Kellogg DL, Hodges GJ, Orozco CR, Phillips TM, Zhao JL, Johnson JM. Cholinergic mechanisms of cutaneous active vasodilation during heat stress in cystic fibrosis.
J Appl Physiol (1985) 2007;
103:963-8. [PMID:
17600158 DOI:
10.1152/japplphysiol.00278.2007]
[Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To test the hypothesis that cutaneous active vasodilation in heat stress is mediated by a redundant cholinergic cotransmitter system, we examined the effects of atropine on skin blood flow (SkBF) increases during heat stress in persons with (CF) and without cystic fibrosis (non-CF). Vasoactive intestinal peptide (VIP) has been implicated as a mediator of cutaneous vasodilation in heat stress. VIP-containing cutaneous neurons are sparse in CF, yet SkBF increases during heat stress are normal. In CF, augmented ACh release or muscarinic receptor sensitivity could compensate for decreased VIP; if so, active vasodilation would be attenuated by atropine in CF relative to non-CF. Atropine was administered into skin by iontophoresis in seven CF and seven matched non-CF subjects. SkBF was monitored by laser-Doppler flowmetry (LDF) at atropine treated and untreated sites. Blood pressure [mean arterial pressure (MAP)] was monitored (Finapres), and cutaneous vascular conductance was calculated (CVC = LDF/MAP). The protocol began with a normothermic period followed by a 3-min cold stress and 30-45 min of heat stress. Finally, LDF sites were warmed to 42 degrees C to effect maximal vasodilation. CVC was normalized to its site-specific maximum. During heat stress, CVC increased in both CF and non-CF (P < 0.01). CVC increases were attenuated by atropine in both groups (P < 0.01); however, the responses did not differ between groups (P = 0.99). We conclude that in CF there is not greater dependence on redundant cholinergic mechanisms for cutaneous active vasodilation than in non-CF.
Collapse