1989; 55:62-3. [PMID: 17262256 DOI: 10.1055/s-2006-961827] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
From the aerial parts of SALVIA MICROPHYLLA var. NEUREPIA, in addition to beta-sitosterol and ursolic acid, four pimarane-type diterpenoids were isolated. Their structures, 7alpha-hydroxysandaracopimaric acid ( 3), 7alpha-acetoxysandaracopimaric acid ( 1), 14alpha-hydroxyisopimaric acid, and 8(14),15-sandaracopimaradien-7alpha,18-diol were established by chemical and spectroscopic means.
Collapse
|
|
36 |
12 |
9
|
Esquivel BD, White TC. Accumulation of Azole Drugs in the Fungal Plant Pathogen Magnaporthe oryzae Is the Result of Facilitated Diffusion Influx. Front Microbiol 2017; 8:1320. [PMID: 28751884 PMCID: PMC5508014 DOI: 10.3389/fmicb.2017.01320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/29/2017] [Indexed: 12/31/2022] Open
Abstract
Magnaporthe oryzae is an agricultural mold that causes disease in rice, resulting in devastating crop losses. Since rice is a world-wide staple food crop, infection by M. oryzae poses a serious global food security threat. Fungicides, including azole antifungals, are used to prevent and combat M. oryzae plant infections. The target of azoles is CYP51, an enzyme localized on the endoplasmic reticulum (ER) and required for fungal ergosterol biosynthesis. However, many basic drug-pathogen interactions, such as how the azole gets past the fungal cell wall and plasma membrane, and is transported to the ER, are not understood. In addition, reduced intracellular accumulation of antifungals has consistently been observed as a drug resistance mechanism in many fungal species. Studying the basic biology of drug-pathogen interactions may elucidate uncharacterized mechanisms of drug resistance and susceptibility in M. oryzae and potentially other related fungal pathogens. We characterized intracellular accumulation of azole drugs in M. oryzae using a radioactively labeled fluconazole uptake assay to gain insight on whether azoles enter the cell by passive diffusion, active transport, or facilitated diffusion. We show that azole accumulation is not ATP-dependent, nor does it rely on a pH-dependent process. Instead there is evidence for azole drug uptake in M. oryzae by a facilitated diffusion mechanism. The uptake system is specific for azole or azole-like compounds and can be modulated depending on cell phase and growth media. In addition, we found that co-treatment of M. oryzae with ‘repurposed’ clorgyline and radio-labeled fluconazole prevented energy-dependent efflux of fluconazole, resulting in an increased intracellular concentration of fluconazole in the fungal cell.
Collapse
|
Journal Article |
8 |
8 |
10
|
Shahi G, Kumar M, Khandelwal NK, Banerjee A, Sarkar P, Kumari S, Esquivel BD, Chauhan N, Chattopadhyay A, White TC, Gaur NA, Singh A, Prasad R. Inositol Phosphoryl Transferase, Ipt1, Is a Critical Determinant of Azole Resistance and Virulence Phenotypes in Candida glabrata. J Fungi (Basel) 2022; 8:jof8070651. [PMID: 35887407 PMCID: PMC9322651 DOI: 10.3390/jof8070651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, we have specifically blocked a key step of sphingolipid (SL) biosynthesis in Candida glabrata by disruption of the orthologs of ScIpt1 and ScSkn1. Based on their close homology with S. cerevisiae counterparts, the proteins are predicted to catalyze the addition of a phosphorylinositol group onto mannosyl inositolphosphoryl ceramide (MIPC) to form mannosyl diinositolphosphoryl ceramide (M(IP)2C), which accounts for the majority of complex SL structures in S. cerevisiae membranes. High throughput lipidome analysis confirmed the accumulation of MIPC structures in ΔCgipt1 and ΔCgskn1 cells, albeit to lesser extent in the latter. Noticeably, ΔCgipt1 cells showed an increased susceptibility to azoles; however, ΔCgskn1 cells showed no significant changes in the drug susceptibility profiles. Interestingly, the azole susceptible phenotype of ΔCgipt1 cells seems to be independent of the ergosterol content. ΔCgipt1 cells displayed altered lipid homeostasis, increased membrane fluidity as well as high diffusion of radiolabeled fluconazole (3H-FLC), which could together influence the azole susceptibility of C. glabrata. Furthermore, in vivo experiments also confirmed compromised virulence of the ΔCgipt1 strain. Contrarily, specific functions of CgSkn1 remain unclear.
Collapse
|
|
3 |
5 |
11
|
Beardmore RE, Cook E, Nilsson S, Smith AR, Tillmann A, Esquivel BD, Haynes K, Gow NAR, Brown AJP, White TC, Gudelj I. Author Correction: Drug-mediated metabolic tipping between antibiotic resistant states in a mixed-species community. Nat Ecol Evol 2018; 2:1824. [PMID: 30237543 DOI: 10.1038/s41559-018-0678-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the version of this Article originally published, the following sentence was missing from the Acknowledgements: "R.E.B. is an EPSRC Healthcare Technologies Impact Fellow EP/N033671/1; I.G. is funded by ERC Consolidator grant 647292 MathModExp; A.J.P.B., N.A.R.G. and A.T. were funded by BBSRC grant BB/F00513X/1; K.H., I.G., S.N. and E.C. were funded by BBSRC grant BB/F005210/2." This text has now been added.
Collapse
|
Published Erratum |
7 |
2 |
12
|
Esquivel B, Domínguez RM, Toscano RA. Neoclerodane diterpenoids from Scutellaria caerulea. JOURNAL OF NATURAL PRODUCTS 2001; 64:778-782. [PMID: 11421742 DOI: 10.1021/np000588n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Five new neoclerodane diterpenoids have been isolated from Scutellaria caerulea: (11S*)-6 alpha-acetoxy-7 beta,11-diisobutiryloxy-1 beta,8 beta-dihydroxy-4(18),13-neoclerodadien-15,16-olide (scuterulein A) (1); (13R*)-1 beta-6 alpha-7 beta-triacetoxy-11 beta-benzoyloxy-8 beta,13-epoxy-4(18)-neocleroden-15,16-olide (scuterulein B) (2); (11S*)-1 beta,6 alpha,11-triacetoxy-7 beta-isobutiryloxy-8 beta-hydroxy-4(18),13-neoclerodadien-15,16-olide (scuterulein C) (3); (11S*)-6 alpha,11-diacetoxy-7 beta-isobutiryloxy-1 beta,8 beta-dihydroxy-4(18),13-neoclerodadien-15,16-olide (deacetyl scuterulein C) (4), and (11E)-6 alpha-acetoxy-7 beta-isobutiryloxy-1 beta,8 beta-dihydroxy-4(18),11,13-neoclerodatrien-15,16-olide (scuterulein D) (5). Structures were established by spectroscopic and chemical methods. An X-ray analysis was carried out on scuterulein B (2).
Collapse
|
|
24 |
1 |
13
|
Esquivel BD, Rouse Salcido EM, Schweiker AM, Holder BL, KuKanich B, KuKanich KS, White TC. Fungal diversity and drug susceptibility of the oral mycobiome of domestic dogs. Front Vet Sci 2023; 10:1281712. [PMID: 38033632 PMCID: PMC10684787 DOI: 10.3389/fvets.2023.1281712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023] Open
Abstract
The purpose of this study was to characterize the variety and diversity of the oral mycobiome of domestic dogs and to identify the commensal and potentially pathogenic fungi present. Two hundred fifty-one buccal swabs from domestic dogs were obtained and struck onto a chromogenic fungal growth medium that distinguishes between fungal species based on colony color and morphology. After isolating and harvesting single colonies, genomic DNA was extracted from pure cultures. PCR was used to amplify a fungal-specific variable rDNA region of the genome, which was then sent for sequencing. Sequencing results were input into the NCBI BLAST database to identify individual components of the oral mycobiome of tested dogs. Of the 251 dogs swabbed, 73 had cultivable fungi present and 10 dogs had multiple fungal species isolated. Although the dogs did not show signs of oral infections at the time, we did find fungal species that cause pathogenicity in animals and humans. Among fungal isolates, Malassezia pachydermatis and species from the genus Candida were predominant. Following fungal isolate identification, antifungal drug susceptibility tests were performed on each isolate toward the medically important antifungal drugs including fluconazole, ketoconazole, and terbinafine. Drug susceptibility test results indicated that a large number of isolates had high MIC values for all three drugs. Exploring the oral mycobiome of dogs, as well as the corresponding drug susceptibility profiles, can have important implications for canine dental hygiene, health, and medical treatment. Identifying the microorganisms within the canine mouth can illustrate a common pathway for fungal pathogens of One Health concern to spread from our canine companions to humans.
Collapse
|
research-article |
2 |
1 |
14
|
Esquivel B, White TC. Azole uptake in Candida auris is strongly correlated with drug resistance. Access Microbiol 2021. [DOI: 10.1099/acmi.cc2021.po0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analyses of fluconazole uptake in clinical isolates of C. auris, with wide ranging drug resistance profiles, has revealed interesting differences within the species as well as major distinctions from other yeast species. We previously proposed that prevention of drug uptake is a potential mechanism of drug resistance and our C. auris data provide further support for this.
We developed an assay using radio-labeled fluconazole to measure intracellular azole accumulation in fungal cells. The assay is performed under glucose-replete conditions to inhibit ATP-dependent efflux. A comparative study measuring fluconazole uptake in 63 C. auris isolates as well as a panel of other species such as C. albicans, S. cerevisiae, C. glabrata, C. krusie, C. lusitanea, C. tropicalis, and C. dublinienses revealed striking C. auris phenotypes that we have not seen in other fungal species.
There is a strong correlation between fluconazole resistance and reduced drug uptake in C. auris. Fluconazole-resistant C. auris isolates had reduced levels of intracellular fluconazole accumulation compared to susceptible isolates. Drug-resistant C. auris isolates had the lowest drug accumulation of any of the yeast species tested. Fluconazole-susceptible C. auris isolates had dramatically increased fluconazole accumulation compared to the resistant isolates as well as when compared to other yeast species.
Of the 63 C. auris isolates, 28 of 32 (∼88%) resistant isolates had extremely low fluconazole uptake, whereas 15 of 18 (∼83%) susceptible isolates had high fluconazole uptake. This association between reduced drug uptake and resistance could be a C. auris-distinctive mechanism of drug resistance.
Collapse
|
|
4 |
|
15
|
Esquivel BD, White TC. Transport Across Membranes: Techniques for Measuring Drug Import in Fungal Cells. Methods Mol Biol 2023; 2658:215-221. [PMID: 37024705 DOI: 10.1007/978-1-0716-3155-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The ability of many antifungal molecules to traverse the fungal cell wall and accumulate within the cell is crucial to its ability to have the desired biological activity. Altered accumulation of the drug is an important mechanism of antifungal drug resistance. The best characterized mechanism for altered accumulation is through the action of the drug efflux pump which actively transports the drugs out of the membrane, although this is not the only mechanism for this phenomenon. Here, we describe protocols for the measurement of uptake of tritiated fluconazole in both yeast and filamentous fungi.
Collapse
|
|
2 |
|
16
|
Esquivel BD, White TC. Transport across Membranes: Techniques for Measuring Efflux in Fungal Cells. Methods Mol Biol 2023; 2658:201-213. [PMID: 37024704 DOI: 10.1007/978-1-0716-3155-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
One of the most prevalent mechanisms of antifungal drug resistance is export of the molecule from the fungal cells through the action of putative efflux pumps or transporters. Drug efflux is a particularly common mechanism of resistance to azole antifungals, one of the most widely used classes of antifungal drugs. Here, we provide detailed protocols for two assays of small-molecule efflux activity: rhodamine 6G efflux and alanine-naphthylamide accumulation. Protocols applicable to both yeast and filamentous fungi are provided.
Collapse
|
|
2 |
|