1
|
Lin Y, Wharton SA, Whittaker L, Dai M, Ermetal B, Lo J, Pontoriero A, Baumeister E, Daniels RS, McCauley JW. The characteristics and antigenic properties of recently emerged subclade 3C.3a and 3C.2a human influenza A(H3N2) viruses passaged in MDCK cells. Influenza Other Respir Viruses 2017; 11:263-274. [PMID: 28164446 PMCID: PMC5410720 DOI: 10.1111/irv.12447] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2017] [Indexed: 11/28/2022] Open
Abstract
Background Two new subclades of influenza A(H3N2) viruses became prominent during the 2014‐2015 Northern Hemisphere influenza season. The HA glycoproteins of these viruses showed sequence changes previously associated with alterations in receptor‐binding properties. To address how these changes influence virus propagation, viruses were isolated and propagated in conventional MDCK cells and MDCK‐SIAT1 cells, cells with enhanced expression of the human receptor for the virus, and analysed at each passage. Methods Gene sequence analysis was undertaken as virus was passaged in conventional MDCK cells and MDCK‐SIAT1 cells. Alterations in receptor recognition associated with passage of virus were examined by haemagglutination assays using red blood cells from guinea pigs, turkeys and humans. Microneutralisation assays were performed to determine how passage‐acquired amino acid substitutions and polymorphisms affected virus antigenicity. Results Viruses were able to infect MDCK‐SIAT1 cells more efficiently than conventional MDCK cells. Viruses of both the 3C.2a and 3C.3a subclades showed greater sequence change on passage in conventional MDCK cells than in MDCK‐SIAT1 cells, with amino acid substitutions being seen in both HA and NA glycoproteins. However, virus passage in MDCK‐SIAT1 cells at low inoculum dilutions showed reducing infectivity on continued passage. Conclusions Current H3N2 viruses should be cultured in the MDCK‐SIAT1 cell line to maintain faithful replication of the virus, and at an appropriate multiplicity of infection to retain infectivity.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
57 |
2
|
Huddleston J, Barnes JR, Rowe T, Xu X, Kondor R, Wentworth DE, Whittaker L, Ermetal B, Daniels RS, McCauley JW, Fujisaki S, Nakamura K, Kishida N, Watanabe S, Hasegawa H, Barr I, Subbarao K, Barrat-Charlaix P, Neher RA, Bedford T. Integrating genotypes and phenotypes improves long-term forecasts of seasonal influenza A/H3N2 evolution. eLife 2020; 9:e60067. [PMID: 32876050 PMCID: PMC7553778 DOI: 10.7554/elife.60067] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
Seasonal influenza virus A/H3N2 is a major cause of death globally. Vaccination remains the most effective preventative. Rapid mutation of hemagglutinin allows viruses to escape adaptive immunity. This antigenic drift necessitates regular vaccine updates. Effective vaccine strains need to represent H3N2 populations circulating one year after strain selection. Experts select strains based on experimental measurements of antigenic drift and predictions made by models from hemagglutinin sequences. We developed a novel influenza forecasting framework that integrates phenotypic measures of antigenic drift and functional constraint with previously published sequence-only fitness estimates. Forecasts informed by phenotypic measures of antigenic drift consistently outperformed previous sequence-only estimates, while sequence-only estimates of functional constraint surpassed more comprehensive experimentally-informed estimates. Importantly, the best models integrated estimates of both functional constraint and either antigenic drift phenotypes or recent population growth.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
38 |
3
|
Gardner JC, Liew G, Quan YH, Ermetal B, Ueyama H, Davidson AE, Schwarz N, Kanuga N, Chana R, Maher ER, Webster AR, Holder GE, Robson AG, Cheetham ME, Liebelt J, Ruddle JB, Moore AT, Michaelides M, Hardcastle AJ. Three different cone opsin gene array mutational mechanisms with genotype-phenotype correlation and functional investigation of cone opsin variants. Hum Mutat 2015; 35:1354-62. [PMID: 25168334 PMCID: PMC4285181 DOI: 10.1002/humu.22679] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/18/2014] [Indexed: 11/22/2022]
Abstract
Mutations in the OPN1LW (L-) and OPN1MW (M-)cone opsin genes underlie a spectrum of cone photoreceptor defects from stationary loss of color vision to progressive retinal degeneration. Genotypes of 22 families with a range of cone disorders were grouped into three classes: deletions of the locus control region (LCR); missense mutation (p.Cys203Arg) in an L-/M-hybrid gene; and exon 3 single-nucleotide polymorphism (SNP) interchange haplotypes in an otherwise normal gene array. Moderate-to-high myopia was observed in all mutation categories. Individuals with LCR deletions or p.Cys203Arg mutations were more likely to have nystagmus and poor vision, with disease progression in some p.Cys203Arg patients. Three disease-associated exon 3 SNP haplotypes encoding LIAVA, LVAVA, or MIAVA were identified in our cohort. These patients were less likely to have nystagmus but more likely to show progression, with all patients over the age of 40 years having marked macular abnormalities. Previously, the haplotype LIAVA has been shown to result in exon 3 skipping. Here, we show that haplotypes LVAVA and MIAVA also result in aberrant splicing, with a residual low level of correctly spliced cone opsin. The OPN1LW/OPN1MW:c.532A>G SNP, common to all three disease-associated haplotypes, appears to be principally responsible for this mutational mechanism.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
37 |
4
|
Sealy JE, Yaqub T, Peacock TP, Chang P, Ermetal B, Clements A, Sadeyen JR, Mehboob A, Shelton H, Bryant JE, Daniels RS, McCauley JW, Iqbal M. Association of Increased Receptor-Binding Avidity of Influenza A(H9N2) Viruses with Escape from Antibody-Based Immunity and Enhanced Zoonotic Potential. Emerg Infect Dis 2018; 25:63-72. [PMID: 30561311 PMCID: PMC6302589 DOI: 10.3201/eid2501.180616] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We characterized 55 influenza A(H9N2) viruses isolated in Pakistan during 2014-2016 and found that the hemagglutinin gene is of the G1 lineage and that internal genes have differentiated into a variety of novel genotypes. Some isolates had up to 4-fold reduction in hemagglutination inhibition titers compared with older viruses. Viruses with hemagglutinin A180T/V substitutions conveyed this antigenic diversity and also caused up to 3,500-fold greater binding to avian-like and >20-fold greater binding to human-like sialic acid receptor analogs. This enhanced binding avidity led to reduced virus replication in primary and continuous cell culture. We confirmed that altered receptor-binding avidity of H9N2 viruses, including enhanced binding to human-like receptors, results in antigenic variation in avian influenza viruses. Consequently, current vaccine formulations might not induce adequate protective immunity in poultry, and emergence of isolates with marked avidity for human-like receptors increases the zoonotic risk.
Collapse
|
research-article |
7 |
34 |
5
|
Daniels RS, Tse H, Ermetal B, Xiang Z, Jackson DJ, Guntoro J, Nicod J, Stewart A, Cross KJ, Hussain S, McCauley JW, Lo J. Molecular Characterization of Influenza C Viruses from Outbreaks in Hong Kong SAR, China. J Virol 2020; 94:e01051-20. [PMID: 32817211 PMCID: PMC7565627 DOI: 10.1128/jvi.01051-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
In 2014, the Centre for Health Protection in Hong Kong introduced screening for influenza C virus (ICV) as part of its routine surveillance for infectious agents in specimens collected from patients presenting with symptoms of respiratory viral infection, including influenza-like illness (ILI). A retrospective analysis of ICV detections up to week 26 of 2019 revealed persistent low-level circulation, with two outbreaks having occurred in the winters of 2015 to 2016 and 2017 to 2018. These outbreaks occurred at the same time as, and were dwarfed by, seasonal epidemics of influenza types A and B. Gene sequencing studies on stored ICV-positive clinical specimens from the two outbreaks have shown that the hemagglutinin-esterase (HE) genes of the viruses fall into two of the six recognized genetic lineages (represented by C/Kanagawa/1/76 and C/São Paulo/378/82), with there being significant genetic drift compared to earlier circulating viruses within both lineages. The location of a number of encoded amino acid substitutions in hemagglutinin-esterase fusion (HEF) glycoproteins suggests that antigenic drift may also have occurred. Observations of ICV outbreaks in other countries, with some of the infections being associated with severe disease, indicates that ICV infection has the potential to have significant clinical and health care impacts in humans.IMPORTANCE Influenza C virus infection of humans is common, and reinfection can occur throughout life. While symptoms are generally mild, severe disease cases have been reported, but knowledge of the virus is limited, as little systematic surveillance for influenza C virus is conducted and the virus cannot be studied by classical virologic methods because it cannot be readily isolated in laboratories. A combination of systematic surveillance in Hong Kong SAR, China, and new gene sequencing methods has been used in this study to assess influenza C virus evolution and provides evidence for a 2-year cycle of disease outbreaks. The results of studies like that reported here are key to developing an understanding of the impact of influenza C virus infection in humans and how virus evolution might be associated with epidemics.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Amino Acid Substitution
- Child
- Child, Preschool
- Disease Outbreaks
- Epidemiological Monitoring
- Female
- Gene Expression
- Hemagglutinins, Viral/chemistry
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/metabolism
- High-Throughput Nucleotide Sequencing
- Hong Kong/epidemiology
- Humans
- Infant
- Influenza, Human/epidemiology
- Influenza, Human/pathology
- Influenza, Human/virology
- Gammainfluenzavirus/enzymology
- Gammainfluenzavirus/genetics
- Male
- Middle Aged
- Models, Molecular
- Molecular Epidemiology
- Mutation
- Phylogeny
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Retrospective Studies
- Viral Fusion Proteins/chemistry
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/metabolism
Collapse
|
research-article |
5 |
14 |
6
|
Njouom R, Monamele GC, Ermetal B, Tchatchouang S, Moyo-Tetang S, McCauley JW, Daniels RS. Detection of Influenza C Virus Infection among Hospitalized Patients, Cameroon. Emerg Infect Dis 2019; 25:607-609. [PMID: 30789339 PMCID: PMC6390756 DOI: 10.3201/eid2503.181213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report 3 cases of influenza C virus in children hospitalized with severe acute respiratory infection in Cameroon. Two of these case-patients had grave clinical manifestations, but all 3 recovered. The lack of specific antiviral drugs for influenza C virus highlights the need to identify and describe cases involving this virus.
Collapse
|
Letter |
6 |
14 |
7
|
Daniels RS, Harvey R, Ermetal B, Xiang Z, Galiano M, Adams L, McCauley JW. A Sanger sequencing protocol for SARS-CoV-2 S-gene. Influenza Other Respir Viruses 2021; 15:707-710. [PMID: 34346163 PMCID: PMC8447197 DOI: 10.1111/irv.12892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 11/29/2022] Open
Abstract
We describe a Sanger sequencing protocol for SARS-CoV-2 S-gene the Spike (S)-glycoprotein product of which, composed of receptor-binding (S1) and membrane fusion (S2) segments, is the target of vaccines used to combat COVID-19. The protocol can be used in laboratories with basic Sanger sequencing capabilities and allows rapid "at source" screening for SARS-CoV-2 variants, notably those of concern. The protocol has been applied for surveillance, with clinical specimens collected in either nucleic acid preservation lysis-mix or virus transport medium, and research involving cultured viruses, and can yield data of public health importance in a timely manner.
Collapse
|
brief-report |
4 |
12 |
8
|
Machablishvili A, Chakhunashvili G, Zakhashvili K, Karseladze I, Tarkhan-Mouravi O, Gavashelidze M, Jashiashvili T, Sabadze L, Imnadze P, Daniels RS, Ermetal B, McCauley JW. Overview of three influenza seasons in Georgia, 2014-2017. PLoS One 2018; 13:e0201207. [PMID: 30052663 PMCID: PMC6063423 DOI: 10.1371/journal.pone.0201207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/10/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Influenza epidemiological and virologic data from Georgia are limited. We aimed to present Influenza Like Illness (ILI) and Severe Acute Respiratory Infection (SARI) surveillance data and characterize influenza viruses circulating in the country over three influenza seasons. METHODS We analyzed sentinel site ILI and SARI data for the 2014-2017 seasons in Georgia. Patients' samples were screened by real-time RT-PCR and influenza viruses isolated were characterized antigenically by haemagglutination inhibition assay and genetically by sequencing of HA and NA genes. RESULTS 32% (397/1248) of ILI and 29% (581/1997) of SARI patients tested were positive for influenza viruses. In 2014-2015 the median week of influenza detection was week 7/2015 with B/Yamagata lineage viruses dominating (79%); in 2015-2016-week 5/2016 was the median with A/H1N1pdm09 viruses prevailing (83%); and in 2016-2017 a bimodal distribution of influenza activity was observed-the first wave was caused by A/H3N2 (55%) with median week 51/2016 and the second by B/Victoria lineage viruses (45%) with median week 9/2017. For ILI, influenza virus detection was highest in children aged 5-14 years while for SARI patients most were aged >15 years and 27 (4.6%) of 581 SARI cases died during the three seasons. Persons aged 30-64 years had the highest risk of fatal outcome, notably those infected with A/H1N1pdm09 (OR 11.41, CI 3.94-33.04, p<0.001). A/H1N1pdm09 viruses analyzed by gene sequencing fell into genetic groups 6B and 6B.1; A/H3N2 viruses belonged to genetic subclades 3C.3b, 3C.3a, 3C.2a and 3C.2a1; B/Yamagata lineage viruses were of clade 3 and B/Victoria lineage viruses fell in clade1A. CONCLUSION In Georgia influenza virus activity occurred mainly from December through March in all seasons, with varying peak weeks and predominating viruses. Around one third of ILI/ SARI cases were associated with influenza caused by antigenically and genetically distinct influenza viruses over the course of the three seasons.
Collapse
|
research-article |
7 |
4 |
9
|
Korsun N, Daniels R, Angelova S, Ermetal B, Grigorova I, Voleva S, Trifonova I, Kurchatova A, McCauley J. Genetic diversity of influenza A viruses circulating in Bulgaria during the 2018-2019 winter season. J Med Microbiol 2020; 69:986-998. [PMID: 32459617 PMCID: PMC7481746 DOI: 10.1099/jmm.0.001198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Introduction Influenza viruses evolve rapidly and change their antigenic characteristics, necessitating biannual updates of flu vaccines. Aim The aim of this study was to characterize influenza viruses circulating in Bulgaria during the 2018/2019 season and to identify amino acid substitutions in them that might impact vaccine effectiveness. Methodology Typing/subtyping of influenza viruses were performed using real-time Reverse Transcription-PCR (RT-PCR) and results of phylogenetic and amino acid sequence analyses of influenza strains are presented. Results A(H1N1)pdm09 (66 %) predominated over A(H3N2) (34 %) viruses, with undetected circulation of B viruses in the 2018/2019 season. All A(H1N1)pdm09 viruses studied fell into the recently designated 6B.1A subclade with over 50 % falling in four subgroups: 6B.1A2, 6B.1A5, 6B.1A6 and 6B.1A7. Analysed A(H3N2) viruses belonged to subclades 3C.2a1b and 3C.2a2. Amino acid sequence analysis of 36 A(H1N1)pdm09 isolates revealed the presence of six–ten substitutions in haemagglutinin (HA), compared to the A/Michigan/45/2015 vaccine virus, three of which occurred in antigenic sites Sa and Cb, together with four–nine changes at positions in neuraminidase (NA), and a number of substitutions in internal proteins. HA1 D222N substitution, associated with increased virulence, was identified in two A(H1N1)pdm09 viruses. Despite the presence of several amino acid substitutions, A(H1N1)pdm09 viruses remained antigenically similar to the vaccine virus. The 28 A(H3N2) viruses characterized carried substitutions in HA, including some in antigenic sites A, B, C and E, in NA and internal protein sequences. Conclusion The results of this study showed the genetic diversity of circulating influenza viruses and the need for continuous antigenic and molecular surveillance.
Collapse
|
Journal Article |
5 |
1 |
10
|
Perofsky AC, Huddleston J, Hansen CL, Barnes JR, Rowe T, Xu X, Kondor R, Wentworth DE, Lewis N, Whittaker L, Ermetal B, Harvey R, Galiano M, Daniels RS, McCauley JW, Fujisaki S, Nakamura K, Kishida N, Watanabe S, Hasegawa H, Sullivan SG, Barr IG, Subbarao K, Krammer F, Bedford T, Viboud C. Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States. eLife 2024; 13:RP91849. [PMID: 39319780 PMCID: PMC11424097 DOI: 10.7554/elife.91849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997-2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity.
Collapse
MESH Headings
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- United States/epidemiology
- Influenza, Human/epidemiology
- Influenza, Human/virology
- Influenza, Human/immunology
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Epidemics
- Antigenic Drift and Shift/genetics
- Child
- Adult
- Neuraminidase/genetics
- Neuraminidase/immunology
- Adolescent
- Child, Preschool
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Young Adult
- Evolution, Molecular
- Seasons
- Middle Aged
Collapse
|
|
1 |
|
11
|
Daniels RS, Galiano M, Ermetal B, Kwong J, Lau CS, Xiang Z, McCauley JW, Lo J. Temporal and Gene Reassortment Analysis of Influenza C Virus Outbreaks in Hong Kong, SAR, China. J Virol 2022; 96:e0192821. [PMID: 34787455 PMCID: PMC8826914 DOI: 10.1128/jvi.01928-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022] Open
Abstract
From 2014 to week 07/2020 the Centre for Health Protection in Hong Kong conducted screening for influenza C virus (ICV). A retrospective analysis of ICV detections to week 26/2019 revealed persistent low-level circulation with outbreaks occurring biennially in the winters of 2015 to 2016 and 2017 to 2018 (R. S. Daniels et al., J Virol 94:e01051-20, 2020, https://doi.org/10.1128/JVI.01051-20). Here, we report on an outbreak occurring in 2019 to 2020, reinforcing the observation of biennial seasonality in Hong Kong. All three outbreaks occurred in similar time frames, were subsequently dwarfed by seasonal epidemics of influenza types A and B, and were caused by similar proportions of C/Kanagawa/1/76 (K)-lineage and C/São Paulo/378/82 S1- and S2-sublineage viruses. Ongoing genetic drift was observed in all genes, with some evidence of amino acid substitution in the hemagglutinin-esterase-fusion (HEF) glycoprotein possibly associated with antigenic drift. A total of 61 ICV genomes covering the three outbreaks were analyzed for reassortment, and 9 different reassortant constellations were identified, 1 K-lineage, 4 S1-sublineage, and 4 S2-sublineage, with 6 of these being identified first in the 2019-1920 outbreak (2 S2-lineage and 4 S1-lineage). The roles that virus interference/enhancement, ICV persistent infection, genome evolution, and reassortment might play in the observed seasonality of ICV in Hong Kong are discussed. IMPORTANCE Influenza C virus (ICV) infection of humans is common, with the great majority of people being infected during childhood, though reinfection can occur throughout life. While infection normally results in "cold-like" symptoms, severe disease cases have been reported in recent years. However, knowledge of ICV is limited due to poor systematic surveillance and an inability to propagate the virus in large amounts in the laboratory. Following recent systematic surveillance in Hong Kong SAR, China, and direct ICV gene sequencing from clinical specimens, a 2-year cycle of disease outbreaks (epidemics) has been identified, with gene mixing playing a significant role in ICV evolution. Studies like those reported here are key to developing an understanding of the impact of influenza C virus infection in humans, notably where comorbidities exist and severe respiratory disease can develop.
Collapse
|
research-article |
3 |
|
12
|
Perofsky AC, Huddleston J, Hansen C, Barnes JR, Rowe T, Xu X, Kondor R, Wentworth DE, Lewis N, Whittaker L, Ermetal B, Harvey R, Galiano M, Daniels RS, McCauley JW, Fujisaki S, Nakamura K, Kishida N, Watanabe S, Hasegawa H, Sullivan SG, Barr IG, Subbarao K, Krammer F, Bedford T, Viboud C. Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.10.02.23296453. [PMID: 37873362 PMCID: PMC10593063 DOI: 10.1101/2023.10.02.23296453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997-2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection dynamics, presumably via heterosubtypic cross-immunity.
Collapse
|
Preprint |
1 |
|