1
|
de Campos BM, Coan AC, Lin Yasuda C, Casseb RF, Cendes F. Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy. Hum Brain Mapp 2016; 37:3137-52. [PMID: 27133613 PMCID: PMC5074272 DOI: 10.1002/hbm.23231] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/04/2016] [Accepted: 04/15/2016] [Indexed: 11/11/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) is associated with functional and structural alterations extending beyond the temporal regions and abnormal pattern of brain resting state networks (RSNs) connectivity. We hypothesized that the interaction of large-scale RSNs is differently affected in patients with right- and left-MTLE with HS compared to controls. We aimed to determine and characterize these alterations through the analysis of 12 RSNs, functionally parceled in 70 regions of interest (ROIs), from resting-state functional-MRIs of 99 subjects (52 controls, 26 right- and 21 left-MTLE patients with HS). Image preprocessing and statistical analysis were performed using UF(2) C-toolbox, which provided ROI-wise results for intranetwork and internetwork connectivity. Intranetwork abnormalities were observed in the dorsal default mode network (DMN) in both groups of patients and in the posterior salience network in right-MTLE. Both groups showed abnormal correlation between the dorsal-DMN and the posterior salience, as well as between the dorsal-DMN and the executive-control network. Patients with left-MTLE also showed reduced correlation between the dorsal-DMN and visuospatial network and increased correlation between bilateral thalamus and the posterior salience network. The ipsilateral hippocampus stood out as a central area of abnormalities. Alterations on left-MTLE expressed a low cluster coefficient, whereas the altered connections on right-MTLE showed low cluster coefficient in the DMN but high in the posterior salience regions. Both right- and left-MTLE patients with HS have widespread abnormal interactions of large-scale brain networks; however, all parameters evaluated indicate that left-MTLE has a more intricate bihemispheric dysfunction compared to right-MTLE. Hum Brain Mapp 37:3137-3152, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
84 |
2
|
Weiler M, Teixeira CVL, Nogueira MH, de Campos BM, Damasceno BP, Cendes F, Balthazar MLF. Differences and the relationship in default mode network intrinsic activity and functional connectivity in mild Alzheimer's disease and amnestic mild cognitive impairment. Brain Connect 2014; 4:567-74. [PMID: 25026537 DOI: 10.1089/brain.2014.0234] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is evidence that the default mode network (DMN) functional connectivity is impaired in Alzheimer's disease (AD) and few studies also reported a decrease in DMN intrinsic activity, measured by the amplitude of low-frequency fluctuations (ALFFs). In this study, we analyzed the relationship between DMN intrinsic activity and functional connectivity, as well as their possible implications on cognition in patients with mild AD and amnestic mild cognitive impairment (aMCI) and healthy controls. In addition, we evaluated the differences both in connectivity and ALFF values between these groups. We recruited 29 controls, 20 aMCI, and 32 mild AD patients. To identify the DMN, functional connectivity was calculated by placing a seed in the posterior cingulate cortex (PCC). Within the DMN mask obtained, we calculated regional average ALFFs. Compared with controls, aMCI patients showed decreased ALFFs in the temporal region; compared with AD, aMCI showed higher values in the PCC but lower in the temporal area. The mild AD group had lower ALFFs in the PCC compared with controls. There was no difference between the connectivity in the aMCI group compared with the other groups, but AD patients showed decreased connectivity in the frontal, parietal, and PCC. Also, PCC ALFFs correlated to functional connectivity in nearly all subregions. Cognitive tests correlated to connectivity values but not to ALFFs. In conclusion, we found that DMN connectivity and ALFFs are correlated in these groups. Decreased PCC ALFFs disrupt the DMN functional organization, leading to cognitive problems in the AD spectrum.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
43 |
3
|
Coan AC, Morita ME, de Campos BM, Yasuda CL, Cendes F. Amygdala Enlargement in Patients with Mesial Temporal Lobe Epilepsy without Hippocampal Sclerosis. Front Neurol 2013; 4:166. [PMID: 24298266 PMCID: PMC3829468 DOI: 10.3389/fneur.2013.00166] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/12/2013] [Indexed: 11/17/2022] Open
Abstract
Purpose: Patients with mesial temporal lobe epilepsy (MTLE) without MRI abnormalities (MTLE-NL) represent a challenge for definition of underlying pathology and for presurgical evaluation. In a recent study we observed significant amygdala enlargement (AE) in 14% of MTLE patients with MRI signs of hippocampal sclerosis. Areas of gray matter volume (GMV) increase could represent structural abnormalities related to the epileptogenic zone or part of a developmental abnormality. Our objective was to look for undetected areas of increased GMV in MTLE-NL using post processing MRI techniques to better understand the pathophysiology of this condition. Methods: We evaluated 66 patients with MTLE-NL on visual analysis and 82 controls. Voxel-based morphometry (VBM) group analysis was performed with VBM8/SPM8 looking for areas of increased GMV. We then performed automatic amygdala volumetry using FreeSurfer software and T2 relaxometry to confirm VBM findings. Results: Voxel-based morphometry group-analysis demonstrated increased amygdala volume in the MTLE-NL group compared to controls. Individual volumetric analysis confirmed AE in eight (12%) patients. Overall, from all patients with AE and defined epileptic focus, four (57%) had the predominant increased volume ipsilateral to the epileptic focus. These results were cross-validated by a secondary VBM analysis including subgroups of patients according to the volumetric data. T2 relaxometry demonstrated no amygdala hyperintense signal in any individual with significant AE. There were no clinical differences between patients with and without AE. Discussion: This exploratory study demonstrates the occurrence of AE in 12% of patients with MTLE-NL. This finding supports the hypothesis that there might be a subgroup of patients with MTLE-NL in which the enlarged amygdala could be related to the epileptogenic process. Further studies are necessary but this finding could be of great importance in the understanding of MTLE-NL.
Collapse
|
Journal Article |
12 |
29 |
4
|
Weiler M, Casseb RF, de Campos BM, de Ligo Teixeira CV, Carletti-Cassani AFMK, Vicentini JE, Magalhães TNC, de Almeira DQ, Talib LL, Forlenza OV, Balthazar MLF, Castellano G. Cognitive Reserve Relates to Functional Network Efficiency in Alzheimer's Disease. Front Aging Neurosci 2018; 10:255. [PMID: 30186154 PMCID: PMC6111617 DOI: 10.3389/fnagi.2018.00255] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, with no means of cure or prevention. The presence of abnormal disease-related proteins in the population is, in turn, much more common than the incidence of dementia. In this context, the cognitive reserve (CR) hypothesis has been proposed to explain the discontinuity between pathophysiological and clinical expression of AD, suggesting that CR mitigates the effects of pathology on clinical expression and cognition. fMRI studies of the human connectome have recently reported that AD patients present diminished functional efficiency in resting-state networks, leading to a loss in information flow and cognitive processing. No study has investigated, however, whether CR modifies the effects of the pathology in functional network efficiency in AD patients. We analyzed the relationship between CR, pathophysiology and network efficiency, and whether CR modifies the relationship between them. Fourteen mild AD, 28 amnestic mild cognitive impairment (aMCI) due to AD, and 28 controls were enrolled. We used education to measure CR, cerebrospinal fluid (CSF) biomarkers to evaluate pathophysiology, and graph metrics to measure network efficiency. We found no relationship between CR and CSF biomarkers; CR was related to higher network efficiency in all groups; and abnormal levels of CSF protein biomarkers were related to more efficient networks in the AD group. Education modified the effects of tau-related pathology in the aMCI and mild AD groups. Although higher CR might not protect individuals from developing AD pathophysiology, AD patients with higher CR are better able to cope with the effects of pathology—presenting more efficient networks despite pathology burden. The present study highlights that interventions focusing on cognitive stimulation might be useful to slow age-related cognitive decline or dementia and lengthen healthy aging.
Collapse
|
Journal Article |
7 |
26 |
5
|
Fontes EB, Bortolotti H, Grandjean da Costa K, Machado de Campos B, Castanho GK, Hohl R, Noakes T, Min LL. Modulation of cortical and subcortical brain areas at low and high exercise intensities. Br J Sports Med 2019; 54:110-115. [PMID: 31420319 DOI: 10.1136/bjsports-2018-100295] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2019] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The brain plays a key role in the perceptual regulation of exercise, yet neuroimaging techniques have only demonstrated superficial brain areas responses during exercise, and little is known about the modulation of the deeper brain areas at different intensities. OBJECTIVES/METHODS Using a specially designed functional MRI (fMRI) cycling ergometer, we have determined the sequence in which the cortical and subcortical brain regions are modulated at low and high ratings perceived exertion (RPE) during an incremental exercise protocol. RESULTS Additional to the activation of the classical motor control regions (motor, somatosensory, premotor and supplementary motor cortices and cerebellum), we found the activation of the regions associated with autonomic regulation (ie, insular cortex) (ie, positive blood-oxygen-level-dependent (BOLD) signal) during exercise. Also, we showed reduced activation (negative BOLD signal) of cognitive-related areas (prefrontal cortex), an effect that increased during exercise at a higher perceived intensity (RPE 13-17 on Borg Scale). The motor cortex remained active throughout the exercise protocol whereas the cerebellum was activated only at low intensity (RPE 6-12), not at high intensity (RPE 13-17). CONCLUSIONS These findings describe the sequence in which different brain areas become activated or deactivated during exercise of increasing intensity, including subcortical areas measured with fMRI analysis.
Collapse
|
Journal Article |
6 |
23 |
6
|
Vicentini JE, Weiler M, Casseb RF, Almeida SR, Valler L, de Campos BM, Li LM. Subacute functional connectivity correlates with cognitive recovery six months after stroke. NEUROIMAGE-CLINICAL 2020; 29:102538. [PMID: 33385880 PMCID: PMC7779317 DOI: 10.1016/j.nicl.2020.102538] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/19/2020] [Accepted: 12/15/2020] [Indexed: 12/27/2022]
Abstract
Stroke disrupts ipsilesional and inter-hemispheric functional connectivity of DMN. Subacute cognition correlated to inter-hemispheric and ipsilesional DMN connectivity. Subacute cognition correlated to weaker contralesional SN connectivity. Functional connectivity remapping was not observed after six months. Cognitive recovery correlated to DMN and SN connectivity from the subacute phase. Background and purpose Cognitive impairment is a common consequence of stroke, and the rewiring of the surviving brain circuits might contribute to cognitive recovery. Studies investigating how the functional connectivity of networks change across time and whether their remapping relates to cognitive recovery in stroke patients are scarce. We aimed to investigate whether resting-state functional connectivity was associated with cognitive performance in stroke patients and if any alterations in these networks were correlated with cognitive recovery. Methods Using an fMRI ROI-ROI approach, we compared the ipsilesional, contralesional and interhemispheric functional connectivity of three resting-state networks involved in cognition – the Default Mode (DMN), Salience (SN) and Central Executive Networks (CEN), in subacute ischemic stroke patients (time 1, n = 37, stroke onset: 24.32 ± 7.44 days, NIHSS: 2.66 ± 3.45) with cognitively healthy controls (n = 20). Patients were reassessed six months after the stroke event (time 2, n = 20, stroke onset: 182.05 ± 8.17 days) to verify the subsequent reorganization of functional connections and whether such reorganization was associated with cognitive recovery. Results At time 1, patients had weaker interhemispheric connectivity in the DMN than controls; better cognitive performance at time 1 was associated with stronger interhemispheric and ipsilesional DMN connectivity, and weaker contralesional SN connectivity. At time 2, there were no changes in functional connectivity in stroke patients, compared to time 1. Better cognitive recovery measured at time 2 (time 2 – time 1) was associated with stronger functional connectivity in the DMN, and weaker interhemispheric subacute connectivity in the SN, both from time 1. Conclusions Stroke disrupts the functional connectivity of the DMN, not only at the lesioned hemisphere but also between hemispheres. Six months after the stroke event, we could not detect the remapping of networks. Cognitive recovery was associated with the connectivity of both the DMN and SN of time 1. Our findings may be helpful for facilitating further understanding of the potential mechanisms underlying post-stroke cognitive performance.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
18 |
7
|
Lopes TM, Yasuda CL, Campos BMD, Balthazar MLF, Binder JR, Cendes F. Effects of task complexity on activation of language areas in a semantic decision fMRI protocol. Neuropsychologia 2015; 81:140-148. [PMID: 26721760 DOI: 10.1016/j.neuropsychologia.2015.12.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 11/26/2022]
Abstract
Language tasks used for clinical fMRI studies may be too complex for some patients with cognitive impairments, and "easier" versions are sometimes substituted, though the effects on brain activity of such changes in task complexity are largely unknown. To investigate these differences, we compared two versions of an fMRI language comprehension protocol, with different levels of difficulty, in 24 healthy right-handed adults. The protocol contrasted an auditory word comprehension task (semantic decision) with a nonspeech control task using tone sequences (tone decision). In the "complex" version (CV), the semantic decision task required two complex semantic decisions for each word, and the tone decision task required the participant to count the number of target tones in each sequence. In the "easy" version (EV), the semantic task required only a single easier decision, and the tone task required only detection of the presence or absence of a target tone in each sequence. The protocols were adapted for a Brazilian population. Typical left hemisphere language lateralization was observed in 92% of participants for both CV and EV using the whole-brain lateralization index, and typical language lateralization was also observed for others regions of interest. Task performance was superior on the EV compared to the CV (p=0.014). There were many common areas of activation across the two version; however, the CV produced greater activation in the left superior and middle frontal giri, angular gyrus, and left posterior cingulate gyrus compared to the EV, the majority of which are areas previously identified with language and semantic processing. The EV produced stronger activation only in a small area in the posterior middle temporal gyrus. These results reveal differences between two versions of the protocol and provide evidence that both are useful for language lateralization and worked well for Brazilian population. The complex version produces stronger activation in several nodes of the semantic network and therefore is elected for participants who can perform well these tasks.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
15 |
8
|
Zanão TA, Lopes TM, de Campos BM, Yasuda CL, Cendes F. Patterns of default mode network in temporal lobe epilepsy with and without hippocampal sclerosis. Epilepsy Behav 2021; 121:106523. [PMID: 31645315 DOI: 10.1016/j.yebeh.2019.106523] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 10/25/2022]
Abstract
The default mode network (DMN) consists of the deactivation of specific regions during the performance of cognitive tasks and activation during resting or mind wandering. Several pieces of evidence indicate the impairment of DMN in patients with mesial temporal lobe epilepsy (MTLE). However, most of these studies combined different underlying etiologies, failing to disentangle the influence of seizures and presence and side of hippocampal sclerosis (HS). We included 119 patients with MTLE divided into right-HS (n = 42), left-HS (n = 46), and magnetic resonance imaging (MRI)-negative MTLE (n = 31) and controls (n = 59). All underwent resting-state seed-based functional connectivity (FC), with a seed placed at the posterior cingulate cortex (PCC), an essential node for the DMN. To access group inferences, we used an SPM (Statistical Parametric Mapping) full-factorial model to compare patterns of activation using pairwise comparisons among all groups. Our results indicate a different pattern of DMN FC when controlling for side and presence of HS. The group with right-HS had increased FC in the left angular gyrus and the left middle occipital gyrus, when compared to controls, and increased FC of the left hippocampus when compared to the group with left-HS. The MRI-negative group had increased FC of the left hippocampus, left ventral diencephalon, and left fusiform gyrus as compared to left-HS, but did not show any areas of reduced FC compared to controls. By contrast, the group with left-HS did not show areas of increased FC compared to controls or the right-HS and had reduced FC in the left hippocampus compared to controls. Hence, the right-HS presented increased FC in areas related to the DMN in the left hemisphere; the MRI-negative group also showed increased FC in left-sided structures close to temporal lobe when compared to left-HS, probably indicating engagement in a compensatory system. In a subanalysis considering only the MRI-negative with left-sided EEG (electroencephalogram) subgroup, we found differences against controls, with left angular gyrus more connected in the first group, but no significant differences when compared to the group with left-HS. We conclude that the origin of seizures on the left hemisphere seems to engender a less prominent capacity of recruiting other neighbor areas related to DMN as compared to right-HS and controls. Considering recent studies that have revealed the importance of DMN for cognitive skills and memory, our findings may indicate that deficiencies exhibited by patients with left-HS temporal lobe epilepsy (TLE) in connecting to the DMN could be a surrogate marker of their known worse neuropsychological performance. Further studies with direct comparisons between cognitive tests and FC within the DMN are needed to validate these findings, especially for MRI-negative patients. This article is part of the Special Issue "NEWroscience 2018".
Collapse
|
|
4 |
14 |
9
|
Weiler M, de Campos BM, de Ligo Teixeira CV, Casseb RF, Mac Knight Carletti-Cassani AF, Vicentini JE, Magalhães TNC, Talib LL, Forlenza OV, Balthazar MLF. Intranetwork and internetwork connectivity in patients with Alzheimer disease and the association with cerebrospinal fluid biomarker levels. J Psychiatry Neurosci 2017; 42:366-377. [PMID: 28375076 PMCID: PMC5662458 DOI: 10.1503/jpn.160190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In the last decade, many studies have reported abnormal connectivity within the default mode network (DMN) in patients with Alzheimer disease. Few studies, however, have investigated other networks and their association with pathophysiological proteins obtained from cerebrospinal fluid (CSF). METHODS We performed 3 T imaging in patients with mild Alzheimer disease, patients with amnestic mild cognitive impairment (aMCI) and healthy controls, and we collected CSF samples from the patients with aMCI and mild Alzheimer disease. We analyzed 57 regions from 8 networks. Additionally, we performed correlation tests to investigate possible associations between the networks' functional connectivity and the protein levels obtained from the CSF of patients with aMCI and Alzheimer disease. RESULTS Our sample included 41 patients with Alzheimer disease, 35 with aMCI and 48 controls. We found that the main connectivity abnormalities in those with Alzheimer disease occurred between the DMN and task-positive networks: these patients presented not only a decreased anticorrelation between some regions, but also an inversion of the correlation signal (positive correlation instead of anticorrelation). Those with aMCI did not present statistically different connectivity from patients with Alzheimer disease or controls. Abnormal levels of CSF proteins were associated with functional disconnectivity between several regions in both the aMCI and mild Alzheimer disease groups, extending well beyond the DMN or temporal areas. LIMITATIONS The presented data are cross-sectional in nature, and our findings are dependent on the choice of seed regions used. CONCLUSION We found that the main functional connectivity abnormalities occur between the DMN and task-positive networks and that the pathological levels of CSF biomarkers correlate with functional connectivity disruption in patients with Alzheimer disease.
Collapse
|
research-article |
8 |
13 |
10
|
Whiting AC, Morita-Sherman M, Li M, Vegh D, Machado de Campos B, Cendes F, Wang X, Bingaman W, Jehi LE. Automated analysis of cortical volume loss predicts seizure outcomes after frontal lobectomy. Epilepsia 2021; 62:1074-1084. [PMID: 33756031 DOI: 10.1111/epi.16877] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Patients undergoing frontal lobectomy demonstrate lower seizure-freedom rates than patients undergoing temporal lobectomy and several other resective interventions. We attempted to utilize automated preoperative quantitative analysis of focal and global cortical volume loss to develop predictive volumetric indicators of seizure outcome after frontal lobectomy. METHODS Ninety patients who underwent frontal lobectomy were stratified based on seizure freedom at a mean follow-up time of 3.5 (standard deviation [SD] 2.5) years. Automated quantitative analysis of cortical volume loss organized by distinct brain region and laterality was performed on preoperative T1-weighted magnetic resonance imaging (MRI) studies. Univariate statistical analysis was used to select potential predictors of seizure freedom. Backward variable selection and multivariate logistical regression were used to develop models to predict seizure freedom. RESULTS Forty-eight of 90 (53.3%) patients were seizure-free at the last follow-up. Several frontal and extrafrontal brain regions demonstrated statistically significant differences in both volumetric cortical volume loss and volumetric asymmetry between the left and right sides in the seizure-free and non-seizure-free cohorts. A final multivariate logistic model utilizing only preoperative quantitative MRI data to predict seizure outcome was developed with a c-statistic of 0.846. Using both preoperative quantitative MRI data and previously validated clinical predictors of seizure outcomes, we developed a model with a c-statistic of 0.897. SIGNIFICANCE This study demonstrates that preoperative cortical volume loss in both frontal and extrafrontal regions can be predictive of seizure outcome after frontal lobectomy, and models can be developed with excellent predictive capabilities using preoperative MRI data. Automated quantitative MRI analysis can be quickly and reliably performed in patients with frontal lobe epilepsy, and further studies may be developed for integration into preoperative risk stratification.
Collapse
|
Journal Article |
4 |
11 |
11
|
Garcia DDS, Polydoro MS, Alvim MKM, Ishikawa A, Moreira JCV, Nogueira MH, Zanão TA, de Campos BM, Betting LEGG, Cendes F, Yasuda CL. Anxiety and depression symptoms disrupt resting state connectivity in patients with genetic generalized epilepsies. Epilepsia 2019; 60:679-688. [PMID: 30854641 DOI: 10.1111/epi.14687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To analyze the lifetime trajectories in genetic generalized epilepsies (GGEs) and investigate the impact of symptoms of anxiety and depression on resting state functional connectivity (FC). METHODS Seventy-four GGE patients were classified according to the pharmacological response as seizure-free (12 patients), pharmacoresistant (PhR; 14 patients), and fluctuating (FL; 48 patients). Fifty-four subjects completed both the Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI), and 38 also underwent 3-T resting state functional magnetic resonance imaging. These 38 patients were subdivided into a positive group (13 patients with concurrent symptoms of depression and anxiety) and a negative group (21 asymptomatic patients and four with mild anxiety or depression symptoms). For FC analysis of resting state networks, we matched 38 healthy asymptomatic volunteers and used the UF2C toolbox running on MATLAB2017/SPM12. RESULTS The PhR group presented shorter duration of epilepsy (P = 0.016) and follow-up (P < 0.001) compared to the FL group. The PhR group showed higher levels (median = 20) on the BAI and BDI. Myoclonic seizures were the most difficult to control, as 50% of subjects persisted with them at last appointment, compared to generalized tonic-clonic seizures and absence seizures (<40%). Patients with concurrent anxiety and depression symptoms were 7.7 times more likely to exhibit pharmacoresistant seizures, although an increase of 1 year of epilepsy duration was associated with a decrease in the odds of presenting pharmacoresistance by a factor of 0.9. Overall, FC was altered between default mode network (DMN) and visuospatial/dorsal attention. However, only the positive group displayed abnormal FC between DMN and left executive control network, and between salience and visuospatial/dorsal attention. SIGNIFICANCE Our findings may help clinicians to have a better understanding of GGE clinical course and increase attention to the potential relationship of psychopathologies and brain connectivity.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
11 |
12
|
Nogueira MH, Pimentel da Silva LR, Vasques Moreira JC, de Rezende TJR, Zanão TA, de Campos BM, Yasuda CL, Cendes F. Major Depressive Disorder Associated With Reduced Cortical Thickness in Women With Temporal Lobe Epilepsy. Front Neurol 2020; 10:1398. [PMID: 32010051 PMCID: PMC6979005 DOI: 10.3389/fneur.2019.01398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Major Depressive Disorder (MDD) is highly prevalent in patients with mesial temporal lobe epilepsy (MTLE), especially in women, carrying significant morbidity. This study aimed to investigate the cortical thickness (CT) abnormalities associated with MDD in women with MTLE and hippocampal atrophy (HA). Also, we investigated the impact of MDD upon the volumes of the hippocampus and amygdala in these patients. Methods: We included 50 women with MTLE and HA (20 left, LMTLE; 30 right, RMTLE), 41 healthy women in the control group, and 15 women with MDD without epilepsy. MTLE patients were subdivided into three groups: MTLE-without-MDD (23 MTLE patients without MDD), MTLE-mild-MDD (nine MTLE patients with mild symptoms of MDD), and MTLE-severe-MDD (18 MTLE patients with moderate to severe symptoms of MDD). The five groups were balanced for age (p = 0.56). All participants had high-resolution 3D T1-weighted images in a 3T scanner. We used FreeSurfer 6.0 for volumetry and CT parcellation. All participants were submitted to a clinical psychological evaluation through the Structured Clinical Interview for DSM-IV (SCID-IV) and completed the Beck Depression Inventory (BDI-II). Results: We identified a smaller ipsilateral amygdala volume (p = 0.04) in the MTLE-severe-MDD group when compared to the control group. Our results presented a reduced ipsilateral lateral orbitofrontal cortex (p = 0.02) in the MTLE-severe-MDD in comparison to the MTLE-mild-MDD group. We also identified a thinner ipsilateral fusiform gyrus (p < 0.01) in the MTLE-severe-MDD compared to both MTLE-without-MDD and control groups. A reduced CT of the contralateral superior frontal gyrus (p = 0.02) was observed in the MTLE-severe-MDD in comparison to the MTLE-mild-MDD group. Conclusions: The identification of areas with reduced CT and atrophy of the ipsilateral amygdala in women with MTLE and MDD suggest that the cortical thinning in the network of the paralimbic system is related to the co-occurrence and intensity of depressive symptoms in this group.
Collapse
|
Journal Article |
5 |
7 |
13
|
Giacomini L, de Souza JPSA, Formentin C, de Campos BM, Todeschini AB, de Oliveira E, Tedeschi H, Joaquim AF, Cendes F, Ghizoni E. Temporal lobe structural evaluation after transsylvian selective amygdalohippocampectomy. Neurosurg Focus 2020; 48:E14. [DOI: 10.3171/2020.1.focus19937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/29/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVEMesial temporal lobe epilepsy (MTLE) is the most common type of focal epilepsy in adolescents and adults, and in 65% of cases, it is related to hippocampal sclerosis (HS). Selective surgical approaches to the treatment of MTLE have as their main goal resection of the amygdala and hippocampus with minimal damage to the neocortex, temporal stem, and optic radiations (ORs). The object of this study was to evaluate late postoperative imaging findings on the temporal lobe from a structural point of view.METHODSThe authors conducted a retrospective evaluation of all patients with refractory MTLE who had undergone transsylvian selective amygdalohippocampectomy (SAH) in the period from 2002 to 2015. A surgical group was compared to a control group (i.e., adults with refractory MTLE with an indication for surgical treatment of epilepsy but who did not undergo the surgical procedure). The inferior frontooccipital fasciculus (IFOF), uncinate fasciculus (UF), and ORs were evaluated on diffusion tensor imaging analysis. The temporal pole neocortex was evaluated using T2 relaxometry.RESULTSFor the IFOF and UF, there was a decrease in anisotropy, voxels, and fibers in the surgical group compared with those in the control group (p < 0.001). An increase in relaxometry time in the surgical group compared to that in the control group (p < 0.001) was documented, suggesting gliosis and neuronal loss in the temporal pole.CONCLUSIONSSAH techniques do not seem to totally preserve the temporal stem or even spare the neocortex of the temporal pole. Therefore, although the transsylvian approaches have been considered to be anatomically selective, there is evidence that the temporal pole neocortex suffers structural damage and potentially functional damage with these approaches.
Collapse
|
|
5 |
7 |
14
|
Yasuda CL, Pimentel-Silva LR, Beltramini GC, Liu M, Machado de Campos B, Coan AC, Beaulieu C, Cendes F, Gross DW. Brain volumes and white matter diffusion across the adult lifespan in temporal lobe epilepsy. Ann Clin Transl Neurol 2023. [PMID: 37208853 DOI: 10.1002/acn3.51793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/11/2023] [Accepted: 04/30/2023] [Indexed: 05/21/2023] Open
Abstract
OBJECTIVE Typical aging is associated with gradual cognitive decline and changes in brain structure. The observation that cognitive performance in mesial temporal lobe epilepsy (TLE) patients diverges from controls early in life with subsequent decline running in parallel would suggest an initial insult but does not support accelerated decline secondary to seizures. Whether TLE patients demonstrate similar trajectories of age-related gray (GM) and white matter (WM) changes as compared to healthy controls remains uncertain. METHODS 3D T1-weighted and diffusion tensor images were acquired at a single site in 170 TLE patients (aged 23-74 years) with MRI signs of unilateral hippocampal sclerosis (HS, 77 right) and 111 healthy controls (aged 26-80 years). Global brain (GM, WM, total brain, and cerebrospinal fluid) and regional volumes (ipsi- and contralateral hippocampi), and fractional anisotropy (FA) of 10 tracts (three portions of corpus callosum, inferior longitudinal, inferior fronto-occipital and uncinate fasciculi, body of fornix, dorsal and parahippocampal-cingulum, and corticospinal tract) were compared between groups as a function of age. RESULTS There were significant reductions of global brain and hippocampi volumes (greatest ipsilateral to HS), and FA of all 10 tracts in TLE versus controls. For TLE patients, regression lines run in parallel to those from controls for brain volumes and FA (for all tracts except the parahippocampal-cingulum and corticospinal tract) versus age across the adult lifespan. INTERPRETATION These results imply a developmental hindrance occurring earlier in life (likely in childhood/neurodevelopmental stages) rather than accelerated atrophy/degeneration of most brain structures herein analyzed in patients with TLE.
Collapse
|
|
2 |
3 |
15
|
Borba FCD, Campos BMD, Gonçalves JPN, Martins Junior CR, França Junior MC. Functional magnetic resonance imaging and diffusion tensor imaging findings in a patient with ROBO3-related horizontal gaze palsy with progressive scoliosis. ARQUIVOS DE NEURO-PSIQUIATRIA 2021; 79:1153-1154. [PMID: 34614068 DOI: 10.1590/0004-282x-anp-2021-0213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/18/2021] [Indexed: 11/22/2022]
|
Case Reports |
4 |
1 |
16
|
Magalhães TNC, Gerbelli CLB, Pimentel-Silva LR, de Campos BM, de Rezende TJR, Rizzi L, Joaquim HPG, Talib LL, Forlenza OV, Cendes F, Balthazar MLF. Differences in structural and functional default mode network connectivity in amyloid positive mild cognitive impairment: a longitudinal study. Neuroradiology 2021; 64:141-150. [PMID: 34278511 DOI: 10.1007/s00234-021-02760-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Default mode network (DMN) has emerged as a potential biomarker of Alzheimer's disease (AD); however, it is not clear whether it can differentiate amnestic mild cognitive impairment with altered amyloid (aMCI-Aβ +) who will evolve to AD. We evaluated if structural and functional connectivity (FC), hippocampal volumes (HV), and cerebrospinal fluid biomarkers (CSF-Aβ42, p-Tau, and t-Tau) can differentiate aMCI-Aβ + converters from non-converters. METHODS Forty-eight individuals (18 normal controls and 30 aMCI subjects in the AD continuum - with altered Aβ42 in the CSF) were followed up for an average of 13 months. We used MultiAtlas, UF2C, and Freesurfer software to evaluate diffusion tensor imaging, FC, and HV, respectively, INNOTEST® kits to measure CSF proteins, and neuropsychological tests. Besides, we performed different MANOVAs with further univariate analyses to differentiate groups. RESULTS During follow-up, 8/30 aMCI-Aβ + converted (26.6%) to AD dementia. There were no differences in multivariate analysis between groups in CSF biomarkers (p = 0.092) or at DMN functional connectivity (p = 0.814). aMCI-Aβ + converters had smaller right HV than controls (p = 0.013), and greater right cingulum parahippocampal bundle radial diffusivity than controls (p < 0.001) and non-converters (p = 0.036). CONCLUSION In this exploratory study, structural, but not functional, DMN connectivity alterations may differentiate aMCI-Aβ + subjects who converted to AD dementia.
Collapse
|
Journal Article |
4 |
1 |
17
|
Castanho GK, Fontes EB, de Campos BM, Li LM, Fernandes PT. Effect Of Carbohydrate Consumption In Brain Function During Exercise. Med Sci Sports Exerc 2014. [DOI: 10.1249/01.mss.0000493655.42234.ad] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
11 |
|
18
|
Casseb RF, de Campos BM, Loos WS, Barbosa MER, Alvim MKM, Paulino GCL, Pucci F, Worrell S, de Souza RM, Jehi L, Cendes F. Fully automatic segmentation of brain lacunas resulting from resective surgery using a 3D deep learning model. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.16.23298572. [PMID: 38014004 PMCID: PMC10680896 DOI: 10.1101/2023.11.16.23298572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The rapid and constant development of deep learning (DL) strategies is pushing forward the quality of object segmentation in images from diverse fields of interest. In particular, these algorithms can be very helpful in delineating brain abnormalities (lesions, tumors, lacunas, etc), enabling the extraction of information such as volume and location, that can inform doctors or feed predictive models. Here, we describe ResectVol DL, a fully automatic tool developed to segment resective lacunas in brain images of patients with epilepsy. ResectVol DL relies on the nnU-Net framework that leverages the 3D U-Net deep learning architecture. T1-weighted MRI datasets from 120 patients (57 women; 31.5 ± 15.9 years old at surgery) were used to train (n=78) and test (n=48) our tool. Manual segmentations were carried out by five different raters and were considered as ground truth for performance assessment. We compared ResectVol DL with two other fully automatic methods: ResectVol 1.1.2 and DeepResection, using the Dice similarity coefficient (DSC), Pearson's correlation coefficient, and relative difference to manual segmentation. ResectVol DL presented the highest median DSC (0.92 vs. 0.78 and 0.90), the highest correlation coefficient (0.99 vs. 0.63 and 0.94), and the lowest median relative difference (9 vs. 44 and 12 %). Overall, we demonstrate that ResectVol DL accurately segments brain lacunas, which has the potential to assist in the development of predictive models for postoperative cognitive and seizure outcomes.
Collapse
|
Preprint |
1 |
|
19
|
Zaidan BC, Cardoso ICDS, de Campos BM, da Silva LRP, Coelho VCM, Silveira KAA, Amorim BJ, Alvim MKM, Tedeschi H, Yasuda CL, Ghizoni E, Cendes F, Rogerio F. Histopathological Correlations of Qualitative and Quantitative Temporopolar MRI Analyses in Patients With Hippocampal Sclerosis. Front Neurol 2022; 12:801195. [PMID: 35002940 PMCID: PMC8739995 DOI: 10.3389/fneur.2021.801195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022] Open
Abstract
Hippocampal sclerosis (HS) is a common cause of pharmacoresistant focal epilepsy. Here, we (1) performed a histological approach to the anterior temporal pole of patients with HS to evaluate cortical and white matter (WM) cell populations, alteration of myelin integrity and markers of neuronal activity, and (2) correlated microscopic data with magnetic resonance imaging (MRI) findings. Our aim was to contribute with the understanding of neuroimaging and pathophysiological mechanisms of temporal lobe epilepsy (TLE) associated with HS. We examined MRIs and surgical specimens from the anterior temporal pole from TLE-HS patients (n = 9) and compared them with 10 autopsy controls. MRIs from healthy volunteers (n = 13) were used as neuroimaging controls. Histological techniques were performed to assess oligodendrocytes, heterotopic neurons, cellular proliferative index, and myeloarchitecture integrity of the WM, as well as markers of acute (c-fos) and chronic (ΔFosB) activities of neocortical neurons. Microscopic data were compared with neuroimaging findings, including T2-weighted/FLAIR MRI temporopolar blurring and values of fractional anisotropy (FA) from diffusion-weighed imaging (DWI). We found a significant increase in WM oligodendrocyte number, both in hematoxylin and eosin, and in Olig2-stained sections. The frequencies of oligodendrocytes in perivascular spaces and around heterotopic neurons were significantly higher in patients with TLE–HS compared with controls. The percentage of 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase; a marker of myeloarchitecture integrity) immunopositive area in the WM was significantly higher in TLE-HS, as well as the numbers of c-fos- and ΔFosB-immunostained neocortical neurons. Additionally, we demonstrated a decrease in axonal bundle integrity on neuroimaging, with a significant reduction in the FA in the anterior temporal pole. No differences were detected between individuals with and without temporopolar blurring on visual MRI analysis, considering the number of oligodendroglial cells and percentage of WM CNPase-positive areas. Also, there was no relationship between T2 relaxometry and oligodendrocyte count. In conclusion, our histopathological data support the following: (1) the hypothesis that repetitive neocortical neuronal activity could induce changes in the WM cellular constitution and myelin remodeling in the anterior temporal pole from patients with TLE-HS, (2) that oligodendroglial hyperplasia is not related to temporal blurring or T2 signal intensity on MRI, and (3) that reduced FA is a marker of increase in Olig2-immunopositive cells in superficial temporopolar WM from patients with TLE-HS.
Collapse
|
|
3 |
|
20
|
Scardua-Silva L, Amorim da Costa B, Karmann Aventurato Í, Batista Joao R, Machado de Campos B, Rabelo de Brito M, Bechelli JF, Santos Silva LC, Ferreira Dos Santos A, Koutsodontis Machado Alvim M, Vieira Nunes Ludwig G, Rocha C, Kaue Alves Silva Souza T, Mendes MJ, Waku T, de Oliveira Boldrini V, Silva Brunetti N, Nora Baptista S, da Silva Schmitt G, Duarte de Sousa JG, Marchiori de Oliveira Cardoso TA, Schwambach Vieira A, Barbosa Santos LM, Dos Santos Farias A, Nogueira MH, Cendes F, Lin Yasuda C. Microstructural brain abnormalities, fatigue, and cognitive dysfunction after mild COVID-19. Sci Rep 2024; 14:1758. [PMID: 38242927 PMCID: PMC10798999 DOI: 10.1038/s41598-024-52005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
Although some studies have shown neuroimaging and neuropsychological alterations in post-COVID-19 patients, fewer combined neuroimaging and neuropsychology evaluations of individuals who presented a mild acute infection. Here we investigated cognitive dysfunction and brain changes in a group of mildly infected individuals. We conducted a cross-sectional study of 97 consecutive subjects (median age of 41 years) without current or history of psychiatric symptoms (including anxiety and depression) after a mild infection, with a median of 79 days (and mean of 97 days) after diagnosis of COVID-19. We performed semi-structured interviews, neurological examinations, 3T-MRI scans, and neuropsychological assessments. For MRI analyses, we included a group of non-infected 77 controls. The MRI study included white matter (WM) investigation with diffusion tensor images (DTI) and functional connectivity with resting-state functional MRI (RS-fMRI). The patients reported memory loss (36%), fatigue (31%) and headache (29%). The quantitative analyses confirmed symptoms of fatigue (83% of participants), excessive somnolence (35%), impaired phonemic verbal fluency (21%), impaired verbal categorical fluency (13%) and impaired logical memory immediate recall (16%). The WM analyses with DTI revealed higher axial diffusivity values in post-infected patients compared to controls. Compared to controls, there were no significant differences in the functional connectivity of the posterior cingulum cortex. There were no significant correlations between neuropsychological scores and neuroimaging features (including DTI and RS-fMRI). Our results suggest persistent cognitive impairment and subtle white matter abnormalities in individuals mildly infected without anxiety or depression symptoms. The longitudinal analyses will clarify whether these alterations are temporary or permanent.
Collapse
|
research-article |
1 |
|
21
|
Castanho GKF, Fontes EB, Machado de Campos B, Chiminazzo JGC, Fernandes PT. A influência do carboidrato na ativação cerebral durante exercício físico. MOTRICIDADE 2016. [DOI: 10.6063/motricidade.6617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
|
9 |
|
22
|
Gomes LR, Damasceno BP, de Campos BM, Damasceno A. Impairment of daily occupations in multiple sclerosis: analysis of neuroimaging, general and social cognition, and reserve. Mult Scler Relat Disord 2024; 81:105140. [PMID: 37988860 DOI: 10.1016/j.msard.2023.105140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Multiple Sclerosis (MS) can impact performance of daily occupations in both relapsing-remitting (RRMS) and secondary-progressive (SPMS) clinical courses. Work force participation decreases with advancing physical disability but the influence of non-motor factors, neuroimaging, and reserve have been scarcely investigated. We aimed to evaluate MRI, clinical, and cognitive (social and general) factors associated with impairment in different daily occupations and address whether cognitive and brain reserve have a positive impact on the ability to maintain these activities. METHODS We prospectively enrolled persons with MS (PwMS) who underwent clinical examination (Expanded Disability Status Scale - EDSS; Timed 25-Foot Walk Test - T25FW; and the Nine Hole Peg Test - 9HPT), general neuropsychological assessment (Brief Repeatable Battery of Neuropsychological Tests - BRBN, including the Symbol Digit Modalities Test - SDMT), social cognition evaluation (Reading the Mind in the Eyes Test), cognitive reserve questionnaire, and MRI (FreeSurfer). We also enrolled healthy subjects for comparison as a control group. Daily occupations (employment, money management, and driving abilities) were assessed in all individuals with questionnaires. RESULTS We included 62 PwMS (32 RRMS and 30 SPMS; mean age 42.8 years; median educational time 12.75 years) and 67 controls (mean age 39.7; median educational time 12.0 years) which were similar regarding demographics, education, and socioeconomic status (p > 0.1). Most PwMS (67.7%) had work-restrictions. They also reported fewer money management and driving abilities than controls (p < 0.001). Work-restriction was associated with physical disability (p = 0.006), SDMT and BRBN performance (p = 0.035 and p = 0.031, respectively), and T2-lesion volume (p = 0.022), with large effect sizes (d > 0.75). After hierarchical linear regression, money management was associated with hand dexterity, general and social cognition, and cognitive reserve (p < 0.03). Variables associated with driving abilities included fatigue, verbal fluency, striatum volume, and brain reserve (p < 0.05). CONCLUSIONS PwMS have more frequent work-restrictions and impairment in money management and driving abilities compared to controls. Cognitive function, physical disability, and MS-lesion burden are strongly associated with work-restriction. Social cognition can also influence financial capacity. Cognitive and brain reserve can help retain some of these daily occupations.
Collapse
|
|
1 |
|
23
|
Katsurayama M, Silva LS, de Campos BM, Avelar WM, Cendes F, Yasuda CL. Disruption of Resting-State Functional Connectivity in Acute Ischemic Stroke: Comparisons Between Right and Left Hemispheric Insults. Brain Topogr 2024; 37:881-888. [PMID: 38302770 DOI: 10.1007/s10548-024-01033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/01/2024] [Indexed: 02/03/2024]
Abstract
Few resting-state functional magnetic resonance imaging (RS-fMRI) studies evaluated the impact of acute ischemic changes on cerebral functional connectivity (FC) and its relationship with functional outcomes after acute ischemic stroke (AIS), considering the side of lesions. To characterize alterations of FC of patients with AIS by analyzing 12 large-scale brain networks (NWs) with RS-fMRI. Additionally, we evaluated the impact of the side (right (RH) or left (LH) hemisphere) of insult on the disruption of brain NWs. 38 patients diagnosed with AIS (17 RH and 21 LH) who performed 3T MRI scans up to 72 h after stroke were compared to 44 healthy controls. Images were processed and analyzed with the software toolbox UF2C with SPM12. For the first level, we generated individual matrices based on the time series extraction from 70 regions of interest (ROIs) from 12 functional NWs, constructing Pearson's cross-correlation; the second-level analysis included an analysis of covariance (ANCOVA) to investigate differences between groups. The statistical significance was determined with p < 0.05, after correction for multiple comparisons with false discovery rate (FDR) correction. Overall, individuals with LH insults developed poorer clinical outcomes after six months. A widespread pattern of lower FC was observed in the presence of LH insults, while a contralateral pattern of increased FC was identified in the group with RH insults. Our findings suggest that LH stroke causes a severe and widespread pattern of reduction of brain networks' FC, presumably related to the impairment in their long-term recovery.
Collapse
|
Comparative Study |
1 |
|
24
|
Junqueira Fleury Silva P, Martins Silva C, Machado de Campos B, de Melo Campos P, de Souza Medina S, Lamonica A, Coimbra Trindade JV, Cendes F, Costa FF, Olalla Saad ST, Deltreggia Benites B. Montreal cognitive assessment in Brazilian adults with sickle cell disease: The burdens of poor sociocultural background. EJHAEM 2024; 5:308-315. [PMID: 38633117 PMCID: PMC11020111 DOI: 10.1002/jha2.875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 04/19/2024]
Abstract
Sickle cell disease (SCD) patients are at higher risk of developing silent cerebral infarcts and overt stroke, which may reflect cognitive impairment, functional limitations, and worse quality of life. The cognitive function of Brazilian adult SCD patients (n = 124; 19-70 years; 56 men; 79 SS, 28 SC, 10 S/β0, 7 S/β+) was screened through Montreal Cognitive Assessment (MoCA) and correlated the results with possible predictive factors for test performance, including sociocultural, clinical, laboratory data and brain imaging. The Median MoCA score was 23 (8-30); 70% had a 25-or-less score, suggesting some level of cognitive impairment. There were no significant associations between MoCA results and any clinical or laboratory data in SS and SC patients; however, a significant correlation (P = 0.03) with stroke was found in HbS/β-thalassemic patients. Correlations were further detected according to sociodemographic conditions, such as age (r = -0.316; P < 0.001), age at first job (r = 0.221; P = 0.018), personal (r = 0.23; P = 0.012) and per capita familiar incomes (r = 0.303; P = 0.001), personal (r = 0.61; P = 0), maternal (r = 0.536; P = 0), and paternal educational status (r = 0.441; P = 0). We further sought independent predictors of performance using multivariable regressions and increased education was an independent predictor of better scores in MoCA (0.8099, 95% confidence interval [CI]: 0.509-1.111). Brain imaging analysis showed significant and progressive atrophy in important cerebral areas related to memory, learning, and executive function. These data point to the high prevalence and impact of cognitive decline in adult SCD patients, mirrored in brain atrophic areas. It is also possible to observe the influence of sociodemographic conditions on patients' cognitive performances and the need for creating focused therapeutic plans that address these deficiencies. Moreover, the absence of a significant correlation of MoCA values with stroke in the SS and SC groups may be related to the worst sociocultural and economic conditions of the Brazilian African descent population, in which the impact of low educational stimulation on cognitive function can outweigh even the anatomical damage caused by the disease.
Collapse
|
research-article |
1 |
|
25
|
Wu ST, Voltoline R, Benites RL, de Campos BM, de Souza JPSS, Ghizoni E. Interactive mining of neural pathways to preoperative neurosurgical planning. Comput Biol Med 2025; 184:109334. [PMID: 39549526 DOI: 10.1016/j.compbiomed.2024.109334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND AND OBJECTIVE Preoperative understanding of white matter anatomy, including its spatial relationship with pathology and superficial landmarks, is vital for effective surgical planning. The ability to interactively synthesize neural pathways from diffusion data and dynamically discern neuroanatomy-referenced fiber patterns enables neurosurgeons to construct detailed mental models of the patient's brain and assess surgical risks. We present a novel interactive software designed for real-time mining of neural pathways from diffusion-weighted magnetic resonance imaging (DW-MRI) data. This software leverages a user-guided approach, integrating curvilinear reformatting and surgeon expertise with diffusion tensor imaging (DTI) data, and employs a finite-state machine interaction model to facilitate intuitive use through a windows, icons, menus, and pointers (WIMP) interface. METHODS The proposed system merges user analytical skills with neuroanatomy-referenced DTI data, including scalar maps, tensor glyphs, and streamlines, within a visually interactive environment. Key features of the system include optimized GPU-based rendering for enhanced graphical representation and the proposed finite-state machine model that enables seamless interaction through intuitive controls. This approach allows for real-time manipulation of DTI data and dynamic generation of depth maps for each frame, facilitating practical exploration and analysis. RESULTS After testing seven control volumes, our system demonstrates tract reconstruction capabilities comparable to MRTrix software's. The evaluation of GPU-based fiber tracking and rendering performance, using NVIDIA Nsight Visual Studio Edition, confirms the system's interactive responsiveness. Preliminary results indicate that the environment effectively extracts critical fibers and evaluates their spatial relationships with surgical targets and landmarks. This functionality provides valuable insights for refining preoperative planning, optimizing surgical approaches, and minimizing potential functional damage. CONCLUSION Our WIMP-based interactive environment empowers surgeons with enhanced capabilities for real-time manipulation of neuroanatomy-referenced DTI data. Integrating curvilinear reformatting and finite-state machine interaction enhances user experience significantly, making it a valuable tool for improving surgical safety and precision. This low-cost, accessible approach has the potential to facilitate minimally invasive procedures, accurate landmark identification, and reduced functional damage, particularly in resource-limited settings.
Collapse
|
|
1 |
|