1
|
Abstract
The assembly of synthetic, controllable molecular mechanical systems is one of the goals of nanotechnology. Protein-based molecular machines, often driven by an energy source such as ATP, are abundant in biology. It has been shown previously that branched motifs of DNA can provide components for the assembly of nanoscale objects, links and arrays. Here we show that such structures can also provide the basis for dynamic assemblies: switchable molecular machines. We have constructed a supramolecular device consisting of two rigid DNA 'double-crossover' (DX) molecules connected by 4.5 double-helical turns. One domain of each DX molecule is attached to the connecting helix. To effect switchable motion in this assembly, we use the transition between the B and Z forms of DNA. In conditions that favour B-DNA, the two unconnected domains of the DX molecules lie on the same side of the central helix. In Z-DNA-promoting conditions, however, these domains switch to opposite sides of the helix. This relative repositioning is detected by means of fluorescence resonance energy transfer spectroscopy, which measures the relative proximity of two dye molecules attached to the free ends of the DX molecules. The switching event induces atomic displacements of 20-60 A.
Collapse
|
|
26 |
515 |
2
|
Kiefer JR, Mao C, Braman JC, Beese LS. Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 1998; 391:304-7. [PMID: 9440698 DOI: 10.1038/34693] [Citation(s) in RCA: 420] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA polymerases copy DNA templates with remarkably high fidelity, checking for correct base-pair formation both at nucleotide insertion and at subsequent DNA extension steps. Despite extensive biochemical, genetic and structural studies, the mechanism by which nucleotides are correctly incorporated is not known. Here we present high-resolution crystal structures of a thermostable bacterial (Bacillus stearothermophilus) DNA polymerase I large fragments with DNA primer templates bound productively at the polymerase active site. The active site retains catalytic activity, allowing direct observation of the products of several rounds of nucleotide incorporation. The polymerase also retains its ability to discriminate between correct and incorrectly paired nucleotides in the crystal. Comparison of the structures of successively translocated complexes allows the structural features for the sequence-independent molecular recognition of correctly formed base pairs to be deduced unambiguously. These include extensive interactions with the first four to five base pairs in the minor groove, location of the terminal base pair in a pocket of excellent steric complementarity favouring correct base-pair formation, and a conformational switch from B-form to underwound A-form DNA at the polymerase active site.
Collapse
|
|
27 |
420 |
3
|
Mao C, LaBean TH, Relf JH, Seeman NC. Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 2000; 407:493-6. [PMID: 11028996 DOI: 10.1038/35035038] [Citation(s) in RCA: 355] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent work has demonstrated the self-assembly of designed periodic two-dimensional arrays composed of DNA tiles, in which the intermolecular contacts are directed by 'sticky' ends. In a mathematical context, aperiodic mosaics may be formed by the self-assembly of 'Wang' tiles, a process that emulates the operation of a Turing machine. Macroscopic self-assembly has been used to perform computations; there is also a logical equivalence between DNA sticky ends and Wang tile edges. This suggests that the self-assembly of DNA-based tiles could be used to perform DNA-based computation. Algorithmic aperiodic self-assembly requires greater fidelity than periodic self-assembly, because correct tiles must compete with partially correct tiles. Here we report a one-dimensional algorithmic self-assembly of DNA triple-crossover molecules that can be used to execute four steps of a logical (cumulative XOR) operation on a string of binary bits.
Collapse
|
|
25 |
355 |
4
|
Jenkins GM, Richards A, Wahl T, Mao C, Obeid L, Hannun Y. Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. J Biol Chem 1997; 272:32566-72. [PMID: 9405471 DOI: 10.1074/jbc.272.51.32566] [Citation(s) in RCA: 235] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A role for sphingolipids in the yeast heat stress response has been suggested by the isolation of suppressors of mutants lacking these lipids, which are unable to grow at elevated temperatures. The current study examines the possible role of sphingolipids in the heat adaptation of yeast cells as monitored by growth and viability studies. The suppressor of long chain base auxotrophy (SLC, strain 7R4) showed a heat-sensitive phenotype that was corrected by transformation with serine palmitoyltransferase. Thus, the deficiency in sphingolipids and not the suppressor mutation was the cause of the heat-sensitive phenotype of the SLC strain 7R4. The ability of sphingolipids to rescue the heat-sensitive phenotype was examined, and two endogenous yeast sphingoid backbones, phytosphingosine and dihydrosphingosine, were found to be most potent in this effect. Next, the effect of heat stress on the levels of the three major classes of sphingolipids was determined. The inositol phosphoceramides showed no change over a 1.5-h time course. However, the four detected species of sphingoid bases increased after 15 min of heat stress from 1.4- to 10.8-fold. The largest increases were seen in two sphingoid bases, C20 phytosphingosine and C20 dihydrosphingosine, which increased 6.4- and 10.8-fold over baseline, respectively. At 60 min of heat stress two species of yeast ceramide increased by 9.2- and 10.6-fold over baseline. The increase seen in the ceramides was partially decreased by Fumonisin B1, a ceramide synthase inhibitor. Therefore, heat stress induces accumulation of sphingoid bases and of ceramides, probably through de novo synthesis. Taken together, these results demonstrate that sphingolipids are involved in the yeast heat stress adaptation.
Collapse
|
|
28 |
235 |
5
|
Mao C, Guvendi M, Domenico DR, Kim K, Thomford NR, Howard JM. Papillary cystic and solid tumors of the pancreas: a pancreatic embryonic tumor? Studies of three cases and cumulative review of the world's literature. Surgery 1995; 118:821-8. [PMID: 7482268 DOI: 10.1016/s0039-6060(05)80271-5] [Citation(s) in RCA: 216] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The papillary cystic and solid tumor of the pancreas is rare. It occurs predominantly in young women, and most present a benign behavior. The pathogenesis of this tumor has attracted a number of investigations but remains unclear. METHODS We present three patients with this tumor and a review of 289 others from the world's literature, a total of 292 cases. On the basis of the analyses of the clinical and pathologic features from the reported cases, the pathogenesis of this unusual tumor has been further explored. RESULTS Ninety percent of the patients were female, with a mean age of 23.9 years. The tumors were usually quite large with a mean diameter of 10.3 cm. Ninety-two percent of these tumors were totally or partially cystic. Rupture of the capsule resulted in hemoperitoneum in eight cases, five of which were without any identifiable cause. Forty-three tumors (14.7%) have been recognized as malignant. The overall prognosis has been excellent and an aggressive approach to resection is indicated. CONCLUSIONS The results of immunohistochemical staining and electromicroscopy were rather diverse, but most, including the current cases, support the hypothesis that the tumor originates from pleuripotential embryonic stem cells. Thus the term pancreatic embryonic tumors seems preferable to papillary cystic and solid tumor of the pancreas to delineate the origin of the tumor and to reflect some of its biologic characteristics.
Collapse
|
Case Reports |
30 |
216 |
6
|
|
Letter |
28 |
191 |
7
|
Fong TM, Mao C, MacNeil T, Kalyani R, Smith T, Weinberg D, Tota MR, Van der Ploeg LH. ART (protein product of agouti-related transcript) as an antagonist of MC-3 and MC-4 receptors. Biochem Biophys Res Commun 1997; 237:629-31. [PMID: 9299416 DOI: 10.1006/bbrc.1997.7200] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mRNA encoding an agouti related protein (ART) of unknown biochemical function was previously reported to be up-regulated in the hypothalamus of two genetically obese mouse strains. We have expressed human ART as a secreted protein in COS-7 cells, and show that recombinant ART is functionally active in inhibiting the binding of a radiolabeled alpha-melanocyte stimulating hormone (alpha-MSH) analog to the human melanocortin-3 (MC-3) and melanocortin-4 (MC-4) receptors, while it is not a potent inhibitor of the human melanocortin-5 (MC-5) receptor. ART is an antagonist of the human MC-3 and MC-4 receptors as determined in functional assay. ART appears to be approximately 100-fold more potent than agouti with reference to the MC-3R and MC-4R binding affinity. These data suggest that ART may be a physiological regulator of feeding behavior.
Collapse
|
|
28 |
173 |
8
|
Mao C, Yang ZY, Hu XF, Chen Q, Tang JL. PIK3CA exon 20 mutations as a potential biomarker for resistance to anti-EGFR monoclonal antibodies in KRAS wild-type metastatic colorectal cancer: a systematic review and meta-analysis. Ann Oncol 2011; 23:1518-25. [PMID: 22039088 DOI: 10.1093/annonc/mdr464] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We conducted a systematic review and meta-analysis to dissect the association between PIK3CA mutations and resistance to anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (MoAbs) according to PIK3CA exon of mutations in metastatic colorectal cancer (mCRC). METHODS We systematically identified studies exploring the association between PIK3CA mutations and clinical outcomes of mCRC patients treated with anti-EGFR MoAbs. The primary clinical outcomes included objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). The pooled relative risk (RR) or hazard ratio (HR) was estimated by using fixed effect model or random effect model according to heterogeneity between studies. RESULTS Thirteen studies were considered eligible, with 576 mCRC patients included. In KRAS wild-type mCRC patients, we observed a lower ORR in patients with PIK3CA exon 20 mutations [3 studies, 377 patients; ORR = 0% versus 37%; RR = 0.25; 95% confidence interval (CI) 0.05-1.19; P = 0.082], although the result was not statistically significant because of the small sample size. Only one study provided survival data according to the PIK3CA exon of the mutations, in which PIK3CA exon 20 mutations were statistically significantly associated with shorter PFS (HR = 2.52; 95% CI 1.33-4.78; P = 0.013) and OS (HR = 3.29; 95% CI 1.60-6.74; P = 0.006) in KRAS wild-type mCRC patients treated with anti-EGFR MoAbs. The predictive power of exon 20 mutation is greater than exon 9 mutations and all exons mutations in terms of ORR, PFS, and OS. CONCLUSION These analyses suggest that PIK3CA exon 20 mutations may be a potential biomarker for resistance to anti-EGFR MoAbs in KRAS wild-type mCRC.
Collapse
|
Systematic Review |
14 |
145 |
9
|
Yang YK, Fong TM, Dickinson CJ, Mao C, Li JY, Tota MR, Mosley R, Van Der Ploeg LH, Gantz I. Molecular determinants of ligand binding to the human melanocortin-4 receptor. Biochemistry 2000; 39:14900-11. [PMID: 11101306 DOI: 10.1021/bi001684q] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To elucidate the molecular basis for the interaction of ligands with the human melanocortin-4 receptor (hMC4R), agonist structure-activity studies and receptor point mutagenesis were performed. Structure-activity studies of [Nle(4), D-Phe(7)]-alpha-melanocyte stimulating hormone (NDP-MSH) identified D-Phe7-Arg8-Trp9 as the minimal NDP-MSH fragment that possesses full agonist efficacy at the hMC4R. In an effort to identify receptor residues that might interact with amino acids in this tripeptide sequence 24 hMC4R transmembrane (TM) residues were mutated (the rationale for choosing specific receptor residues for mutation is outlined in the Results section). Mutation of TM3 residues D122 and D126 and TM6 residues F261 and H264 decreased the binding affinity of NDP-MSH 5-fold or greater, thereby identifying these receptor residues as sites potentially involved in the sought after ligand-receptor interactions. By examination of the binding affinities and potencies of substituted NDP-MSH peptides at receptor mutants, evidence was found that core melanocortin peptide residue Arg8 interacts at a molecular level with hMC4R TM3 residue D122. TM3 mutations were also observed to decrease the binding of hMC4R antagonists. Notably, mutation of TM3 residue D126 to alanine decreased the binding affinity of AGRP (87-132), a C-terminal derivative of the endogenous melanocortin antagonist, 8-fold, and simultaneous mutations D122A/D126A completely abolished AGRP (87-132) binding. In addition, mutation of TM3 residue D122 or D126 decreased the binding affinity of hMC4R antagonist SHU 9119. These results provide further insight into the molecular determinants of hMC4R ligand binding.
Collapse
|
|
25 |
141 |
10
|
Mao C, Wadleigh M, Jenkins GM, Hannun YA, Obeid LM. Identification and characterization of Saccharomyces cerevisiae dihydrosphingosine-1-phosphate phosphatase. J Biol Chem 1997; 272:28690-4. [PMID: 9353337 DOI: 10.1074/jbc.272.45.28690] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have identified the yeast sphingosine resistance gene (YSR2) of Saccharomyces cerevisiae as encoding a protein that specifically dephosphorylates dihydrosphingosine 1-phosphate (DHS-1-P), and we refer to this protein as dihydrosphingosine-1-phosphate phosphatase. Overexpression of YSR2 conferred sphingosine resistance to the dihydrosphingosine-1-P lyase-defective mutant (JS16) of S. cerevisiae, which is hypersensitive to sphingosine. The ysr2Delta deletion mutant of S. cerevisiae accumulated DHS-1-P compared with its wild type strain upon labeling with D-erythro-[4, 5-3H]dihydrosphingosine, whereas overexpression of YSR2 increased dephosphorylation of DHS-1-P. An epitope-tagged fusion protein (YSR2-Flag) was partially purified and found to specifically dephosphorylate DHS-1-P to yield dihydrosphingosine. YSR2 failed to dephosphorylate ceramide 1-phosphate or phosphatidic acid. Functionally, the mutant bearing the ysr2Delta deletion decreased labeling of sphingolipids and increased labeling of glycerolipids dramatically following in vivo labeling with D-erythro-[3H]dihydrosphingosine, but it slightly affected labeling of sphingolipids with inositol. Taken together, these results identify YSR2 as dihydrosphingosine-1-phosphate phosphatase. They also raise the intriguing possibility that phosphorylation followed by dephosphorylation is required for incorporation of exogenous long chain sphingoid bases into sphingolipids.
Collapse
|
|
28 |
133 |
11
|
Kiefer JR, Mao C, Hansen CJ, Basehore SL, Hogrefe HH, Braman JC, Beese LS. Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 A resolution. Structure 1997; 5:95-108. [PMID: 9016716 DOI: 10.1016/s0969-2126(97)00169-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The study of DNA polymerases in the Pol l family is central to the understanding of DNA replication and repair. DNA polymerases are used in many molecular biology techniques, including PCR, which require a thermostable polymerase. In order to learn about Pol I function and the basis of thermostability, we undertook structural studies of a new thermostable DNA polymerase. RESULTS A DNA polymerase large, Klenow-like, fragment from a recently identified thermostable strain of Bacillus stearothermophilus (BF) was cloned, sequenced, overexpressed and characterized. Its crystal structure was determined to 2.1 A resolution by the method of multiple isomorphous replacement. CONCLUSIONS This structure represents the highest resolution view of a Pol I enzyme obtained to date. Comparison of the three Pol I structures reveals no compelling evidence for many of the specific interactions that have been proposed to induce thermostability, but suggests that thermostability arises from innumerable small changes distributed throughout the protein structure. The polymerase domain is highly conserved in all three proteins. The N-terminal domains are highly divergent in sequence, but retain a common fold. When present, the 3'-5' proofreading exonuclease activity is associated with this domain. Its absence is associated with changes in catalytic residues that coordinate the divalent ions required for activity and in loops connecting homologous secondary structural elements. In BF, these changes result in a blockage of the DNA-binding cleft.
Collapse
|
|
28 |
132 |
12
|
Mao C, Xu R, Bielawska A, Obeid LM. Cloning of an alkaline ceramidase from Saccharomyces cerevisiae. An enzyme with reverse (CoA-independent) ceramide synthase activity. J Biol Chem 2000; 275:6876-84. [PMID: 10702247 DOI: 10.1074/jbc.275.10.6876] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ceramide is not only a core intermediate of sphingolipids but also an important modulator of many cellular events including apoptosis, cell cycle arrest, senescence, differentiation, and stress responses. Its turnover may be tightly regulated. However, little is known about the regulation of its metabolism because most enzymes responsible for its synthesis and breakdown have yet to be cloned. Here we report the cloning and characterization of the yeast gene YPC1 (YBR183w) by screening Saccharomyces cerevisiae genes whose overexpression bestows resistance to fumonisin B1. We demonstrate that the yeast gene YPC1 encodes an alkaline ceramidase activity responsible for the breakdown of dihydroceramide and phytoceramide but not unsaturated ceramide. YPC1 ceramidase activity was confirmed by in vitro studies using an Escherichia coli expression system. Importantly, YPC1p also has reverse activity, catalyzing synthesis of phytoceramide from palmitic acid and phytosphingosine. This ceramide synthase activity is CoA-independent and is resistant to fumonisin B1, thus explaining why YPC1 was cloned as a fumonisin B1-resistant gene.
Collapse
|
|
25 |
132 |
13
|
Sawai H, Okamoto Y, Luberto C, Mao C, Bielawska A, Domae N, Hannun YA. Identification of ISC1 (YER019w) as inositol phosphosphingolipid phospholipase C in Saccharomyces cerevisiae. J Biol Chem 2000; 275:39793-8. [PMID: 11006294 DOI: 10.1074/jbc.m007721200] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingolipids have emerged as novel bioactive mediators in eukaryotic cells including yeast. It has been proposed that sphingomyelin (SM) hydrolysis and the concomitant generation of ceramide are involved in various stress responses in mammalian cells. The yeast Saccharomyces cerevisiae has inositol phosphosphingolipids (IPS) instead of SM and glycolipids, and synthesis of IPS is indispensable to its growth. Although the genes responsible for the synthesis of IPS have been identified, the gene(s) for the degradation of IPS has not been reported. Here we show that ISC1 (YER019w), which has homology to bacterial neutral sphingomyelinase (SMase), encodes IPS phospholipase C (IPS-PLC). First, we observed that overexpression of ISC1 greatly increased neutral SMase activity, and this activity was dependent on the presence of phosphatidylserine. Cells deleted in ISC1 demonstrated negligible neutral SMase activity. Because yeast cells have IPS instead of SM, we investigated whether IPS are the physiologic substrates of this enzyme. Lysates of ISC1-overexpressing cells demonstrated very high PLC activities on IPS. Deletion of ISC1 eliminated endogenous IPS-PLC activities. Labeling yeast cells with [(3)H]dihydrosphingosine showed that IPS were increased in the deletion mutant cells. This study identifies the first enzyme involved in catabolism of complex sphingolipids in S. cerevisiae.
Collapse
|
|
25 |
131 |
14
|
Mao C, Xu R, Szulc ZM, Bielawska A, Galadari SH, Obeid LM. Cloning and characterization of a novel human alkaline ceramidase. A mammalian enzyme that hydrolyzes phytoceramide. J Biol Chem 2001; 276:26577-88. [PMID: 11356846 DOI: 10.1074/jbc.m102818200] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ceramidases are enzymes involved in regulating cellular levels of ceramides, sphingoid bases, and their phosphates. Based on sequence homology to the yeast alkaline ceramidases YPC1p (Mao, C., Xu, R., Bielawska, A., and Obeid, L. M. (2000) J. Biol. Chem. 275, 6876--6884) and YDC1p (Mao, C., Xu, R., Bielawska, A., Szulc, Z. M., and Obeid, L. M. (2000) J. Biol Chem. 275, 31369--31378), we report the identification and cloning of a cDNA encoding for a novel human alkaline ceramidase (aPHC) that hydrolyzes phytoceramide selectively. Northern blot analysis showed that aPHC was ubiquitously expressed, with the highest expression in placenta. Green fluorescent protein tagging showed that it was localized in both the Golgi apparatus and endoplasmic reticulum. Overexpression of aPHC in mammalian cells elevated in vitro ceramidase activity toward N-4-nitrobenz-2-oxa-1,3-diazole-C(12)-phytoceramide. Its expression in a yeast mutant strain devoid of any ceramidase activity restored the ceramidase activity and caused an increase in the hydrolysis of phytoceramide in yeast cells, thus leading to the decreased biosynthesis of sphingolipids. These data collectively suggest that, similar to the yeast phytoceramidase YPC1p, aPHC has phytoceramidase activity both in vitro and in cells; hence, it is a functional homolog of the yeast phytoceramidase YPC1p. However, in contrast to YPC1p, aPHC exhibited no reverse activity of ceramidase either in vitro or in cells. Biochemical characterization showed that aPHC had a pH optimum of 9.5, was activated by Ca(2+), but was inhibited by Zn(2+) and sphingosine. Substrate specificity showed that aPHC hydrolyzed phytoceramide preferentially. Together, these data demonstrate that aPHC is a novel human alkaline phytoceramidase, the first mammalian alkaline ceramidase to be identified as being specific for the hydrolysis of phytoceramide.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
24 |
131 |
15
|
Wang M, Ye R, Barron E, Baumeister P, Mao C, Luo S, Fu Y, Luo B, Dubeau L, Hinton DR, Lee AS. Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis. Cell Death Differ 2009; 17:488-98. [PMID: 19816510 PMCID: PMC2822118 DOI: 10.1038/cdd.2009.144] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Neurodegenerative diseases are often associated with dysfunction in protein quality control. The endoplasmic reticulum (ER), a key site for protein synthesis, senses stressful conditions by activating the unfolded protein response (UPR). Here we report the creation of a novel mouse model where GRP78/BiP, a major ER chaperone and master regulator of UPR, is specifically eliminated in the Purkinje cells (PCs). GRP78 depleted PCs activate UPR including induction of GRP94, PDI, CHOP and GADD34, feedback suppression of eIF2α phosphorylation and apoptotic cell death. In contrast to current models of protein misfolding where abnormal accumulation of ubiquitinated protein is prominent, cytosolic ubiquitin staining is dramatically reduced in GRP78 null PCs. Ultrastructural evaluation reveals that the ER shows prominent dilatation with focal accumulation of electron-dense material within the ER. The mice show retarded growth and severe motor coordination defect by week 5 and cerebellar atrophy by week 13. Our studies uncover a novel link between GRP78 depletion and reduction in cytosolic ubiquitination and establish a novel mouse model of accelerated cerebellar degeneration with basic and clinical applications.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
130 |
16
|
Desai-Mehta A, Mao C, Rajagopalan S, Robinson T, Datta SK. Structure and specificity of T cell receptors expressed by potentially pathogenic anti-DNA autoantibody-inducing T cells in human lupus. J Clin Invest 1995; 95:531-41. [PMID: 7860735 PMCID: PMC295507 DOI: 10.1172/jci117695] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The production of potentially pathogenic anti-DNA autoantibodies in SLE is driven by special, autoimmune T helper (Th) cells. Herein, we sequenced the T cell receptor (TCR) alpha and beta chain genes expressed by 42 autoimmune Th lines from lupus patients that were mostly CD4+ and represented the strongest inducers of such autoantibodies. These autoimmune TCRs displayed a recurrent motif of highly charged residues in their CDR3 loops that were contributed by N-nucleotide additions and also positioned there by the recombination process. Furthermore, Th lines from four of the five patients showed a marked increase in the usage of the V alpha 8 gene family. Several independent Th lines expressed identical TCR alpha and/or beta chain sequences indicating again antigenic selection. 10 of these Th lines could be tested further for antigenic specificity. 4 of the 10 pathogenic anti-DNA autoantibody-inducing Th lines responded to the non-histone chromosomal protein HMG and two responded to nucleosomal histone proteins; all presented by HLA-DR molecules. Another Th line responded to purified DNA more than nucleosomes. Thus, these autoimmune Th cells of lupus patients respond to charged epitopes in various DNA-binding nucleoproteins that are probably processed and presented by the anti-DNA B cells they selectively help.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Antinuclear/biosynthesis
- Antigen-Presenting Cells/immunology
- Autoantibodies/biosynthesis
- B-Lymphocytes/immunology
- Binding Sites
- CD4-Positive T-Lymphocytes/immunology
- Cattle
- Cell Line
- DNA/immunology
- Gene Expression
- HLA-D Antigens/analysis
- HLA-D Antigens/biosynthesis
- High Mobility Group Proteins/immunology
- Humans
- Lupus Nephritis/immunology
- Lymphocyte Activation
- Major Histocompatibility Complex
- Molecular Sequence Data
- Protein Structure, Secondary
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes, Helper-Inducer/immunology
Collapse
|
research-article |
30 |
125 |
17
|
Jiang H, Wang XB, Li CY, Li JS, Xu FJ, Mao C, Yang WT, Shen J. Improvement of hemocompatibility of polycaprolactone film surfaces with zwitterionic polymer brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:11575-11581. [PMID: 21851101 DOI: 10.1021/la202101q] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Polycaprolactone (PCL) has been widely adopted as a scaffold biomaterial, but further improvement of the hemocompatibility of a PCL film surface is still needed for wide biomedical applications. In this work, the PCL film surface was functionalized with zwitterionic poly(3-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate) (P(DMAPS)) brushes via surface-initiated atom transfer radical polymerization (ATRP) for enhancing hemocompatibility. Kinetics study revealed an approximately linear increase in graft yield of the functional P(DMAPS) brushes with polymerization time. The blood compatibilities of the modified PCL film surfaces were studied by platelet adhesion tests of platelet-rich plasma and human whole blood, hemolysis assay, and plasma recalcification time (PRT) assay. The improvement of hemocompatibility is dependent on the coverage of the grafted P(DMAPS) brushes on the PCL film. Lower or no platelet and blood cell adhesion was observed on the P(DMAPS)-grafted film surfaces. The P(DMAPS) grafting can further decrease hemolysis and enhance the PRT of the PCL surface. With the versatility of surface-initiated ATRP and the excellent hemocompatibility of zwitterionic polymer brushes, PCL films with desirable blood properties can be readily tailored to cater to various biomedical applications.
Collapse
|
|
14 |
118 |
18
|
Mao C, Xu R, Bielawska A, Szulc ZM, Obeid LM. Cloning and characterization of a Saccharomyces cerevisiae alkaline ceramidase with specificity for dihydroceramide. J Biol Chem 2000; 275:31369-78. [PMID: 10900202 DOI: 10.1074/jbc.m003683200] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a previous study, we reported that the Saccharomyces cerevisiae gene YPC1 encodes an alkaline ceramidase with a dual activity, catalyzing both hydrolysis and synthesis of yeast ceramide (Mao, C., Xu, R., Bielawska, A., and Obeid, L. M. (2000) J. Biol. Chem. 275, 6876-6884). In this study, we have identified a YPC1 homologue in S. cerevisiae that also encodes an alkaline ceramidase. We show that these two ceramidases have different substrate specificity, such that YPC1p preferentially hydrolyzes phytoceramide, whereas the new ceramidase YDC1p hydrolyzes dihydroceramide preferentially and phytoceramide only slightly. Neither enzyme hydrolyzes unsaturated mammalian-type ceramide. In contrast to YPC1p, YDC1p had only minor in vitro reverse activity of catalyzing dihydroceramide formation from a free fatty acid and dihydrosphingosine and no activity with phytosphingosine. Overexpression of YDC1p had no reverse activity in non-stressed yeast cells, but like YPC1p suppressed the inhibition of growth by fumonisin B1 albeit more modestly. Deletion of YDC1 and YPC1 or both did not apparently affect growth, suggesting neither gene is essential. However, the Deltaydc1 deletion mutant but not the Deltaypc1 deletion mutant was sensitive to heat stress, indicating a role for dihydroceramide but not phytoceramide in heat stress responses, and suggesting that the two enzymes have distinct physiological functions.
Collapse
|
|
25 |
117 |
19
|
Chin KC, Mao C, Skinner C, Riley JL, Wright KL, Moreno CS, Stark GR, Boss JM, Ting JP. Molecular analysis of G1B and G3A IFN gamma mutants reveals that defects in CIITA or RFX result in defective class II MHC and Ii gene induction. Immunity 1994; 1:687-97. [PMID: 7600294 DOI: 10.1016/1074-7613(94)90039-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Class II major histocompatibility complex (MHC) genes and the invariant (Ii) gene are inducible by interferon-gamma (IFN gamma) but not by interferon-alpha and interferon-beta. The promoter regions of these genes contain three regulatory elements that mediate constitutive and IFN gamma-induced expressions; however, none of the DNA-binding proteins that interact with these elements are regulated by IFN gamma. Recently, a gene coding for a transactivator (CIITA) of class II MHC genes that complements a HLA-DR-negative immunodeficiency has been isolated. Using one IFN gamma mutant cell line (G3A) that is selectively defective in HLA-DR and Ii induction, four lines of evidence are presented to show that CIITA mediates the IFN gamma induction of HLA-DR and Ii genes. Analysis of another mutant line, G1B, indicates that the lack of DRA and Ii gene induction by IFN gamma is correlated with the lack of RFX DNA binding activity, thus providing the link between RFX and an IFN gamma response.
Collapse
|
|
31 |
117 |
20
|
Rodriguez AC, Park HW, Mao C, Beese LS. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7. J Mol Biol 2000; 299:447-62. [PMID: 10860752 DOI: 10.1006/jmbi.2000.3728] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The 2.25 A resolution crystal structure of a pol alpha family (family B) DNA polymerase from the hyperthermophilic marine archaeon Thermococcus sp. 9 degrees N-7 (9 degrees N-7 pol) provides new insight into the mechanism of pol alpha family polymerases that include essentially all of the eukaryotic replicative and viral DNA polymerases. The structure is folded into NH(2)- terminal, editing 3'-5' exonuclease, and polymerase domains that are topologically similar to the two other known pol alpha family structures (bacteriophage RB69 and the recently determined Thermococcus gorgonarius), but differ in their relative orientation and conformation. The 9 degrees N-7 polymerase domain structure is reminiscent of the "closed" conformation characteristic of ternary complexes of the pol I polymerase family obtained in the presence of their dNTP and DNA substrates. In the apo-9 degrees N-7 structure, this conformation appears to be stabilized by an ion pair. Thus far, the other apo-pol alpha structures that have been determined adopt open conformations. These results therefore suggest that the pol alpha polymerases undergo a series of conformational transitions during the catalytic cycle similar to those proposed for the pol I family. Furthermore, comparison of the orientations of the fingers and exonuclease (sub)domains relative to the palm subdomain that contains the pol active site suggests that the exonuclease domain and the fingers subdomain of the polymerase can move as a unit and may do so as part of the catalytic cycle. This provides a possible structural explanation for the interdependence of polymerization and editing exonuclease activities unique to pol alpha family polymerases. We suggest that the NH(2)-terminal domain of 9 degrees N-7 pol may be structurally related to an RNA-binding motif, which appears to be conserved among archaeal polymerases. The presence of such a putative RNA- binding domain suggests a mechanism for the observed autoregulation of bacteriophage T4 DNA polymerase synthesis by binding to its own mRNA. Furthermore, conservation of this domain could indicate that such regulation of pol expression may be a characteristic of archaea. Comparion of the 9 degrees N-7 pol structure to its mesostable homolog from bacteriophage RB69 suggests that thermostability is achieved by shortening loops, forming two disulfide bridges, and increasing electrostatic interactions at subdomain interfaces.
Collapse
|
|
25 |
115 |
21
|
Boujaoude LC, Bradshaw-Wilder C, Mao C, Cohn J, Ogretmen B, Hannun YA, Obeid LM. Cystic fibrosis transmembrane regulator regulates uptake of sphingoid base phosphates and lysophosphatidic acid: modulation of cellular activity of sphingosine 1-phosphate. J Biol Chem 2001; 276:35258-64. [PMID: 11443135 DOI: 10.1074/jbc.m105442200] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingolipids have been implicated in the regulation of cell growth, differentiation, and programmed cell death. Sphingosine 1-phosphate (SPP) has recently emerged as an important lipid messenger and a ligand for the endothelial differentiation gene receptor family of proteins through which it mediates its biologic effects. Recent studies in Saccharomyces cerevisiae in our laboratory implicated the yeast oligomycin resistance gene (YOR1), a member of the ATP binding cassette family of proteins, in the transport of SPP. The cystic fibrosis transmembrane regulator is a unique member of the ATP binding cassette transporter family and has high homology with YOR1. We therefore set out to investigate if this member of the family can regulate SPP transport. We demonstrate that C127/cystic fibrosis transmembrane regulator (CFTR) cells, expressing wild type CFTR, exhibited significantly higher uptake of sphingosine 1-phosphate than either cells expressing a mutant CFTR C127/DeltaF508 or C127/mock-transfected cells. This effect was specific, dose-dependent, and competed off by dihydrosphingosine 1-phosphate and lysophosphatidic acid. There was no difference in uptake of sphingosine, C(16)-ceramide, sphingomyelin, lysophingomyelin, phosphatidylcholine, lysophosphatidylcholine, or phosphatidic acid among the different cell lines. Pretreatment with forskolin or isobutylmethylxanthine to stimulate cAMP did not affect the uptake in any of the cell lines. Moreover, we found that mitogen-activated protein kinase activation by SPP was less responsive in C127/CFTR as compared with C127/mock-transfected cells, suggesting that uptake of SPP by CFTR may divert it from interacting with its cell surface receptors and attenuate signaling functions. Taken together, these data implicate CFTR in uptake of SPP and the related phosphorylated lipids dihydrosphingosine 1-phosphate and lysophosphatidic acid. This uptake influences the availability of SPP to modulate biologic activity via endothelial differentiation gene receptors. These studies may have important implications to cystic fibrosis.
Collapse
|
|
24 |
114 |
22
|
Mao C, Cook WJ, Zhou M, Koszalka GW, Krenitsky TA, Ealick SE. The crystal structure of Escherichia coli purine nucleoside phosphorylase: a comparison with the human enzyme reveals a conserved topology. Structure 1997; 5:1373-83. [PMID: 9351810 DOI: 10.1016/s0969-2126(97)00287-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Purine nucleoside phosphorylase (PNP) from Escherichia coli is a hexameric enzyme that catalyzes the reversible phosphorolysis of 6-amino and 6-oxopurine (2'-deoxy)ribonucleosides to the free base and (2'-deoxy)ribose-1-phosphate. In contrast, human and bovine PNPs are trimeric and accept only 6-oxopurine nucleosides as substrates. The difference in the specificities of these two enzymes has been utilized in gene therapy treatments in which certain prodrugs are cleaved by E. coli PNP but not the human enzyme. The trimeric and hexameric PNPs show no similarity in amino acid sequence, even though they catalyze the same basic chemical reaction. Structural comparison of the active sites of mammalian and E. coli PNPs would provide an improved basis for the design of potential prodrugs that are specific for E. coli PNP. RESULTS The crystal structure of E. coli PNP at 2.0 A resolution shows that the overall subunit topology and active-site location within the subunit are similar to those of the subunits from human PNP and E. coli uridine phosphorylase. Nevertheless, even though the overall geometry of the E. coli PNP active site is similar to human PNP, the active-site residues and subunit interactions are strikingly different. In E. coli PNP, the purine- and ribose-binding sites are generally hydrophobic, although a histidine residue from an adjacent subunit probably forms a hydrogen bond with a hydroxyl group of the sugar. The phosphate-binding site probably consists of two main-chain nitrogen atoms and three arginine residues. In addition, the active site in hexameric PNP is much more accessible than in trimeric PNP. CONCLUSIONS The structures of human and E. coli PNP define two possible classes of nucleoside phosphorylase, and help to explain the differences in specificity and efficiency between trimeric and hexameric PNPs. This structural data may be useful in designing prodrugs that can be activated by E. coli PNP but not the human enzyme.
Collapse
|
Comparative Study |
28 |
105 |
23
|
Fong TM, Huang RR, Tota MR, Mao C, Smith T, Varnerin J, Karpitskiy VV, Krause JE, Van der Ploeg LH. Localization of leptin binding domain in the leptin receptor. Mol Pharmacol 1998; 53:234-40. [PMID: 9463481 DOI: 10.1124/mol.53.2.234] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The leptin receptor is a member of the class I cytokine receptor family and is involved in the control of appetite and body weight. The predicted amino acid sequence of the extracellular region of the cloned leptin receptor differs from that of many other cytokine receptors in that it contains two homologous segments representing potential ligand binding sites. After the analysis of various deletion and substitution mutants of the leptin receptor, we found that the first potential binding motif is not required for leptin binding and receptor activation, whereas modification of the second potential binding motif can lead to inactive receptor mutants. Further deletion analysis generated a minimal binding domain that retains high affinity leptin binding. The leptin binding domain thus has been localized to residues 323-640, which contain the second segment of cytokine receptor domain/fibronectin type 3 domain (residues 428-635). Coexpression of the active isoform of leptin receptor (OB-Rb) with an inactive mutant lacking high affinity leptin binding site led to suppression of the activity mediated by OB-Rb, suggesting that the leptin receptor may exist as a multimeric complex in the absence of leptin.
Collapse
|
|
27 |
105 |
24
|
Venkatachalam TK, Mao C, Uckun FM. Effect of stereochemistry on the anti-HIV activity of chiral thiourea compounds. Bioorg Med Chem 2004; 12:4275-84. [PMID: 15246104 DOI: 10.1016/j.bmc.2004.04.050] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Accepted: 04/05/2004] [Indexed: 10/26/2022]
Abstract
Chiral derivatives of several substituted halopyridyl and thiazolyl PETT compounds were synthesized as non-nucleoside inhibitors of the reverse transcriptase (RT) enzyme (NNRTI) of the human immunodeficiency virus (HIV-1). Molecular modeling studies indicated that because of the asymmetric geometry of the NNRTI binding pocket, the R stereoisomers would fit the NNRTI binding pocket of the HIV-1 RT much better than the corresponding S stereoisomers, as reflected by their 10(4)-fold lower K1 values. The R stereoisomers of several PETT derivatives inhibited recombinant RT in vitro with lower IC(50) values than their enantiomers. The active compounds were further evaluated for their ability to inhibit HIV-1 replication in human peripheral blood mononuclear cells (PBMC). All the R isomers once again showed potent anti-HIV activity and inhibited the replication of the HIV-1 strain HTLVIIIB in peripheral blood mononuclear cells (PBMC) at nanomolar concentrations whereas their enantiomers were substantially less potent. The lead compounds in the respective groups were further tested against the NNRTI-resistant HIV strains, A17 (Y181C mutant), and A17Var (Y181C+K103N mutant) and RT MDR (V106N). The results showed that the lead compounds were several logs more potent than the standard NNRTI nevirapine. Structure-activity relationship studies also revealed a preference for the pyridyl unit with halo substitutions primarily at 5-position demonstrating the importance of regiochemistry. Our data provides experimental evidence that the stereochemistry as well as regiochemistry of NNRTI can profoundly affect their anti-HIV activity.
Collapse
|
|
21 |
104 |
25
|
Poirier O, Mao C, Mallet C, Nicaud V, Herrmann SM, Evans A, Ruidavets JB, Arveiler D, Luc G, Tiret L, Soubrier F, Cambien F. Polymorphisms of the endothelial nitric oxide synthase gene - no consistent association with myocardial infarction in the ECTIM study. Eur J Clin Invest 1999; 29:284-90. [PMID: 10231340 DOI: 10.1046/j.1365-2362.1999.00451.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Our aim in the present study was to determine whether endothelial NO synthase gene (ecNOS) polymorphisms are associated with myocardial infarction (MI). METHODS Forty chromosomes from patients with MI were screened for polymorphisms of the ecNOS gene using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) analysis and sequencing. Ten polymorphisms were detected: three in the 5' flanking sequence at positions -1474, -924 and -788, two in coding sequences 774C --> T (silent) and G894 --> T (Glu-298 --> Asp) and five in introns 2, 11, 12, 22 and 23. Five hundred and thirty-one patients with MI and 610 control subjects recruited in France and Northern Ireland in the ECTIM study were genotyped for these polymorphisms. RESULTS Glu-298 homozygotes were more frequent among patients with MI than in control subjects in the French population [OR = 1.47 (1.03-1.97), P < 0.009], but no such difference was observed in Northern Ireland. No significant difference between cases and control subjects was detected for the other polymorphisms. Our search for a possible association of the combination of ecNOS polymorphisms with MI by logistic regression analysis was also negative. CONCLUSIONS We have explored a set of polymorphisms of the ecNOS gene in a large case-control study of MI and found that the polymorphisms were not consistently associated with MI.
Collapse
|
|
26 |
93 |