1
|
Bennett GW, Bousquet B, Brown HN, Bunce G, Carey RM, Cushman P, Danby GT, Debevec PT, Deile M, Deng H, Dhawan SK, Druzhinin VP, Duong L, Farley FJM, Fedotovich GV, Gray FE, Grigoriev D, Grosse-Perdekamp M, Grossmann A, Hare MF, Hertzog DW, Huang X, Hughes VW, Iwasaki M, Jungmann K, Kawall D, Khazin BI, Krienen F, Kronkvist I, Lam A, Larsen R, Lee YY, Logashenko I, McNabb R, Meng W, Miller JP, Morse WM, Nikas D, Onderwater CJG, Orlov Y, Ozben CS, Paley JM, Peng Q, Polly CC, Pretz J, Prigl R, Zu Putlitz G, Qian T, Redin SI, Rind O, Roberts BL, Ryskulov N, Semertzidis YK, Shagin P, Shatunov YM, Sichtermann EP, Solodov E, Sossong M, Sulak LR, Trofimov A, von Walter P, Yamamoto A. Measurement of the negative muon anomalous magnetic moment to 0.7 ppm. PHYSICAL REVIEW LETTERS 2004; 92:161802. [PMID: 15169217 DOI: 10.1103/physrevlett.92.161802] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2004] [Indexed: 05/24/2023]
Abstract
The anomalous magnetic moment of the negative muon has been measured to a precision of 0.7 ppm (ppm) at the Brookhaven Alternating Gradient Synchrotron. This result is based on data collected in 2001, and is over an order of magnitude more precise than the previous measurement for the negative muon. The result a(mu(-))=11 659 214(8)(3) x 10(-10) (0.7 ppm), where the first uncertainty is statistical and the second is systematic, is consistent with previous measurements of the anomaly for the positive and the negative muon. The average of the measurements of the muon anomaly is a(mu)(exp)=11 659 208(6) x 10(-10) (0.5 ppm).
Collapse
|
|
21 |
66 |
2
|
Bennett GW, Bousquet B, Brown HN, Bunce G, Carey RM, Cushman P, Danby GT, Debevec PT, Deile M, Deng H, Deninger W, Dhawan SK, Druzhinin VP, Duong L, Efstathiadis E, Farley FJM, Fedotovich GV, Giron S, Gray FE, Grigoriev D, Grosse-Perdekamp M, Grossmann A, Hare MF, Hertzog DW, Huang X, Hughes VW, Iwasaki M, Jungmann K, Kawall D, Khazin BI, Kindem J, Krienen F, Kronkvist I, Lam A, Larsen R, Lee YY, Logashenko I, McNabb R, Meng W, Mi J, Miller JP, Morse WM, Nikas D, Onderwater CJG, Orlov Y, Ozben CS, Paley JM, Peng Q, Polly CC, Pretz J, Prigl R, Zu Putlitz G, Qian T, Redin SI, Rind O, Roberts BL, Ryskulov N, Shagin P, Semertzidis YK, Shatunov YM, Sichtermann EP, Solodov E, Sossong M, Steinmetz A, Sulak LR, Trofimov A, Urner D, Von Walter P, Warburton D, Yamamoto A. Measurement of the positive muon anomalous magnetic moment to 0.7 ppm. PHYSICAL REVIEW LETTERS 2002; 89:101804. [PMID: 12225185 DOI: 10.1103/physrevlett.89.101804] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2002] [Indexed: 05/23/2023]
Abstract
A higher precision measurement of the anomalous g value, a(mu)=(g-2)/2, for the positive muon has been made at the Brookhaven Alternating Gradient Synchrotron, based on data collected in the year 2000. The result a(mu(+))=11 659 204(7)(5)x10(-10) (0.7 ppm) is in good agreement with previous measurements and has an error about one-half that of the combined previous data. The present world average experimental value is a(mu)(expt)=11 659 203(8)x10(-10) (0.7 ppm).
Collapse
|
|
23 |
45 |
3
|
Brown HN, Bunce G, Carey RM, Cushman P, Danby GT, Debevec PT, Deile M, Deng H, Deninger W, Dhawan SK, Druzhinin VP, Duong L, Efstathiadis E, Farley FJ, Fedotovich GV, Giron S, Gray F, Grigoriev D, Grosse-Perdekamp M, Grossmann A, Hare MF, Hertzog DW, Hughes VW, Iwasaki M, Jungmann K, Kawall D, Kawamura M, Khazin BI, Kindem J, Krienen F, Kronkvist I, Larsen R, Lee YY, Logashenko I, McNabb R, Meng W, Mi J, Miller JP, Morse WM, Nikas D, Onderwater CJ, Orlov Y, Ozben CS, Paley JM, Polly C, Pretz J, Prigl R, zu Putlitz G, Redin SI, Rind O, Roberts BL, Ryskulov N, Sedykh S, Semertzidis YK, Shatunov YM, Sichtermann EP, Solodov E, Sossong M, Steinmetz A, Sulak LR, Timmermans C, Trofimov A, Urner D, von Walter P, Warburton D, Winn D, Yamamoto A, Zimmerman D. Precise measurement of the positive muon anomalous magnetic moment. PHYSICAL REVIEW LETTERS 2001; 86:2227-2231. [PMID: 11289896 DOI: 10.1103/physrevlett.86.2227] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2001] [Indexed: 05/23/2023]
Abstract
A precise measurement of the anomalous g value, a(mu) = (g-2)/2, for the positive muon has been made at the Brookhaven Alternating Gradient Synchrotron. The result a(mu+) = 11 659 202(14) (6) x 10(-10) (1.3 ppm) is in good agreement with previous measurements and has an error one third that of the combined previous data. The current theoretical value from the standard model is a(mu)(SM) = 11 659 159.6(6.7) x 10(-10) (0.57 ppm) and a(mu)(exp) - a(mu)(SM) = 43(16) x 10(-10) in which a(mu)(exp) is the world average experimental value.
Collapse
|
|
24 |
35 |
4
|
Bennett GW, Bousquet B, Brown HN, Bunce G, Carey RM, Cushman P, Danby GT, Debevec PT, Deile M, Deng H, Deninger W, Dhawan SK, Druzhinin VP, Duong L, Efstathiadis E, Farley FJM, Fedotovich GV, Giron S, Gray FE, Grigoriev D, Grosse-Perdekamp M, Grossmann A, Hare MF, Hertzog DW, Huang X, Hughes VW, Iwasaki M, Jungmann K, Kawall D, Kawamura M, Khazin BI, Kindem J, Krienen F, Kronkvist I, Lam A, Larsen R, Lee YY, Logashenko I, McNabb R, Meng W, Mi J, Miller JP, Mizumachi Y, Morse WM, Nikas D, Onderwater CJG, Orlov Y, Ozben CS, Paley JM, Peng Q, Polly CC, Pretz J, Prigl R, zu Putlitz G, Qian T, Redin SI, Rind O, Roberts BL, Ryskulov N, Sedykh S, Semertzidis YK, Shagin P, Shatunov YM, Sichtermann EP, Solodov E, Sossong M, Steinmetz A, Sulak LR, Timmermans C, Trofimov A, Urner D, von Walter P, Warburton D, Winn D, Yamamoto A, Zimmerman D. Search for Lorentz and CPT violation effects in Muon spin precession. PHYSICAL REVIEW LETTERS 2008; 100:091602. [PMID: 18352695 DOI: 10.1103/physrevlett.100.091602] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Indexed: 05/26/2023]
Abstract
The spin precession frequency of muons stored in the (g-2) storage ring has been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT violation signatures were searched for a nonzero delta omega a(=omega a mu+ - omega a mu-) and a sidereal variation of omega a mu+/-). No significant effect is found, and the following limits on the standard-model extension parameters are obtained: bZ = -(1.0+/-1.1) x 10(-23) GeV; (m mu dZ0 + HXY)=(1.8+/-6.0) x 10(-23) GeV; and the 95% confidence level limits b perpendicular mu+ <1.4 x 10(-24) GeV and b perpendicular mu- <2.6 x 10(-24) GeV.
Collapse
|
|
17 |
7 |
5
|
Andreev VA, Banks TI, Case TA, Chitwood DB, Clayton SM, Crowe KM, Deutsch J, Egger J, Freedman SJ, Ganzha VA, Gorringe T, Gray FE, Hertzog DW, Hildebrandt M, Kammel P, Kiburg B, Knaack S, Kravtsov PA, Krivshich AG, Lauss B, Lynch KL, Maev EM, Maev OE, Mulhauser F, Ozben CS, Petitjean C, Petrov GE, Prieels R, Schapkin GN, Semenchuk GG, Soroka MA, Tishchenko V, Vasilyev AA, Vorobyov AA, Vznuzdaev ME, Winter P. Measurement of the muon capture rate in hydrogen gas and determination of the proton's pseudoscalar coupling gP. PHYSICAL REVIEW LETTERS 2007; 99:032002. [PMID: 17678281 DOI: 10.1103/physrevlett.99.032002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Indexed: 05/16/2023]
Abstract
The rate of nuclear muon capture by the proton has been measured using a new technique based on a time projection chamber operating in ultraclean, deuterium-depleted hydrogen gas, which is key to avoiding uncertainties from muonic molecule formation. The capture rate from the hyperfine singlet ground state of the microp atom was obtained from the difference between the micro(-) disappearance rate in hydrogen and the world average for the micro(+) decay rate, yielding Lambda(S)=725.0+/-17.4 s(-1), from which the induced pseudoscalar coupling of the nucleon, g(P)(q(2)=-0.88m(2)(micro))=7.3+/-1.1, is extracted.
Collapse
|
|
18 |
6 |
6
|
Bayrak A, Barlas E, Emirhan E, Kutlu Ç, Ozben CS. A complete low cost radon detection system. Appl Radiat Isot 2013; 78:1-9. [PMID: 23583920 DOI: 10.1016/j.apradiso.2013.03.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
Abstract
Monitoring the (222)Rn activity through the 1200 km long Northern Anatolian fault line, for the purpose of earthquake precursory, requires large number of cost effective radon detectors. We have designed, produced and successfully tested a low cost radon detection system (a radon monitor). In the detector circuit of this monitor, First Sensor PS100-7-CER-2 windowless PIN photodiode and a custom made transempedence/shaping amplifier were used. In order to collect the naturally ionized radon progeny to the surface of the PIN photodiode, a potential of 3500 V was applied between the conductive hemi-spherical shell and the PIN photodiode. In addition to the count rate of the radon progeny, absolute pressure, humidity and temperature were logged during the measurements. A GSM modem was integrated to the system for transferring the measurements from the remote locations to the data process center.
Collapse
|
|
12 |
4 |
7
|
Anastassopoulos V, Andrianov S, Baartman R, Baessler S, Bai M, Benante J, Berz M, Blaskiewicz M, Bowcock T, Brown K, Casey B, Conte M, Crnkovic JD, D'Imperio N, Fanourakis G, Fedotov A, Fierlinger P, Fischer W, Gaisser MO, Giomataris Y, Grosse-Perdekamp M, Guidoboni G, Hacıömeroğlu S, Hoffstaetter G, Huang H, Incagli M, Ivanov A, Kawall D, Kim YI, King B, Koop IA, Lazarus DM, Lebedev V, Lee MJ, Lee S, Lee YH, Lehrach A, Lenisa P, Levi Sandri P, Luccio AU, Lyapin A, MacKay W, Maier R, Makino K, Malitsky N, Marciano WJ, Meng W, Meot F, Metodiev EM, Miceli L, Moricciani D, Morse WM, Nagaitsev S, Nayak SK, Orlov YF, Ozben CS, Park ST, Pesce A, Petrakou E, Pile P, Podobedov B, Polychronakos V, Pretz J, Ptitsyn V, Ramberg E, Raparia D, Rathmann F, Rescia S, Roser T, Kamal Sayed H, Semertzidis YK, Senichev Y, Sidorin A, Silenko A, Simos N, Stahl A, Stephenson EJ, Ströher H, Syphers MJ, Talman J, Talman RM, Tishchenko V, Touramanis C, Tsoupas N, Venanzoni G, Vetter K, Vlassis S, Won E, Zavattini G, Zelenski A, Zioutas K. A storage ring experiment to detect a proton electric dipole moment. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:115116. [PMID: 27910557 DOI: 10.1063/1.4967465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of 10-29 e ⋅ cm by using polarized "magic" momentum 0.7 GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the standard model at the scale of 3000 TeV.
Collapse
|
|
9 |
2 |
8
|
Emirhan ME, Ozben CS. Assessment of radiological risk factors in the Zonguldak coal mines, Turkey. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2009; 29:527-534. [PMID: 19923646 DOI: 10.1088/0952-4746/29/4/007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Radon concentrations in the working sections of the Zonguldak coal mines were determined and activity concentration measurements of natural (226)Ra, (232)Th and (40)K radionuclides were performed with high resolution passive gamma-ray spectrometry for coal samples collected from these sections. The (222)Rn concentration was found to be between 15 and 78 Bq m(-3), well below the action limit of 1000 Bq m(-3) according to ICRP65. The annual effective dose to miners due to inhalation of radon was determined to be between 60 and 312 microSv. Activity concentrations of (226)Ra, (232)Th and (40)K in the coal samples were found to be 13-164, 13-215 and 344-1100 Bq kg(-1), respectively. Radium equivalent activity, dose rate in air and average annual effective dose equivalents were calculated in the range of 66-602 Bq kg(-1), 32-265 nGy h(-1) and 30-244 microSv, respectively. The resultant total annual effective doses can be used to minimise the radiological risk to the coal miners.
Collapse
|
|
16 |
2 |
9
|
Ozben CS, Tepehan FZ, Güven HH, Tepehan GG. Thin film thickness determination with neutron activation analysis. Appl Radiat Isot 2001; 55:9-12. [PMID: 11339537 DOI: 10.1016/s0969-8043(00)00335-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thickness determination of Ta2O5 thin films, deposited on the glass substrates and metallic indium and gold thin films on both glass and aluminum substrates, were performed by neutron activation analysis. Thickness determination of these thin films were made by comparing gamma-rays emitted from the radio-isotopes in the thin film with the substrate material followed by the neutron irradiations. The method led to determination of the film thicknesses without using any standard sample. A complementary optical transmission measurement was also applied on multi-layered Ta2O5 thin films for determining the individual layer densities.
Collapse
|
|
24 |
1 |
10
|
Chitwood DB, Banks TI, Barnes MJ, Battu S, Carey RM, Cheekatmalla S, Clayton SM, Crnkovic J, Crowe KM, Debevec PT, Dhamija S, Earle W, Gafarov A, Giovanetti K, Gorringe TP, Gray FE, Hance M, Hertzog DW, Hare MF, Kammel P, Kiburg B, Kunkle J, Lauss B, Logashenko I, Lynch KR, McNabb R, Miller JP, Mulhauser F, Onderwater CJG, Ozben CS, Peng Q, Polly CC, Rath S, Roberts BL, Tishchenko V, Wait GD, Wasserman J, Webber DM, Winter P, Zołnierczuk PA. Improved measurement of the positive-muon lifetime and determination of the Fermi constant. PHYSICAL REVIEW LETTERS 2007; 99:032001. [PMID: 17678280 DOI: 10.1103/physrevlett.99.032001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Indexed: 05/16/2023]
Abstract
The mean life of the positive muon has been measured to a precision of 11 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, tau(micro)=2.197 013(24) micros, is in excellent agreement with the previous world average. The new world average tau(micro)=2.197 019(21) micros determines the Fermi constant G(F)=1.166 371(6)x10(-5) GeV-2 (5 ppm). Additionally, the precision measurement of the positive-muon lifetime is needed to determine the nucleon pseudoscalar coupling g(P).
Collapse
|
|
18 |
1 |