1
|
McDonald BA, Linde C. Pathogen population genetics, evolutionary potential, and durable resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2002; 40:349-79. [PMID: 12147764 DOI: 10.1146/annurev.phyto.40.120501.101443] [Citation(s) in RCA: 980] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We hypothesize that the evolutionary potential of a pathogen population is reflected in its population genetic structure. Pathogen populations with a high evolutionary potential are more likely to overcome genetic resistance than pathogen populations with a low evolutionary potential. We propose a flexible framework to predict the evolutionary potential of pathogen populations based on analysis of their genetic structure. According to this framework, pathogens that pose the greatest risk of breaking down resistance genes have a mixed reproduction system, a high potential for genotype flow, large effective population sizes, and high mutation rates. The lowest risk pathogens are those with strict asexual reproduction, low potential for gene flow, small effective population sizes, and low mutation rates. We present examples of high-risk and low-risk pathogens. We propose general guidelines for a rational approach to breed durable resistance according to the evolutionary potential of the pathogen.
Collapse
|
Review |
23 |
980 |
2
|
Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 2006; 38:953-6. [PMID: 16832356 DOI: 10.1038/ng1839] [Citation(s) in RCA: 454] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 06/08/2006] [Indexed: 11/09/2022]
Abstract
New diseases of humans, animals and plants emerge regularly. Enhanced virulence on a new host can be facilitated by the acquisition of novel virulence factors. Interspecific gene transfer is known to be a source of such virulence factors in bacterial pathogens (often manifested as pathogenicity islands in the recipient organism) and it has been speculated that interspecific transfer of virulence factors may occur in fungal pathogens. Until now, no direct support has been available for this hypothesis. Here we present evidence that a gene encoding a critical virulence factor was transferred from one species of fungal pathogen to another. This gene transfer probably occurred just before 1941, creating a pathogen population with significantly enhanced virulence and leading to the emergence of a new damaging disease of wheat.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
454 |
3
|
Stukenbrock EH, McDonald BA. The origins of plant pathogens in agro-ecosystems. ANNUAL REVIEW OF PHYTOPATHOLOGY 2008; 46:75-100. [PMID: 18680424 DOI: 10.1146/annurev.phyto.010708.154114] [Citation(s) in RCA: 340] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant pathogens can emerge in agricultural ecosystems through several mechanisms, including host-tracking, host jumps, hybridization and horizontal gene transfer. High-throughput DNA sequencing coupled with new analytical approaches make it possible to differentiate among these mechanisms and to infer the time and place where pathogens first emerged. We present several examples to illustrate the different mechanisms and timescales associated with the origins of important plant pathogens. In some cases pathogens were domesticated along with their hosts during the invention of agriculture approximately 10,000 years ago. In other cases pathogens appear to have emerged very recently and almost instantaneously following horizontal gene transfer or hybridization. The predominant unifying feature in these examples is the environmental and genetic uniformity of the agricultural ecosystem in which the pathogens emerged. We conclude that agro-ecosystems will continue to select for new pathogens unless they are re-engineered to make them less conducive to pathogen emergence.
Collapse
|
Review |
17 |
340 |
4
|
Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee P, Hossain MS, Gupta DR, Rahman MM, Mahboob MG, Cook N, Salam MU, Surovy MZ, Sancho VB, Maciel JLN, NhaniJúnior A, Castroagudín VL, Reges JTDA, Ceresini PC, Ravel S, Kellner R, Fournier E, Tharreau D, Lebrun MH, McDonald BA, Stitt T, Swan D, Talbot NJ, Saunders DGO, Win J, Kamoun S. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol 2016; 14:84. [PMID: 27716181 PMCID: PMC5047043 DOI: 10.1186/s12915-016-0309-7] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/12/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In February 2016, a new fungal disease was spotted in wheat fields across eight districts in Bangladesh. The epidemic spread to an estimated 15,000 hectares, about 16 % of the cultivated wheat area in Bangladesh, with yield losses reaching up to 100 %. Within weeks of the onset of the epidemic, we performed transcriptome sequencing of symptomatic leaf samples collected directly from Bangladeshi fields. RESULTS Reinoculation of seedlings with strains isolated from infected wheat grains showed wheat blast symptoms on leaves of wheat but not rice. Our phylogenomic and population genomic analyses revealed that the wheat blast outbreak in Bangladesh was most likely caused by a wheat-infecting South American lineage of the blast fungus Magnaporthe oryzae. CONCLUSION Our findings suggest that genomic surveillance can be rapidly applied to monitor plant disease outbreaks and provide valuable information regarding the identity and origin of the infectious agent.
Collapse
|
research-article |
9 |
225 |
5
|
Zhan J, Pettway RE, McDonald BA. The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. Fungal Genet Biol 2003; 38:286-97. [PMID: 12684018 DOI: 10.1016/s1087-1845(02)00538-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A total of 1673 Mycosphaerella graminicola strains were assayed for DNA fingerprints and restriction fragment length polymorphism (RFLP) markers in the nuclear and mitochondrial genomes. The isolates were collected from 17 wheat fields located in 11 countries on five continents over a six year period (1989-1995). Our results indicate that genetic diversity in the nuclear genome of this fungus was high for all but three of the field populations surveyed and that populations sampled from different continents had similar frequencies for the most common RFLP alleles. Hierarchical analysis revealed that more than 90% of global gene diversity was distributed within a wheat field, while approximately 5% of gene diversity was distributed among fields within regions and approximately 3% was distributed among regions on different continents. These findings suggest that gene flow has occurred on a global scale. On average, each leaf was colonized by a different nuclear genotype. In contrast, only seven mtDNA haplotypes were detected among the 1673 isolates and the two most common mtDNA haplotypes represented approximately 93% of the world population, consistent with a selective sweep. Analysis of multilocus associations indicated that all field populations were in gametic equilibrium, suggesting that sexual recombination is a regular occurrence globally.
Collapse
|
|
22 |
178 |
6
|
Chen RS, McDonald BA. Sexual reproduction plays a major role in the genetic structure of populations of the fungus Mycosphaerella graminicola. Genetics 1996; 142:1119-27. [PMID: 8846892 PMCID: PMC1207112 DOI: 10.1093/genetics/142.4.1119] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The relative contributions of sexual and asexual reproduction to the genetic structure of populations can be difficult to determine for fungi that use a mixture of both types of propagation. Nuclear RFLPs and DNA fingerprints were used to make indirect and direct measures of departures from random mating in a population of the plant pathogenic fungus Mycosphaerella graminicola during the course of an epidemic cycle. DNA fingerprints resolved 617 different genotypes among 673 isolates sampled from a single field over a 3-month period. Only 7% of the isolates represented asexual clones that were found more than once in the sample. The most common clone was found four times. Genotypic diversity averaged 85% of its maximum possible value during the course of the epidemic. Analyses of multilocus structure showed that allelic distributions among RFLP loci were independent. Pairwise comparisons between individual RFLP loci showed that the majority of alleles at these loci were in gametic equilibrium. Though this fungus has the capacity for a significant level of asexual reproduction, each analysis suggested that M. graminicola populations maintain a genetic structure more consistent with random-mating over the course of an epidemic cycle.
Collapse
|
research-article |
29 |
177 |
7
|
Hane JK, Lowe RGT, Solomon PS, Tan KC, Schoch CL, Spatafora JW, Crous PW, Kodira C, Birren BW, Galagan JE, Torriani SFF, McDonald BA, Oliver RP. Dothideomycete plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. THE PLANT CELL 2007; 19:3347-68. [PMID: 18024570 PMCID: PMC2174895 DOI: 10.1105/tpc.107.052829] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 09/11/2007] [Accepted: 10/15/2007] [Indexed: 05/18/2023]
Abstract
Stagonospora nodorum is a major necrotrophic fungal pathogen of wheat (Triticum aestivum) and a member of the Dothideomycetes, a large fungal taxon that includes many important plant pathogens affecting all major crop plant families. Here, we report the acquisition and initial analysis of a draft genome sequence for this fungus. The assembly comprises 37,164,227 bp of nuclear DNA contained in 107 scaffolds. The circular mitochondrial genome comprises 49,761 bp encoding 46 genes, including four that are intron encoded. The nuclear genome assembly contains 26 classes of repetitive DNA, comprising 4.5% of the genome. Some of the repeats show evidence of repeat-induced point mutations consistent with a frequent sexual cycle. ESTs and gene prediction models support a minimum of 10,762 nuclear genes. Extensive orthology was found between the polyketide synthase family in S. nodorum and Cochliobolus heterostrophus, suggesting an ancient origin and conserved functions for these genes. A striking feature of the gene catalog was the large number of genes predicted to encode secreted proteins; the majority has no meaningful similarity to any other known genes. It is likely that genes for host-specific toxins, in addition to ToxA, will be found among this group. ESTs obtained from axenic mycelium grown on oleate (chosen to mimic early infection) and late-stage lesions sporulating on wheat leaves were obtained. Statistical analysis shows that transcripts encoding proteins involved in protein synthesis and in the production of extracellular proteases, cellulases, and xylanases predominate in the infection library. This suggests that the fungus is dependant on the degradation of wheat macromolecular constituents to provide the carbon skeletons and energy for the synthesis of proteins and other components destined for the developing pycnidiospores.
Collapse
MESH Headings
- Ascomycota/genetics
- DNA, Mitochondrial/genetics
- Expressed Sequence Tags
- Fungal Proteins/chemistry
- Fungal Proteins/genetics
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Genome, Fungal/genetics
- Host-Parasite Interactions
- Multigene Family
- Phylogeny
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer/genetics
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Triticum/microbiology
Collapse
|
research-article |
18 |
177 |
8
|
|
Review |
13 |
165 |
9
|
Linde CC, Zhan J, McDonald BA. Population Structure of Mycosphaerella graminicola: From Lesions to Continents. PHYTOPATHOLOGY 2002; 92:946-55. [PMID: 18944019 DOI: 10.1094/phyto.2002.92.9.946] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
ABSTRACT The genetic structure of field populations of Mycosphaerella graminicola was determined across a hierarchy of spatial scales using restriction fragment length polymorphism markers. The hierarchical gene diversity analysis included 1,098 isolates from seven field populations. Spatial scales ranged from millimeters to thousands of kilometers, including comparisons within and among lesions, within and among fields, and within and among regions and continents. At the smallest spatial scale, microtransect sampling was used to determine the spatial distribution of 15 genotypes found among 158 isolates sampled from five individual lesions. Each lesion had two to six different genotypes including both mating types in four of the five lesions, but in most cases a lesion was composed of one or two genotypes that occupied the majority of the lesion, with other rare genotypes interspersed among the common genotypes. The majority (77%) of gene diversity was distributed within plots ranging from approximately 1 to 9 m(2) in size. Genotype diversity (G / N) within fields for the Swiss, Texas, and Israeli fields was high, ranging from 79 to 100% of maximum possible values. Low population differentiation was indicated by the low G(ST) values among populations, suggesting a corresponding high degree of gene flow among these populations. At the largest spatial scale, populations from Switzerland, Israel, Oregon, and Texas were compared. Population differentiation among these populations was low (G(ST) = 0.05), and genetic identity between populations was high. A low but significant correlation between genetic and geographic distance among populations was found (r = -0.47, P = 0.012), suggesting that these populations probably have not reached an equilibrium between gene flow and genetic drift. Gene flow on a regional level can be reduced by implementing strategies, such as improved stubble management that minimize the production of ascospores. The possibility of high levels of gene flow on a regional level indicates a significant potential risk for the regional spread of mutant alleles that enable fungicide resistance or the breakdown of resistance genes.
Collapse
|
|
23 |
163 |
10
|
Stukenbrock EH, Bataillon T, Dutheil JY, Hansen TT, Li R, Zala M, McDonald BA, Wang J, Schierup MH. The making of a new pathogen: insights from comparative population genomics of the domesticated wheat pathogen Mycosphaerella graminicola and its wild sister species. Genome Res 2011; 21:2157-66. [PMID: 21994252 DOI: 10.1101/gr.118851.110] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The fungus Mycosphaerella graminicola emerged as a new pathogen of cultivated wheat during its domestication ~11,000 yr ago. We assembled 12 high-quality full genome sequences to investigate the genetic footprints of selection in this wheat pathogen and closely related sister species that infect wild grasses. We demonstrate a strong effect of natural selection in shaping the pathogen genomes with only ~3% of nonsynonymous mutations being effectively neutral. Forty percent of all fixed nonsynonymous substitutions, on the other hand, are driven by positive selection. Adaptive evolution has affected M. graminicola to the highest extent, consistent with recent host specialization. Positive selection has prominently altered genes encoding secreted proteins and putative pathogen effectors supporting the premise that molecular host-pathogen interaction is a strong driver of pathogen evolution. Recent divergence between pathogen sister species is attested by the high degree of incomplete lineage sorting (ILS) in their genomes. We exploit ILS to generate a genetic map of the species without any crossing data, document recent times of species divergence relative to genome divergence, and show that gene-rich regions or regions with low recombination experience stronger effects of natural selection on neutral diversity. Emergence of a new agricultural host selected a highly specialized and fast-evolving pathogen with unique evolutionary patterns compared with its wild relatives. The strong impact of natural selection, we document, is at odds with the small effective population sizes estimated and suggest that population sizes were historically large but likely unstable.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
159 |
11
|
Stukenbrock EH, Banke S, Javan-Nikkhah M, McDonald BA. Origin and domestication of the fungal wheat pathogen Mycosphaerella graminicola via sympatric speciation. Mol Biol Evol 2006; 24:398-411. [PMID: 17095534 DOI: 10.1093/molbev/msl169] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Fertile Crescent represents the center of origin and earliest known place of domestication for many cereal crops. During the transition from wild grasses to domesticated cereals, many host-specialized pathogen species are thought to have emerged. A sister population of the wheat-adapted pathogen Mycosphaerella graminicola was identified on wild grasses collected in northwest Iran. Isolates of this wild grass pathogen from 5 locations in Iran were compared with 123 M. graminicola isolates from the Middle East, Europe, and North America. DNA sequencing revealed a close phylogenetic relationship between the pathogen populations. To reconstruct the evolutionary history of M. graminicola, we sequenced 6 nuclear loci encompassing 464 polymorphic sites. Coalescence analyses indicated a relatively recent origin of M. graminicola, coinciding with the known domestication of wheat in the Fertile Crescent around 8,000-9,000 BC. The sympatric divergence of populations was accompanied by strong genetic differentiation. At the present time, no genetic exchange occurs between pathogen populations on wheat and wild grasses although we found evidence that gene flow may have occurred since genetic differentiation of the populations.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
158 |
12
|
McDonald BA, Stukenbrock EH. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Philos Trans R Soc Lond B Biol Sci 2016; 371:20160026. [PMID: 28080995 PMCID: PMC5095548 DOI: 10.1098/rstb.2016.0026] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 01/06/2023] Open
Abstract
Agricultural ecosystems are composed of genetically depauperate populations of crop plants grown at a high density and over large spatial scales, with the regional composition of crop species changing little from year to year. These environments are highly conducive for the emergence and dissemination of pathogens. The uniform host populations facilitate the specialization of pathogens to particular crop cultivars and allow the build-up of large population sizes. Population genetic and genomic studies have shed light on the evolutionary mechanisms underlying speciation processes, adaptive evolution and long-distance dispersal of highly damaging pathogens in agro-ecosystems. These studies document the speed with which pathogens evolve to overcome crop resistance genes and pesticides. They also show that crop pathogens can be disseminated very quickly across and among continents through human activities. In this review, we discuss how the peculiar architecture of agro-ecosystems facilitates pathogen emergence, evolution and dispersal. We present four example pathosystems that illustrate both pathogen specialization and pathogen speciation, including different time frames for emergence and different mechanisms underlying the emergence process. Lastly, we argue for a re-design of agro-ecosystems that embraces the concept of dynamic diversity to improve their resilience to pathogens. This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.
Collapse
|
Review |
9 |
145 |
13
|
|
|
32 |
139 |
14
|
Zhong Z, Marcel TC, Hartmann FE, Ma X, Plissonneau C, Zala M, Ducasse A, Confais J, Compain J, Lapalu N, Amselem J, McDonald BA, Croll D, Palma-Guerrero J. A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. THE NEW PHYTOLOGIST 2017; 214:619-631. [PMID: 28164301 DOI: 10.1111/nph.14434] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/09/2016] [Indexed: 05/06/2023]
Abstract
Zymoseptoria tritici is the causal agent of Septoria tritici blotch, a major pathogen of wheat globally and the most damaging pathogen of wheat in Europe. A gene-for-gene (GFG) interaction between Z. tritici and wheat cultivars carrying the Stb6 resistance gene has been postulated for many years, but the genes have not been identified. We identified AvrStb6 by combining quantitative trait locus mapping in a cross between two Swiss strains with a genome-wide association study using a natural population of c. 100 strains from France. We functionally validated AvrStb6 using ectopic transformations. AvrStb6 encodes a small, cysteine-rich, secreted protein that produces an avirulence phenotype on wheat cultivars carrying the Stb6 resistance gene. We found 16 nonsynonymous single nucleotide polymorphisms among the tested strains, indicating that AvrStb6 is evolving very rapidly. AvrStb6 is located in a highly polymorphic subtelomeric region and is surrounded by transposable elements, which may facilitate its rapid evolution to overcome Stb6 resistance. AvrStb6 is the first avirulence gene to be functionally validated in Z. tritici, contributing to our understanding of avirulence in apoplastic pathogens and the mechanisms underlying GFG interactions between Z. tritici and wheat.
Collapse
|
|
8 |
134 |
15
|
Liu Z, Faris JD, Oliver RP, Tan KC, Solomon PS, McDonald MC, McDonald BA, Nunez A, Lu S, Rasmussen JB, Friesen TL. SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene. PLoS Pathog 2009; 5:e1000581. [PMID: 19806176 PMCID: PMC2736379 DOI: 10.1371/journal.ppat.1000581] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/20/2009] [Indexed: 11/26/2022] Open
Abstract
The necrotrophic fungus Stagonospora nodorum produces multiple proteinaceous host-selective toxins (HSTs) which act in effector triggered susceptibility. Here, we report the molecular cloning and functional characterization of the SnTox3-encoding gene, designated SnTox3, as well as the initial characterization of the SnTox3 protein. SnTox3 is a 693 bp intron-free gene with little obvious homology to other known genes. The predicted immature SnTox3 protein is 25.8 kDa in size. A 20 amino acid signal sequence as well as a possible pro sequence are predicted. Six cysteine residues are predicted to form disulfide bonds and are shown to be important for SnTox3 activity. Using heterologous expression in Pichia pastoris and transformation into an avirulent S. nodorum isolate, we show that SnTox3 encodes the SnTox3 protein and that SnTox3 interacts with the wheat susceptibility gene Snn3. In addition, the avirulent S. nodorum isolate transformed with SnTox3 was virulent on host lines expressing the Snn3 gene. SnTox3-disrupted mutants were deficient in the production of SnTox3 and avirulent on the Snn3 differential wheat line BG220. An analysis of genetic diversity revealed that SnTox3 is present in 60.1% of a worldwide collection of 923 isolates and occurs as eleven nucleotide haplotypes resulting in four amino acid haplotypes. The cloning of SnTox3 provides a fundamental tool for the investigation of the S. nodorum–wheat interaction, as well as vital information for the general characterization of necrotroph–plant interactions. The necrotrophic fungus Stagonospora nodorum produces multiple toxins that are effective in causing disease on wheat. Here, we report the characterization of the SnTox3-producing gene, designated SnTox3, as well as the initial characterization of the SnTox3 protein. In order to verify the action of this toxin, we expressed SnTox3 in yeast to show that SnTox3 encodes the SnTox3 protein which interacts directly or indirectly with the product of the corresponding wheat susceptibility gene Snn3. Transformation of a non pathogenic S. nodorum isolate with SnTox3 indicated that expression of the SnTox3 gene is sufficient to render an avirulent isolate virulent in the presence of Snn3. SnTox3 disruption mutants are deficient in the production of SnTox3 and consequently are avirulent on the Snn3 differential wheat line BG220. SnTox3 is present in approximately 60% of a worldwide collection of 923 isolates. The cloning of SnTox3 provides a critical tool for the investigation of the S. nodorum–wheat interaction, but also significantly adds to a necrotrophic effector system that is an exciting contrast to the biotrophic effector models that have been intensively studied.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
16 |
128 |
16
|
Gardiner DM, McDonald MC, Covarelli L, Solomon PS, Rusu AG, Marshall M, Kazan K, Chakraborty S, McDonald BA, Manners JM. Comparative pathogenomics reveals horizontally acquired novel virulence genes in fungi infecting cereal hosts. PLoS Pathog 2012; 8:e1002952. [PMID: 23028337 PMCID: PMC3460631 DOI: 10.1371/journal.ppat.1002952] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/23/2012] [Indexed: 12/22/2022] Open
Abstract
Comparative analyses of pathogen genomes provide new insights into how pathogens have evolved common and divergent virulence strategies to invade related plant species. Fusarium crown and root rots are important diseases of wheat and barley world-wide. In Australia, these diseases are primarily caused by the fungal pathogen Fusarium pseudograminearum. Comparative genomic analyses showed that the F. pseudograminearum genome encodes proteins that are present in other fungal pathogens of cereals but absent in non-cereal pathogens. In some cases, these cereal pathogen specific genes were also found in bacteria associated with plants. Phylogenetic analysis of selected F. pseudograminearum genes supported the hypothesis of horizontal gene transfer into diverse cereal pathogens. Two horizontally acquired genes with no previously known role in fungal pathogenesis were studied functionally via gene knockout methods and shown to significantly affect virulence of F. pseudograminearum on the cereal hosts wheat and barley. Our results indicate using comparative genomics to identify genes specific to pathogens of related hosts reveals novel virulence genes and illustrates the importance of horizontal gene transfer in the evolution of plant infecting fungal pathogens.
Collapse
|
Comparative Study |
13 |
120 |
17
|
García-Arenal F, McDonald BA. An analysis of the durability of resistance to plant viruses. PHYTOPATHOLOGY 2003; 93:941-52. [PMID: 18943860 DOI: 10.1094/phyto.2003.93.8.941] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ABSTRACT Genetic resistance often fails because a resistance-breaking (RB) pathogen genotype increases in frequency. On the basis of an analysis of cellular plant pathogens, it was recently proposed that the evolutionary potential of a pathogen is a major determinant of the durability of resistance. We test this hypothesis for plant viruses, which differ substantially from cellular pathogens in the nature, size, and expression of their genomes. Our analysis was based on 29 plant virus species that provide a good representation of the genetic and biological diversity of plant viruses. These 29 viruses were involved in 35 pathosystems, and 50 resistance factors deployed against them were analyzed. Resistance was found to be durable more often than not, in contrast with resistance to cellular plant pathogens. In a third of the analyzed pathosystems RB strains have not been reported, and in another third RB strains have been reported but have not become prevalent in the virus population. The evolutionary potential of the viruses in the 35 pathosystems was evaluated with a compound risk index based on three evolutionary factors: the population of the pathogen, the degree of recombination, and the amount of gene and genotype flow. Our analysis indicates that evolutionary potential may be an important determinant of the durability of resistance against plant viruses.
Collapse
|
|
22 |
115 |
18
|
McDonald BA. The population genetics of fungi: tools and techniques. PHYTOPATHOLOGY 1997; 87:448-53. [PMID: 18945126 DOI: 10.1094/phyto.1997.87.4.448] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
|
|
28 |
113 |
19
|
Hartmann FE, Sánchez-Vallet A, McDonald BA, Croll D. A fungal wheat pathogen evolved host specialization by extensive chromosomal rearrangements. THE ISME JOURNAL 2017; 11:1189-1204. [PMID: 28117833 PMCID: PMC5437930 DOI: 10.1038/ismej.2016.196] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/10/2016] [Accepted: 11/25/2016] [Indexed: 11/09/2022]
Abstract
Fungal pathogens can rapidly evolve virulence towards resistant crops in agricultural ecosystems. Gains in virulence are often mediated by the mutation or deletion of a gene encoding a protein recognized by the plant immune system. However, the loci and the mechanisms of genome evolution enabling rapid virulence evolution are poorly understood. We performed genome-wide association mapping on a global collection of 106 strains of Zymoseptoria tritici, the most damaging pathogen of wheat in Europe, to identify polymorphisms linked to virulence on two wheat varieties. We found 25 distinct genomic loci associated with reproductive success of the pathogen. However, no locus was shared between the host genotypes, suggesting host specialization. The main locus associated with virulence encoded a highly expressed, small secreted protein. Population genomic analyses showed that the gain in virulence was explained by a segregating gene deletion polymorphism. The deletion was likely adaptive by preventing detection of the encoded protein. Comparative genomics of closely related species showed that the locus emerged de novo since speciation. A large cluster of transposable elements in direct proximity to the locus generated extensive rearrangements leading to multiple independent gene losses. Our study demonstrates that rapid turnover in the chromosomal structure of a pathogen can drive host specialization.
Collapse
|
research-article |
8 |
103 |
20
|
Linde CC, Zala M, Ceccarelli S, McDonald BA. Further evidence for sexual reproduction in Rhynchosporium secalis based on distribution and frequency of mating-type alleles. Fungal Genet Biol 2004; 40:115-25. [PMID: 14516764 DOI: 10.1016/s1087-1845(03)00110-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rhynchosporium secalis, the causal agent of scald on barley, is thought to be exclusively asexual because no teleomorph has been found. Partial sequences of the HMG-box and alpha-domain of Rhynchosporium secalis isolates were identified and used to develop a PCR assay for the mating-type locus. PCR amplification of only one of these two domains was possible in each strain, suggesting that R. secalis has a MAT organization that is similar to other known heterothallic fungi. A multiplex PCR with primers amplifying either a MAT1-1- or MAT1-2-specific amplicon was used to determine the distribution of mating types in several R. secalis populations. In total, 1101 isolates from Australia, Switzerland, Ethiopia, Scandinavia, California, and South Africa were included in the analysis. Mating types occurred in equal frequencies for most of these populations, suggesting frequency-dependent selection consistent with sexual reproduction. In addition, both mating types were frequently found occupying the same lesion or leaf, providing opportunities for isolates of opposite mating type to interact and reproduce sexually. We propose that R. secalis should be considered a sexual pathogen, although the sexual cycle may occur infrequently in some populations.
Collapse
|
Journal Article |
21 |
101 |
21
|
Zhan J, Linde CC, Jürgens T, Merz U, Steinebrunner F, McDonald BA. Variation for neutral markers is correlated with variation for quantitative traits in the plant pathogenic fungus Mycosphaerella graminicola. Mol Ecol 2005; 14:2683-93. [PMID: 16029470 DOI: 10.1111/j.1365-294x.2005.02638.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We compared genetic variation and population differentiation at RFLP marker loci with seven quantitative characters including fungicide resistance, temperature sensitivity, pycnidial size, pycnidial density, colony size, percentage of leaves covered by pycnidia (PLACP) and percentage of leaves covered by lesions (PLACL) in Mycosphaerella graminicola populations sampled from four regions. Wide variation in population differentiation was found across the quantitative traits assayed. Fungicide resistance, temperature sensitivity, and PLACP displayed a significantly higher Q(ST) than G(ST), consistent with selection for local adaptation, while pycnidial size, pycnidial density and colony size displayed a lower or significantly lower Q(ST) than G(ST), consistent with constraining selection. There was not a statistical difference between Q(ST) and G(ST) in PLACL. We also found a positive and significant correlation between genetic variation in molecular marker loci and quantitative traits at the multitrait scale, suggesting that estimates of overall genetic variation for quantitative traits in M. graminicola could be derived from analysis of the molecular genetic markers.
Collapse
|
Journal Article |
20 |
101 |
22
|
Van de Wouw AP, Cozijnsen AJ, Hane JK, Brunner PC, McDonald BA, Oliver RP, Howlett BJ. Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants. PLoS Pathog 2010; 6:e1001180. [PMID: 21079787 PMCID: PMC2973834 DOI: 10.1371/journal.ppat.1001180] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 10/06/2010] [Indexed: 11/22/2022] Open
Abstract
Brassica napus (canola) cultivars and isolates of the blackleg fungus, Leptosphaeria maculans interact in a 'gene for gene' manner whereby plant resistance (R) genes are complementary to pathogen avirulence (Avr) genes. Avirulence genes encode proteins that belong to a class of pathogen molecules known as effectors, which includes small secreted proteins that play a role in disease. In Australia in 2003 canola cultivars with the Rlm1 resistance gene suffered a breakdown of disease resistance, resulting in severe yield losses. This was associated with a large increase in the frequency of virulence alleles of the complementary avirulence gene, AvrLm1, in fungal populations. Surprisingly, the frequency of virulence alleles of AvrLm6 (complementary to Rlm6) also increased dramatically, even though the cultivars did not contain Rlm6. In the L. maculans genome, AvrLm1 and AvrLm6 are linked along with five other genes in a region interspersed with transposable elements that have been degenerated by Repeat-Induced Point (RIP) mutations. Analyses of 295 Australian isolates showed deletions, RIP mutations and/or non-RIP derived amino acid substitutions in the predicted proteins encoded by these seven genes. The degree of RIP mutations within single copy sequences in this region was proportional to their proximity to the degenerated transposable elements. The RIP alleles were monophyletic and were present only in isolates collected after resistance conferred by Rlm1 broke down, whereas deletion alleles belonged to several polyphyletic lineages and were present before and after the resistance breakdown. Thus, genomic environment and exposure to resistance genes in B. napus has affected the evolution of these linked avirulence genes in L. maculans.
Collapse
|
research-article |
15 |
95 |
23
|
Stukenbrock EH, McDonald BA. Population genetics of fungal and oomycete effectors involved in gene-for-gene interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:371-80. [PMID: 19271952 DOI: 10.1094/mpmi-22-4-0371] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Antagonistic coevolution between plants and pathogens has generated a broad array of attack and defense mechanisms. In the classical avirulence (Avr) gene-for-gene model, the pathogen gene evolves to escape host recognition while the host resistance (R) gene evolves to track the evolving pathogen elicitor. In the case of host-specific toxins (HST), the evolutionary arms race may be inverted, with the gene encoding the pathogen toxin evolving to maintain recognition of the host sensitivity target while the host sensitivity gene evolves to escape binding with the toxin. Pathogen effector genes, including those encoding Avr elicitors and HST, often show elevated levels of polymorphism reflecting the coevolutionary arms race between host and pathogen. However, selection can also eliminate variation in the coevolved gene and its neighboring regions when advantageous alleles are swept to fixation. The distribution and diversity of corresponding host genes will have a major impact on the distribution and diversity of effectors in the pathogen population. Population genetic analyses including both hosts and their pathogens provide an essential tool to understand the diversity and dynamics of effector genes. Here, we summarize current knowledge about the population genetics of fungal and oomycete effector genes, focusing on recent studies that have used both spatial and temporal collections to assess the diversity and distribution of alleles and to monitor changes in allele frequencies over time. These studies illustrate that effector genes exhibit a significant degree of diversity at both small and large sampling scales, suggesting that local selection plays an important role in their evolution. They also illustrate that Avr elicitors and HST may be recognizing the same R genes in plants, leading to evolutionary outcomes that differ for necrotrophs and biotrophs while affecting the evolution of the corresponding R genes. Under this scenario, the optimal number of R genes in a plant genome may be determined by the relative abundance of necrotrophic and biotrophic pathogens in the plant's environment.
Collapse
|
Review |
16 |
95 |
24
|
Stukenbrock EH, Jørgensen FG, Zala M, Hansen TT, McDonald BA, Schierup MH. Whole-genome and chromosome evolution associated with host adaptation and speciation of the wheat pathogen Mycosphaerella graminicola. PLoS Genet 2010; 6:e1001189. [PMID: 21203495 PMCID: PMC3009667 DOI: 10.1371/journal.pgen.1001189] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 09/30/2010] [Indexed: 12/17/2022] Open
Abstract
The fungus Mycosphaerella graminicola has been a pathogen of wheat since host domestication 10,000–12,000 years ago in the Fertile Crescent. The wheat-infecting lineage emerged from closely related Mycosphaerella pathogens infecting wild grasses. We use a comparative genomics approach to assess how the process of host specialization affected the genome structure of M. graminicola since divergence from the closest known progenitor species named M. graminicola S1. The genome of S1 was obtained by Illumina sequencing resulting in a 35 Mb draft genome sequence of 32X. Assembled contigs were aligned to the previously sequenced M. graminicola genome. The alignment covered >90% of the non-repetitive portion of the M. graminicola genome with an average divergence of 7%. The sequenced M. graminicola strain is known to harbor thirteen essential chromosomes plus eight dispensable chromosomes. We found evidence that structural rearrangements significantly affected the dispensable chromosomes while the essential chromosomes were syntenic. At the nucleotide level, the essential and dispensable chromosomes have evolved differently. The average synonymous substitution rate in dispensable chromosomes is considerably lower than in essential chromosomes, whereas the average non-synonymous substitution rate is three times higher. Differences in molecular evolution can be related to different transmission and recombination patterns, as well as to differences in effective population sizes of essential and dispensable chromosomes. In order to identify genes potentially involved in host specialization or speciation, we calculated ratios of synonymous and non-synonymous substitution rates in the >9,500 aligned protein coding genes. The genes are generally under strong purifying selection. We identified 43 candidate genes showing evidence of positive selection, one encoding a potential pathogen effector protein. We conclude that divergence of these pathogens was accompanied by structural rearrangements in the small dispensable chromosomes, while footprints of positive selection were present in only a small number of protein coding genes. The fungal wheat pathogen Mycosphaerella graminicola emerged in the Middle East 11,000 years ago, coinciding with host domestication. We sequenced the genome of the closest known endemic relative of M. graminicola infecting wild grass hosts. A comparative genome analysis allowed us to infer how speciation and host specialization processes have influenced pathogen evolution. The wild grass-adapted pathogen can infect wheat, but M. graminicola shows a significantly higher degree of host specificity and virulence in a detached leaf assay. The genomes of the pathogens are 7% divergent with a high degree of synteny in the 13 essential core chromosomes. However, structural rearrangements have strongly affected eight small dispensable chromosomes. These chromosomes also show altered rates of non-synonymous and synonymous substitutions. We found 43 genes showing evidence of positive selection. As the divergence of species occurred very recently, these genes are likely involved in host specialization or speciation. None of the genes have a known function, although one encodes a signal peptide and is a potential pathogen effector. We conclude that the genomic basis of the rapid emergence of the wheat-specialized pathogen M. graminicola has involved structural changes in the eight dispensable chromosomes and positive selection in a small number of genes.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
90 |
25
|
Stukenbrock EH, Banke S, McDonald BA. Global migration patterns in the fungal wheat pathogen Phaeosphaeria nodorum. Mol Ecol 2006; 15:2895-904. [PMID: 16911209 DOI: 10.1111/j.1365-294x.2006.02986.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The global migration patterns of the fungal wheat pathogen Phaeosphaeria nodorum were analysed using 12 microsatellite loci. Analysis of 693 isolates from nine populations indicated that the population structure of P. nodorum is characterized by high levels of genetic diversity and a low degree of subdivision between continents. To determine whether genetic similarity of populations was a result of recent divergence or extensive gene flow, the microsatellite data were analysed using an isolation-with-migration model. We found that the continental P. nodorum populations diverged recently, but that enough migration occurred to reduce population differentiation. The migration patterns of the pathogen indicate that immigrants originated mainly from populations in Europe, China and North America.
Collapse
|
|
19 |
88 |