1
|
Gazarini ML, Thomas AP, Pozzan T, Garcia CRS. Calcium signaling in a low calcium environment: how the intracellular malaria parasite solves the problem. J Cell Biol 2003; 161:103-10. [PMID: 12682086 PMCID: PMC2172890 DOI: 10.1083/jcb.200212130] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Malaria parasites, Plasmodia, spend most of their asexual life cycle within red blood cells, where they proliferate and mature. The erythrocyte cytoplasm has very low [Ca2+] (<100 nM), which is very different from the extracellular environment encountered by most eukaryotic cells. The absence of extracellular Ca2+ is usually incompatible with normal cell functions and survival. In the present work, we have tested the possibility that Plasmodia overcome the limitation posed by the erythrocyte intracellular environment through the maintenance of a high [Ca2+] within the parasitophorous vacuole (PV), the compartment formed during invasion and within which the parasites grow and divide. Thus, Plasmodia were allowed to invade erythrocytes in the presence of Ca2+ indicator dyes. This allowed selective loading of the Ca2+ probes within the PV. The [Ca2+] within this compartment was found to be approximately 40 microM, i.e., high enough to be compatible with a normal loading of the Plasmodia intracellular Ca2+ stores, a prerequisite for the use of a Ca2+-based signaling mechanism. We also show that reduction of extracellular [Ca2+] results in a slow depletion of the [Ca2+] within the PV. A transient drop of [Ca2+] in the PV for a period as short as 2 h affects the maturation process of the parasites within the erythrocytes, with a major reduction 48 h later in the percentage of schizonts, the form that re-invades the red blood cells.
Collapse
|
research-article |
22 |
114 |
2
|
Beraldo FH, Almeida FM, da Silva AM, Garcia CRS. Cyclic AMP and calcium interplay as second messengers in melatonin-dependent regulation of Plasmodium falciparum cell cycle. ACTA ACUST UNITED AC 2007; 170:551-7. [PMID: 16103224 PMCID: PMC2171486 DOI: 10.1083/jcb.200505117] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The host hormone melatonin increases cytoplasmic Ca(2+) concentration and synchronizes Plasmodium cell cycle (Hotta, C.T., M.L. Gazarini, F.H. Beraldo, F.P. Varotti, C. Lopes, R.P. Markus, T. Pozzan, and C.R. Garcia. 2000. Nat. Cell Biol. 2:466-468). Here we show that in Plasmodium falciparum melatonin induces an increase in cyclic AMP (cAMP) levels and cAMP-dependent protein kinase (PKA) activity (40 and 50%, respectively). When red blood cells infected with P. falciparum are treated with cAMP analogue adenosine 3',5'-cyclic monophosphate N6-benzoyl/PKA activator (6-Bz-cAMP) there is an alteration of the parasite cell cycle. This effect appears to depend on activation of PKA (abolished by the PKA inhibitors adenosine 3',5'-cyclic monophosphorothioate/8 Bromo Rp isomer, PKI [cell permeable peptide], and H89). An unexpected cross talk was found to exist between the cAMP and the Ca(2+)-dependent signaling pathways. The increases in cAMP by melatonin are inhibited by blocker of phospholipase C U73122, and addition of 6-Bz-cAMP increases cytosolic Ca(2+) concentration, through PKA activation. These findings suggest that in Plasmodium a highly complex interplay exists between the Ca(2+) and cAMP signaling pathways, but also that the control of the parasite cell cycle by melatonin requires the activation of both second messenger controlled pathways.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
107 |
3
|
Varotti FP, Beraldo FH, Gazarini ML, Garcia CRS. Plasmodium falciparum malaria parasites display a THG-sensitive Ca2+ pool. Cell Calcium 2003; 33:137-44. [PMID: 12531190 DOI: 10.1016/s0143-4160(02)00224-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
|
22 |
55 |
4
|
Innocente AM, Silva GNS, Cruz LN, Moraes MS, Nakabashi M, Sonnet P, Gosmann G, Garcia CRS, Gnoatto SCB. Synthesis and antiplasmodial activity of betulinic acid and ursolic acid analogues. Molecules 2012; 17:12003-14. [PMID: 23085651 PMCID: PMC6268073 DOI: 10.3390/molecules171012003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 09/24/2012] [Accepted: 10/07/2012] [Indexed: 12/01/2022] Open
Abstract
More than 40% of the World population is at risk of contracting malaria, which affects primarily poor populations in tropical and subtropical areas. Antimalarial pharmacotherapy has utilised plant-derived products such as quinine and artemisinin as well as their derivatives. However, worldwide use of these antimalarials has caused the spread of resistant parasites, resulting in increased malaria morbidity and mortality. Considering that the literature has demonstrated the antimalarial potential of triterpenes, specially betulinic acid (1) and ursolic acid (2), this study investigated the antimalarial activity against P. falciparum chloroquine-sensitive 3D7 strain of some new derivatives of 1 and 2 with modifications at C-3 and C-28. The antiplasmodial study employed flow cytometry and spectrofluorimetric analyses using YOYO-1, dihydroethidium and Fluo4/AM for staining. Among the six analogues obtained, compounds 1c and 2c showed excellent activity (IC₅₀ = 220 and 175 nM, respectively) while 1a and b demonstrated good activity (IC₅₀ = 4 and 5 μM, respectively). After cytotoxicity evaluation against HEK293T cells, 1a was not toxic, while 1c and 2c showed IC₅₀ of 4 μM and a selectivity index (SI) value of 18 and 23, respectively. Moreover, compound 2c, which presents the best antiplasmodial activity, is involved in the calcium-regulated pathway(s).
Collapse
|
research-article |
13 |
53 |
5
|
Gazarini ML, Garcia CRS. The malaria parasite mitochondrion senses cytosolic Ca2+ fluctuations. Biochem Biophys Res Commun 2004; 321:138-44. [PMID: 15358226 DOI: 10.1016/j.bbrc.2004.06.141] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Indexed: 10/26/2022]
Abstract
By using the fluorescent dye Rhod-2, we have investigated the ability of Plasmodium mitochondria to participate in cellular Ca2+ homeostasis. To this end, isolated parasites were simultaneously loaded with the mitochondrial Ca2+ probe Rhod-2 and the cytosolic Ca2+ dye Fluo-3 and their fluorescent intensities were monitored in the same cells by confocal microscopy. We here demonstrate that Ca2+ increases, as elicited by treatment of parasites with sarco-endoplasmic reticulum Ca2+ ATPase inhibitors or the hormone melatonin, induce rapid and reversible increases of the Ca2+ concentration in the mitochondria of both human and murine parasites. Pre-treatment of parasites with the mitochondrial uncoupler, FCCP, suppresses mitochondrial Ca2+ accumulation. Our data demonstrate that mitochondria of malaria parasites are able to reversibly accumulate part of the Ca2+ released in the cytoplasm by pharmacological and physiological agents and thus suggest that this organelle participate in the maintenance of Ca2+ homeostasis of Plasmodia.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
49 |
6
|
Koyama FC, Carvalho TLG, Alves E, da Silva HB, de Azevedo MF, Hemerly AS, Garcia CRS. The Structurally Related Auxin and Melatonin Tryptophan-Derivatives and their Roles in Arabidopsis thaliana
and in the Human Malaria Parasite Plasmodium falciparum. J Eukaryot Microbiol 2013; 60:646-51. [DOI: 10.1111/jeu.12080] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 11/29/2022]
|
|
12 |
49 |
7
|
Beraldo FH, Mikoshiba K, Garcia CRS. Human malarial parasite, Plasmodium falciparum, displays capacitative calcium entry: 2-aminoethyl diphenylborinate blocks the signal transduction pathway of melatonin action on the P. falciparum cell cycle. J Pineal Res 2007; 43:360-4. [PMID: 17910604 DOI: 10.1111/j.1600-079x.2007.00486.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The malarial parasite senses the environment to modulate its own cycle. Knowledge of the mechanisms for regulation signaling processes at the invasion, maturation, as well as division of Plasmodium falciparum before reinvasion would represent a major breakthrough and, therefore, might open new avenues for therapy. We have previously reported that melatonin modulates the circadian rhythm of malarial parasites through the activation of phospholipase C (PLC), production of InsP3, and induction of calcium release from intracellular stores. To further investigate the molecular mechanism of melatonin's action, we have used the InsP3 modulator 2-aminoethyl diphenylborinate (2-APB) given in a culture of P. falciparum parasites. Here we show that the melatonin acts on Plasmodium cell cycle through InsP3 signaling as 2-APB blocks melatonin's effect on calcium release. The function of the InsP3 signaling can be regarded as an important event for parasite invasion and maturation process, since addition of the PLC inhibitor, U73122 into Plasmodium-infected red blood cells impairs parasite invasion in vitro. By using 8BrcAMP, we also report here that Plasmodia displays a 'capacitative calcium entry' mechanism for amplification of calcium signals throughout the cytoplasm.
Collapse
|
|
18 |
47 |
8
|
Beraldo FH, Garcia CRS. Products of tryptophan catabolism induce Ca2+ release and modulate the cell cycle of Plasmodium falciparum malaria parasites. J Pineal Res 2005; 39:224-30. [PMID: 16150101 DOI: 10.1111/j.1600-079x.2005.00249.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intraerythrocytic malaria parasites develop in a highly synchronous manner. We have previously shown that the host hormone melatonin regulates the circadian rhythm of the rodent malaria parasite, Plasmodium chabaudi, through a Ca2+-based mechanism. Here we show that melatonin and other molecules derived from tryptophan, i.e. N-acetylserotonin, serotonin and tryptamine, also modulate the cell cycle of human malaria parasite P. falciparum by inducing an increase in cytosolic free Ca2+. This occurs independently of the extracellular Ca2+ concentration, indicating that these molecules induce Ca2+ mobilization from intracellular stores in the trophozoite. This in turn leads to an increase in the proportion of schizonts. The effects of the indolamines in increasing cytosolic free Ca2+ and modulating the parasite cell cycle are both abrogated by an antagonist of the melatonin receptor, luzindole, and by the phospholipase inhibitor, U73122.
Collapse
|
|
20 |
47 |
9
|
Madeira L, Galante PAF, Budu A, Azevedo MF, Malnic B, Garcia CRS. Genome-wide detection of serpentine receptor-like proteins in malaria parasites. PLoS One 2008; 3:e1889. [PMID: 18365025 PMCID: PMC2268965 DOI: 10.1371/journal.pone.0001889] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 02/21/2008] [Indexed: 11/19/2022] Open
Abstract
Serpentine receptors comprise a large family of membrane receptors distributed over diverse organisms, such as bacteria, fungi, plants and all metazoans. However, the presence of serpentine receptors in protozoan parasites is largely unknown so far. In the present study we performed a genome-wide search for proteins containing seven transmembrane domains (7-TM) in the human malaria parasite Plasmodium falciparum and identified four serpentine receptor-like proteins. These proteins, denoted PfSR1, PfSR10, PfSR12 and PfSR25, show membrane topologies that resemble those exhibited by members belonging to different families of serpentine receptors. Expression of the pfsrs genes was detected by Real Time PCR in P. falciparum intraerythrocytic stages, indicating that they potentially code for functional proteins. We also found corresponding homologues for the PfSRs in five other Plasmodium species, two primate and three rodent parasites. PfSR10 and 25 are the most conserved receptors among the different species, while PfSR1 and 12 are more divergent. Interestingly, we found that PfSR10 and PfSR12 possess similarity to orphan serpentine receptors of other organisms. The identification of potential parasite membrane receptors raises a new perspective for essential aspects of malaria parasite host cell infection.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
39 |
10
|
Farias SL, Gazarini ML, Melo RL, Hirata IY, Juliano MA, Juliano L, Garcia CRS. Cysteine-protease activity elicited by Ca2+ stimulus in Plasmodium. Mol Biochem Parasitol 2005; 141:71-9. [PMID: 15811528 DOI: 10.1016/j.molbiopara.2005.01.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 01/11/2005] [Accepted: 01/26/2005] [Indexed: 11/26/2022]
Abstract
Bloodstage malaria parasites require proteolytic activity for key processes as invasion, hemoglobin degradation and merozoite escape from red blood cells (RBCs). We investigated by confocal microscopy the presence of cysteine-protease activity elicited by calcium stimulus in Plasmodium chabaudi and Plasmodium falciparum in free trophozoites or for the later parasite within RBC using fluorescence resonance energy transfer (FRET) peptides. Peptide probes access, to either free or intraerythrocytic parasites, was also tested by selecting a range of fluorescent peptides (653-3146 Da molecular mass) labeled with Abz or FITC. In the present work we show that Ca2+ stimulus elicited by treatment with either melatonin, thapsigargin, ionomicin or nigericin, promotes an increase of substrate hydrolysis, which was blocked by the specific cysteine-protease inhibitor E-64 and the intracellular Ca2+ chelator, BAPTA. When parasites were treated with cytoplasmic Ca2+ releasing compounds, a cysteine-protease was labeled in the parasite cytoplasm by the fluorescent specific irreversible inhibitor, Ethyl-Eps-Leu-Tyr-Cap-Lys(Abz)-NH2, where Ethyl-Eps is Ethyl-(2S,3S)-oxirane-2,3-dicarboxylate. In summary, we demonstrate that P. chabaudi and P. falciparum have a cytoplasmic dependent cysteine-protease activity elicited by Ca2+.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
38 |
11
|
Gazarini ML, Beraldo FH, Almeida FM, Bootman M, Da Silva AM, Garcia CRS. Melatonin triggers PKA activation in the rodent malaria parasite Plasmodium chabaudi. J Pineal Res 2011; 50:64-70. [PMID: 20964707 DOI: 10.1111/j.1600-079x.2010.00810.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Calcium (Ca(2+) ) is a critical regulator of many aspects of the Plasmodium reproductive cycle. In particular, intra-erythrocyte Plasmodium parasites respond to circulating levels of the melatonin in a process mediated partly by intracellular Ca(2+) . Melatonin promotes the development and synchronicity of parasites, thereby enhancing their spread and worsening the clinical implications. The signalling mechanisms underlying the effects of melatonin are not fully established, although both Ca(2+) and cyclic AMP (cAMP) have been implicated. Furthermore, it is not clear whether different strains of Plasmodium use the same, or divergent, signals to control their development. The aim of this study was to explore the signalling mechanisms engaged by melatonin in P. chabaudi, a virulent rodent parasite. Using parasites at the throphozoite stage acutely isolated from mice erythrocytes, we demonstrate that melatonin triggers cAMP production and protein kinase A (PKA) activation. Interestingly, the stimulation of cAMP/PKA signalling by melatonin was dependent on elevation of Ca(2+) within the parasite, because buffering Ca(2+) changes using the chelator BAPTA prevented cAMP production in response to melatonin. Incubation with melatonin evoked robust Ca(2+) signals within the parasite, as did the application of a membrane-permeant analogue of cAMP. Our data suggest that P. chabaudi engages both Ca(2+) and cAMP signalling systems when stimulated by melatonin. Furthermore, there is positive feedback between these messengers, because Ca(2+) evokes cAMP elevation and vice versa. Melatonin more than doubled the observed extent of parasitemia, and the increase in cAMP concentration and PKA activation was essential for this effect. These data support the possibility to use melatonin antagonists or derivates in therapeutic approach.
Collapse
|
|
14 |
33 |
12
|
Hotta CT, Markus RP, Garcia CRS. Melatonin and N-acetyl-serotonin cross the red blood cell membrane and evoke calcium mobilization in malarial parasites. Braz J Med Biol Res 2003; 36:1583-7. [PMID: 14576913 DOI: 10.1590/s0100-879x2003001100016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The duration of the intraerythrocytic cycle of Plasmodium is a key factor in the pathogenicity of this parasite. The simultaneous attack of the host red blood cells by the parasites depends on the synchronicity of their development. Unraveling the signals at the basis of this synchronicity represents a challenging biological question and may be very important to develop alternative strategies for therapeutic approaches. Recently, we reported that the synchrony of Plasmodium is modulated by melatonin, a host hormone that is synthesized only during the dark phases. Here we report that N-acetyl-serotonin, a melatonin precursor, also releases Ca2+ from isolated P. chabaudi parasites at micro- and nanomolar concentrations and that the release is blocked by 250 mM luzindole, an antagonist of melatonin receptors, and 20 mM U73122, a phospholipase C inhibitor. On the basis of confocal microscopy, we also report the ability of 0.1 microM melatonin and 0.1 microM N-acetyl-serotonin to cross the red blood cell membrane and to mobilize intracellular calcium in parasites previously loaded with the fluorescent calcium indicator Fluo-3 AM. The present data represent a step forward into the understanding of the signal transduction process in the host-parasite relationship by supporting the idea that the host hormone melatonin and N-acetyl-serotonin generate IP3 and therefore mobilize intracellular Ca2+ in Plasmodium inside red blood cells.
Collapse
|
|
22 |
31 |
13
|
Koyama FC, Ribeiro RY, Garcia JL, Azevedo MF, Chakrabarti D, Garcia CRS. Ubiquitin proteasome system and the atypical kinase PfPK7 are involved in melatonin signaling in Plasmodium falciparum. J Pineal Res 2012; 53:147-53. [PMID: 22348509 PMCID: PMC3360131 DOI: 10.1111/j.1600-079x.2012.00981.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously reported that melatonin modulates the Plasmodium falciparum erythrocytic cycle by increasing schizont stage population as well as diminishing ring stage population. In addition, the importance of calcium and cAMP in melatonin signaling pathway in P. falciparum was also demonstrated. Nevertheless, the molecular effectors of the indoleamine signaling pathway remain elusive. We now demonstrate by real-time PCR that melatonin treatment up-regulates genes related to ubiquitin/proteasome system (UPS) components and that luzindole, a melatonin receptor antagonist, inhibits UPS transcription modulation. We also show that protein kinase PfPK7, a P. falciparum orphan kinase, plays a crucial role in the melatonin transduction pathway, since following melatonin treatment of P. falciparum parasites where pfpk7 gene is disrupted (pfpk7(-) parasites) (i) the ratio of asexual stages remain unchanged, (ii) the increase in cytoplasmatic calcium in response to melatonin was strongly diminished and (iii) up-regulation of UPS genes did not occur. The wild-type melatonin-induced alterations in cell cycle features, calcium rise and UPS gene transcription were restored by re-introduction of a functional copy of the pfpk7 gene in the pfpk7(-) parasites.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
31 |
14
|
Cruz LN, Wu Y, Ulrich H, Craig AG, Garcia CRS. Tumor necrosis factor reduces Plasmodium falciparum growth and activates calcium signaling in human malaria parasites. Biochim Biophys Acta Gen Subj 2016; 1860:1489-97. [PMID: 27080559 PMCID: PMC4876768 DOI: 10.1016/j.bbagen.2016.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/08/2016] [Accepted: 04/04/2016] [Indexed: 12/29/2022]
Abstract
Background Plasmodium has a complex biology including the ability to interact with host signals modulating their function through cellular machinery. Tumor necrosis factor (TNF) elicits diverse cellular responses including effects in malarial pathology and increased infected erythrocyte cytoadherence. As TNF levels are raised during Plasmodium falciparum infection we have investigated whether it has an effect on the parasite asexual stage. Methods Flow cytometry, spectrofluorimetric determinations, confocal microscopy and PCR real time quantifications were employed for characterizing TNF induced effects and membrane integrity verified by wheat germ agglutinin staining. Results TNF is able to decrease intracellular parasitemia, involving calcium as a second messenger of the pathway. Parasites incubated for 48 h with TNF showed reduced erythrocyte invasion. Thus, TNF induced rises in intracellular calcium concentration, which were blocked by prior addition of the purinergic receptor agonists KN62 and A438079, or interfering with intra- or extracellular calcium release by thapsigargin or EGTA (ethylene glycol tetraacetic acid). Importantly, expression of PfPCNA1 which encodes the Plasmodium falciparum Proliferating-Cell Nuclear Antigen 1, decreased after P. falciparum treatment of TNF (tumor necrosis factor) or 6-Bnz cAMP (N6-benzoyladenosine-3′,5′-cyclic monophosphate sodium salt). Conclusions This is potentially interesting data showing the relevance of calcium in downregulating a gene involved in cellular proliferation, triggered by TNF. General significance The data show that Plasmodium may subvert the immunological system and use TNF for the control of its proliferation within the vertebrate host.
TNF is able to decrease parasitemia in P. falciparum‐infected RBCs. TNF induced rises in intracellular calcium concentration, which were blocked by the purinergic receptor agonists KN62 and A438079. Interfering with intra‐ or extracellular calcium release by thapsigargin or EGTA also block TNF‐induce calcium release in P. falciparum. Expression of the P. falciparum Proliferating‐Cell Nuclear Antigen 1 (PfPCNA1) decreased after P. falciparum treatment with TNF or 6‐Bnz cAMP. The data show that Plasmodium may subvert the immunological system and use TNF for the control of its proliferation within the vertebrate host.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
29 |
15
|
Aguiar ACC, Panciera M, Simão dos Santos EF, Singh MK, Garcia ML, de Souza GE, Nakabashi M, Costa JL, Garcia CRS, Oliva G, Correia CRD, Guido RVC. Discovery of Marinoquinolines as Potent and Fast-Acting Plasmodium falciparum Inhibitors with in Vivo Activity. J Med Chem 2018; 61:5547-5568. [DOI: 10.1021/acs.jmedchem.8b00143] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
|
7 |
29 |
16
|
Madeira L, DeMarco R, Gazarini ML, Verjovski-Almeida S, Garcia CRS. Human malaria parasites display a receptor for activated C kinase ortholog. Biochem Biophys Res Commun 2003; 306:995-1001. [PMID: 12821141 DOI: 10.1016/s0006-291x(03)01074-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Receptors for activated C kinases (RACKs) are scaffold proteins that anchor diverse signaling proteins and are involved in modulating cell cycle. We report the cloning and cellular localization of a RACK ortholog (PfRACK) in the human malaria parasite Plasmodium falciparum. The full-length transcript obtained by 3(') and 5(') RACE has 1.4 kbp with a predicted ORF of 972 bp, coding for a protein with 323 residues of 35.8 kDa molecular weight and pI 6.38. PfRACK has 59% and 60% identity at the amino acid level to Chlamydomonas reinhardtii and Danio rerio RACKs, respectively, presenting seven WD40 motifs and retaining the conserved domains in repeats III (DVFSVSF) and VI (STINSLCF) that are important for PKC binding. Semi-quantitative RT-PCR revealed that PfRACK is constitutively expressed in the intraerythrocytic stages of P. falciparum. Using confocal microscopy, PfRACK was immunolocalized in all parasite stages, being conspicuously spread throughout the schizont. The high similarity of PfRACK to those previously described in other organisms, as well as its constitutive expression in Plasmodium asexual stages, suggests that it might play a key role in the regulatory processes of malaria parasite life cycle.
Collapse
|
|
22 |
26 |
17
|
Burrows MC, Zamarion VM, Filippin-Monteiro FB, Schuck DC, Toma HE, Campa A, Garcia CRS, Catalani LH. Hybrid Scaffolds Built From PET and Collagen as a Model For Vascular Graft Architecture. Macromol Biosci 2012; 12:1660-70. [DOI: 10.1002/mabi.201200154] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/23/2012] [Indexed: 11/11/2022]
|
|
13 |
25 |
18
|
Silva GNS, Schuck DC, Cruz LN, Moraes MS, Nakabashi M, Gosmann G, Garcia CRS, Gnoatto SCB. Investigation of antimalarial activity, cytotoxicity and action mechanism of piperazine derivatives of betulinic acid. Trop Med Int Health 2014; 20:29-39. [PMID: 25308185 DOI: 10.1111/tmi.12395] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To semisynthesise piperazine derivatives of betulinic acid to evaluate antimalarial activity, cytotoxicity and action mechanism. METHODS The new derivatives were evaluated against the CQ-sensitive Plasmodium falciparum 3D7 strain by flow cytometry (FC) using YOYO-1 as stain. Cytotoxicity of 4a and 4b was performed with HEK293T cells for 24 and 48 h by MTT assay. The capability of compound 4a to modulate Ca(2+) in the trophozoite stage was investigated. The trophozoites were stained with Fluo4-AM and analysed by spectrofluorimetry. Effect on mitochondrial membrane potential (ΔΨm) was tested for 4a by FC with DiOC6 (3) as stain. For β-haematin assay, 4a was incubated for 24 h with reagents such as haemin, and the fluorescence was measured by FlexStation at an absorbance of 405 nm. RESULTS Antimalarial activity of 4a and 4b was IC50 = 1 and 4 μm, respectively. Compound 4a displayed cytotoxicity with IC50 = 69 and 29 μm for 24 and 48 h, respectively, and 4b was not cytotoxic at the tested concentrations. Addition of 4a leads to an increase in cytosolic Ca(2+) . We have measured ΔΨm after treating parasites with the compound. Data on Figure 4a show that mitochondria were not affected. The action mechanism for 4a, inhibition of β-haematin formation (17%), was lower than CQ treatment (83%; IC50 = 3 mm). CONCLUSION Compound 4a showed excellent antimalarial activity, and its action mechanism is involved in Ca(2+) pathway(s).
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
24 |
19
|
Moraes MS, Budu A, Singh MK, Borges-Pereira L, Levano-Garcia J, Currà C, Picci L, Pace T, Ponzi M, Pozzan T, Garcia CRS. Plasmodium falciparum GPCR-like receptor SR25 mediates extracellular K + sensing coupled to Ca 2+ signaling and stress survival. Sci Rep 2017; 7:9545. [PMID: 28842684 PMCID: PMC5573319 DOI: 10.1038/s41598-017-09959-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/01/2017] [Indexed: 11/17/2022] Open
Abstract
The malaria parasite Plasmodium falciparum is exposed, during its development, to major changes of ionic composition in its surrounding medium. We demonstrate that the P. falciparum serpentine-like receptor PfSR25 is a monovalent cation sensor capable of modulating Ca2+ signaling in the parasites. Changing from high (140 mM) to low (5.4 mM) KCl concentration triggers [Ca2+]cyt increase in isolated parasites and this Ca2+ rise is blocked either by phospholipase C (PLC) inhibition or by depleting the parasite’s internal Ca2+ pools. This response persists even in the absence of free extracellular Ca2+ and cannot be elicited by addition of Na+, Mg2+ or Ca2+. However, when the PfSR25 gene was deleted, no effect on [Ca2+]cyt was observed in response to changing KCl concentration in the knocked out (PfSR25−) parasite. Finally, we also demonstrate that: i) PfSR25 plays a role in parasite volume regulation, as hyperosmotic stress induces a significant decrease in parasite volume in wild type (wt), but not in PfSR25− parasites; ii) parasites lacking PfSR25 show decreased parasitemia and metacaspase gene expression on exposure to the nitric oxide donor sodium nitroprusside (SNP) and iii), compared to PfSR25− parasites, wt parasites showed a better survival in albumax-deprived condition.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
20 |
20
|
Gazarini ML, Sigolo CAO, Markus RP, Thomas AP, Garcia CRS. Antimalarial drugs disrupt ion homeostasis in malarial parasites. Mem Inst Oswaldo Cruz 2007; 102:329-34. [PMID: 17568938 DOI: 10.1590/s0074-02762007000300012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Indexed: 11/21/2022] Open
Abstract
Plasmodium chabaudi malaria parasite organelles are major elements for ion homeostasis and cellular signaling and also target for antimalarial drugs. By using confocal imaging of intraerythrocytic parasites we demonstrated that the dye acridine orange (AO) is accumulated into P. chabaudi subcellular compartments. The AO could be released from the parasite organelles by collapsing the pH gradient with the K+/H+ ionophore nigericin (20 microM), or by inhibiting the H+-pump with bafilomycin (4 microM). Similarly, in isolated parasites loaded with calcium indicator Fluo 3-AM, bafilomycin caused calcium mobilization of the acidic calcium pool that could also be release with nigericin. Interestingly after complete release of the acidic compartments, addition of thapsigargin at 10 microM was still effective in releasing parasite intracellular calcium stores in parasites at trophozoite stage. The addition of antimalarial drugs chloroquine and artemisinin resulted in AO release from acidic compartments and also affected maintenance of calcium in ER store by using different drug concentrations.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
19 |
21
|
Schuck DC, Ribeiro RY, Nery AA, Ulrich H, Garcia CRS. Flow cytometry as a tool for analyzing changes in Plasmodium falciparum cell cycle following treatment with indol compounds. Cytometry A 2011; 79:959-64. [PMID: 22015733 DOI: 10.1002/cyto.a.21136] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/28/2011] [Accepted: 08/04/2011] [Indexed: 11/09/2022]
Abstract
Melatonin and its derivatives modulate the Plasmodium falciparum and Plasmodium chabaudi cell cycle. Flow cytometry was employed together with the nucleic acid dye YOYO-1 allowing precise discrimination between mono- and multinucleated forms of P. falciparum-infected red blood cell. The use of YOYO-1 permitted excellent discrimination between uninfected and infected red blood cells as well as between early and late parasite stages. Fluorescence intensities of schizont-stage parasites were about 10-fold greater than those of ring-trophozoite form parasites. Melatonin and related indolic compounds including serotonin, N-acetyl-serotonin and tryptamine induced an increase in the percentage of multinucleated forms compared to non-treated control cultures. YOYO-1 staining of infected erythrocyte and subsequent flow cytometry analysis provides a powerful tool in malaria research for screening of bioactive compounds.
Collapse
|
Journal Article |
14 |
19 |
22
|
Sartorello R, Amaya MJ, Nathanson MH, Garcia CRS. The plasmodium receptor for activated C kinase protein inhibits Ca(2+) signaling in mammalian cells. Biochem Biophys Res Commun 2009; 389:586-92. [PMID: 19748487 DOI: 10.1016/j.bbrc.2009.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 09/04/2009] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum, the most lethal malarial parasite, expresses an ortholog for the protein kinase C (PKC) activator RACK1. However, PKC has not been identified in this parasite, and the mammalian RACK1 can interact with the inositol 1,4,5-trisphosphate receptor (InsP3R). Therefore we investigated whether the Plasmodium ortholog PfRACK also can affect InsP3R-mediated Ca(2+) signaling in mammalian cells. GFP-tagged PfRACK and endogenous RACK1 were expressed in a similar distribution within cells. PfRACK inhibited agonist-induced Ca(2+) signals in cells expressing each isoform of the InsP3R, and this effect persisted when expression of endogenous RACK1 was reduced by siRNA. PfRACK also inhibited Ca(2+) signals induced by photorelease of caged InsP3. These findings provide evidence that PfRACK directly inhibits InsP3-mediated Ca(2+) signaling in mammalian cells. Interference with host cell signaling pathways to subvert the host intracellular milieu may be an important mechanism for parasite survival.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
18 |
23
|
Lima WR, Moraes M, Alves E, Azevedo MF, Passos DO, Garcia CRS. The PfNF-YB transcription factor is a downstream target of melatonin and cAMP signalling in the human malaria parasite Plasmodium falciparum. J Pineal Res 2013; 54:145-53. [PMID: 22804732 DOI: 10.1111/j.1600-079x.2012.01021.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Plasmodium falciparum causes the most severe form of malaria and is responsible for the majority of deaths worldwide. The mechanism of cell cycle control within intra-erythrocytic stages has been examined as a potential means of a promising way to identifying how to stop parasite development in red blood cells. Our group determined that melatonin increases parasitemia in P. falciparum and P. chabaudi through a complex signalling cascade. In vertebrates, melatonin controls the expression of transcription factors, leading us to postulate rather that the indoleamine would affect PfNF-YB expression in human malaria parasites. We show here that PfNF-YB transcription factor is highly expressed and colocalized in the nucleus in mature parasites during intra-erythrocytic stages, thus suggesting an important role in cell division. Moreover, we demonstrate for the first time that melatonin and cAMP modulate the PfNF-YB transcription factor expression in P. falciparum at erythrocytic stages. In addition, PfNF-YB is found to be more ubiquitinated in the presence of melatonin. Finally, the proteasome inhibitor bortezomib is able to modulate PfNF-YB expression as well. Taken together, our dada reinforce the role played by melatonin in the cell cycle control of P. falciparum and point this indolamine as a target to develop new antimalarial drugs.
Collapse
|
|
12 |
17 |
24
|
Gazarini ML, Garcia CRS. Interruption of the blood-stage cycle of the malaria parasite, Plasmodium chabaudi, by protein tyrosine kinase inhibitors. Braz J Med Biol Res 2003; 36:1465-9. [PMID: 14576900 DOI: 10.1590/s0100-879x2003001100003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Malaria is a devastating disease caused by a unicellular protozoan, Plasmodium, which affects 3.7 million people every year. Resistance of the parasite to classical treatments such as chloroquine requires the development of new drugs. To gain insight into the mechanisms that control Plasmodium cell cycle, we have examined the effects of kinase inhibitors on the blood-stage cycle of the rodent malaria parasite, Plasmodium chabaudi. In vitro incubation of red blood cells for 17 h at 37 degrees C with the inhibitors led to a decrease in the percent of infected cells, compared to control treatment, as follows: genistein (200 microM - 75%), staurosporine (1 microM - 58%), R03 (1 microM - 75%), and tyrphostins B44 (100 microM - 66%) and B46 (100 microM - 68%). All these treatments were shown to retard or prevent maturation of the intraerythrocytic parasites. The diverse concentration ranges at which these inhibitors exert their effects give a clue as to the types of signals that initiate the transitions between the different developmental stages of the parasite. The present data support our hypothesis that the maturation of the intraerythrocytic cycle of malaria parasites requires phosphorylation. In this respect, we have recently reported a high Ca2+ microenvironment surrounding the parasite within red blood cells. Several kinase activities are modulated by Ca2+. The molecular identification of the targets of these kinases could provide new strategies against malaria.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
16 |
25
|
Lima WR, Tessarin-Almeida G, Rozanski A, Parreira KS, Moraes MS, Martins DC, Hashimoto RF, Galante PAF, Garcia CRS. Signaling transcript profile of the asexual intraerythrocytic development cycle of Plasmodium falciparum induced by melatonin and cAMP. Genes Cancer 2016; 7:323-339. [PMID: 28050233 PMCID: PMC5115173 DOI: 10.18632/genesandcancer.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
According to the World Health Organization (WHO), Plasmodium falciparum is the deadliest parasite among all species. This parasite possesses the ability to sense molecules, including melatonin (MEL) and cAMP, and modulate its cell cycle accordingly. MEL synchronizes the development of this malaria parasite by activating several cascades, including the generation of the second messenger cAMP. Therefore, we performed RNA sequencing (RNA-Seq) analysis in P. falciparum erythrocytic stages (ring, trophozoite and schizont) treated with MEL and cAMP. To investigate the expression profile of P. falciparum genes regulated by MEL and cAMP, we performed RNA-Seq analysis in three P. falciparum strains (control, 3D7; protein kinase 7 knockout, PfPK7-; and PfPK7 complement, PfPK7C). In the 3D7 strain, 38 genes were differentially expressed upon MEL treatment; however, none of the genes in the trophozoite (T) stage PfPK7- knockout parasites were differentially expressed upon MEL treatment for 5 hours compared to untreated controls, suggesting that PfPK7 may be involved in the signaling leading to differential gene expression. Moreover, we found that MEL modified the mRNA expression of genes encoding membrane proteins, zinc ion-binding proteins and nucleic acid-binding proteins, which might influence numerous functions in the parasite. The RNA-Seq data following treatment with cAMP show that this molecule modulates different genes throughout the intraerythrocytic cycle, namely, 75, 101 and 141 genes, respectively, in the ring (R), T and schizont (S) stages. Our results highlight P. falciparum's perception of the external milieu through the signaling molecules MEL and cAMP, which are able to drive to changes in gene expression in the parasite.
Collapse
|
Journal Article |
9 |
14 |