1
|
Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 1993; 365:566-8. [PMID: 7692304 DOI: 10.1038/365566a0] [Citation(s) in RCA: 1542] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
DNA analogues are currently being intensely investigated owing to their potential as gene-targeted drugs. Furthermore, their properties and interaction with DNA and RNA could provide a better understanding of the structural features of natural DNA that determine its unique chemical, biological and genetic properties. We recently designed a DNA analogue, PNA, in which the backbone is structurally homomorphous with the deoxyribose backbone and consists of N-(2-aminoethyl)glycine units to which the nucleobases are attached. We showed that PNA oligomers containing solely thymine and cytosine can hybridize to complementary oligonucleotides, presumably by forming Watson-Crick-Hoogsteen (PNA)2-DNA triplexes, which are much more stable than the corresponding DNA-DNA duplexes, and bind to double-stranded DNA by strand displacement. We report here that PNA containing all four natural nucleobases hybridizes to complementary oligonucleotides obeying the Watson-Crick base-pairing rules, and thus is a true DNA mimic in terms of base-pair recognition.
Collapse
|
|
32 |
1542 |
2
|
Skoulidis F, Byers LA, Diao L, Papadimitrakopoulou VA, Tong P, Izzo J, Behrens C, Kadara H, Parra ER, Canales JR, Zhang J, Giri U, Gudikote J, Cortez MA, Yang C, Fan Y, Peyton M, Girard L, Coombes KR, Toniatti C, Heffernan TP, Choi M, Frampton GM, Miller V, Weinstein JN, Herbst RS, Wong KK, Zhang J, Sharma P, Mills GB, Hong WK, Minna JD, Allison JP, Futreal A, Wang J, Wistuba II, Heymach JV. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov 2015; 5:860-77. [PMID: 26069186 PMCID: PMC4527963 DOI: 10.1158/2159-8290.cd-14-1236] [Citation(s) in RCA: 682] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/16/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED The molecular underpinnings that drive the heterogeneity of KRAS-mutant lung adenocarcinoma are poorly characterized. We performed an integrative analysis of genomic, transcriptomic, and proteomic data from early-stage and chemorefractory lung adenocarcinoma and identified three robust subsets of KRAS-mutant lung adenocarcinoma dominated, respectively, by co-occurring genetic events in STK11/LKB1 (the KL subgroup), TP53 (KP), and CDKN2A/B inactivation coupled with low expression of the NKX2-1 (TTF1) transcription factor (KC). We further revealed biologically and therapeutically relevant differences between the subgroups. KC tumors frequently exhibited mucinous histology and suppressed mTORC1 signaling. KL tumors had high rates of KEAP1 mutational inactivation and expressed lower levels of immune markers, including PD-L1. KP tumors demonstrated higher levels of somatic mutations, inflammatory markers, immune checkpoint effector molecules, and improved relapse-free survival. Differences in drug sensitivity patterns were also observed; notably, KL cells showed increased vulnerability to HSP90-inhibitor therapy. This work provides evidence that co-occurring genomic alterations identify subgroups of KRAS-mutant lung adenocarcinoma with distinct biology and therapeutic vulnerabilities. SIGNIFICANCE Co-occurring genetic alterations in STK11/LKB1, TP53, and CDKN2A/B-the latter coupled with low TTF1 expression-define three major subgroups of KRAS-mutant lung adenocarcinoma with distinct biology, patterns of immune-system engagement, and therapeutic vulnerabilities.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
682 |
3
|
Solis LM, Behrens C, Dong W, Suraokar M, Ozburn NC, Moran CA, Corvalan AH, Biswal S, Swisher SG, Bekele BN, Minna JD, Stewart DJ, Wistuba II. Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clin Cancer Res 2010; 16:3743-53. [PMID: 20534738 DOI: 10.1158/1078-0432.ccr-09-3352] [Citation(s) in RCA: 358] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To understand the role of nuclear factor erythroid-2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) in non-small cell lung cancer (NSCLC), we studied their expression in a large series of tumors with annotated clinicopathologic data, including response to platinum-based adjuvant chemotherapy. EXPERIMENTAL DESIGN We determined the immunohistochemical expression of nuclear Nrf2 and cytoplasmic Keap1 in 304 NSCLCs and its association with patients' clinicopathologic characteristics, and in 89 tumors from patients who received neoadjuvant (n = 26) or adjuvant platinum-based chemotherapy (n = 63). We evaluated NFE2L2 and KEAP1 mutations in 31 tumor specimens. RESULTS We detected nuclear Nrf2 expression in 26% of NSCLCs; it was significantly more common in squamous cell carcinomas (38%) than in adenocarcinomas (18%; P < 0.0001). Low or absent Keap1 expression was detected in 56% of NSCLCs; it was significantly more common in adenocarcinomas (62%) than in squamous cell carcinomas (46%; P = 0.0057). In NSCLC, mutations of NFE2L2 and KEAP1 were very uncommon (2 of 29 and 1 of 31 cases, respectively). In multivariate analysis, Nrf2 expression was associated with worse overall survival [P = 0.0139; hazard ratio (HR), 1.75] in NSCLC patients, and low or absent Keap1 expression was associated with worse overall survival (P = 0.0181; HR, 2.09) in squamous cell carcinoma. In univariate analysis, nuclear Nrf2 expression was associated with worse recurrence-free survival in squamous cell carcinoma patients who received adjuvant treatment (P = 0.0410; HR, 3.37). CONCLUSIONS Increased expression of Nrf2 and decreased expression of Keap1 are common abnormalities in NSCLC and are associated with a poor outcome. Nuclear expression of Nrf2 in malignant lung cancer cells may play a role in resistance to platinum-based treatment in squamous cell carcinoma.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
358 |
4
|
Lou Y, Diao L, Cuentas ERP, Denning WL, Chen L, Fan YH, Byers LA, Wang J, Papadimitrakopoulou VA, Behrens C, Rodriguez JC, Hwu P, Wistuba II, Heymach JV, Gibbons DL. Epithelial-Mesenchymal Transition Is Associated with a Distinct Tumor Microenvironment Including Elevation of Inflammatory Signals and Multiple Immune Checkpoints in Lung Adenocarcinoma. Clin Cancer Res 2016; 22:3630-42. [PMID: 26851185 DOI: 10.1158/1078-0432.ccr-15-1434] [Citation(s) in RCA: 343] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/25/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE Promising results in the treatment of non-small cell lung cancer (NSCLC) have been seen with agents targeting immune checkpoints, such as programmed cell death 1 (PD-1) or programmed death ligand-1 (PD-L1). However, only a select group of patients respond to these interventions. The identification of biomarkers that predict clinical benefit to immune checkpoint blockade is critical to successful clinical translation of these agents. METHODS We conducted an integrated analysis of three independent large datasets, including The Cancer Genome Atlas of lung adenocarcinoma and two datasets from MD Anderson Cancer Center (Houston, TX), Profiling of Resistance Patterns and Oncogenic Signaling Pathways in Evaluation of Cancers of the Thorax (named PROSPECT) and Biomarker-Integrated Approaches of Targeted Therapy for Lung Cancer Elimination (named BATTLE-1). Comprehensive analysis of mRNA gene expression, reverse-phase protein array, IHC, and correlation with clinical data were performed. RESULTS Epithelial-mesenchymal transition (EMT) is highly associated with an inflammatory tumor microenvironment in lung adenocarcinoma, independent of tumor mutational burden. We found immune activation coexistent with elevation of multiple targetable immune checkpoint molecules, including PD-L1, PD-L2, PD-1, TIM-3, B7-H3, BTLA, and CTLA-4, along with increases in tumor infiltration by CD4(+)Foxp3(+) regulatory T cells in lung adenocarcinomas that displayed an EMT phenotype. Furthermore, we identify B7-H3 as a prognostic marker for NSCLC. CONCLUSIONS The strong association between EMT status and an inflammatory tumor microenvironment with elevation of multiple targetable immune checkpoint molecules warrants further investigation of using EMT as a predictive biomarker for immune checkpoint blockade agents and other immunotherapies in NSCLC and possibly a broad range of other cancers. Clin Cancer Res; 22(14); 3630-42. ©2016 AACRSee related commentary by Datar and Schalper, p. 3422.
Collapse
|
Journal Article |
9 |
343 |
5
|
Sullivan JP, Spinola M, Dodge M, Raso MG, Behrens C, Gao B, Schuster K, Shao C, Larsen JE, Sullivan LA, Honorio S, Xie Y, Scaglioni PP, DiMaio JM, Gazdar AF, Shay JW, Wistuba II, Minna JD. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res 2010; 70:9937-48. [PMID: 21118965 DOI: 10.1158/0008-5472.can-10-0881] [Citation(s) in RCA: 325] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aldehyde dehydrogenase (ALDH) is a candidate marker for lung cancer cells with stem cell-like properties. Immunohistochemical staining of a large panel of primary non-small cell lung cancer (NSCLC) samples for ALDH1A1, ALDH3A1, and CD133 revealed a significant correlation between ALDH1A1 (but not ALDH3A1 or CD133) expression and poor prognosis in patients including those with stage I and N0 disease. Flow cytometric analysis of a panel of lung cancer cell lines and patient tumors revealed that most NSCLCs contain a subpopulation of cells with elevated ALDH activity, and that this activity is associated with ALDH1A1 expression. Isolated ALDH(+) lung cancer cells were observed to be highly tumorigenic and clonogenic as well as capable of self-renewal compared with their ALDH(-) counterparts. Expression analysis of sorted cells revealed elevated Notch pathway transcript expression in ALDH(+) cells. Suppression of the Notch pathway by treatment with either a γ-secretase inhibitor or stable expression of shRNA against NOTCH3 resulted in a significant decrease in ALDH(+) lung cancer cells, commensurate with a reduction in tumor cell proliferation and clonogenicity. Taken together, these findings indicate that ALDH selects for a subpopulation of self-renewing NSCLC stem-like cells with increased tumorigenic potential, that NSCLCs harboring tumor cells with ALDH1A1 expression have inferior prognosis, and that ALDH1A1 and CD133 identify different tumor subpopulations. Therapeutic targeting of the Notch pathway reduces this ALDH(+) component, implicating Notch signaling in lung cancer stem cell maintenance.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
325 |
6
|
Wistuba II, Lam S, Behrens C, Virmani AK, Fong KM, LeRiche J, Samet JM, Srivastava S, Minna JD, Gazdar AF. Molecular damage in the bronchial epithelium of current and former smokers. J Natl Cancer Inst 1997; 89:1366-73. [PMID: 9308707 PMCID: PMC5193483 DOI: 10.1093/jnci/89.18.1366] [Citation(s) in RCA: 314] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Most lung cancers are attributed to smoking. These cancers have been associated with multiple genetic alterations and with the presence of preneoplastic bronchial lesions. In view of such associations, we evaluated the status of specific chromosomal loci in histologically normal and abnormal bronchial biopsy specimens from current and former smokers and specimens from nonsmokers. METHODS Multiple biopsy specimens were obtained from 18 current smokers, 24 former smokers, and 21 nonsmokers. Polymerase chain reaction-based assays involving 15 polymorphic microsatellite DNA markers were used to examine eight chromosomal regions for genetic changes (loss of heterozygosity [LOH] and microsatellite alterations). RESULTS LOH and microsatellite alterations were observed in biopsy specimens from both current and former smokers, but no statistically significant differences were observed between the two groups. Among individuals with a history of smoking, 86% demonstrated LOH in one or more biopsy specimens, and 24% showed LOH in all biopsy specimens. About half of the histologically normal specimens from smokers showed LOH, but the frequency of LOH and the severity of histologic change did not correspond until the carcinoma in situ stage. A subset of biopsy specimens from smokers that exhibited either normal or preneoplastic histology showed LOH at multiple chromosomal sites, a phenomenon frequently observed in carcinoma in situ and invasive cancer. LOH on chromosomes 3p and 9p was more frequent than LOH on chromosomes 5q, 17p (17p13; TP53 gene), and 13q (13q14; retinoblastoma gene). Microsatellite alterations were detected in 64% of the smokers. No genetic alterations were detected in nonsmokers. CONCLUSIONS Genetic changes similar to those found in lung cancers can be detected in the nonmalignant bronchial epithelium of current and former smokers and may persist for many years after smoking cessation.
Collapse
|
research-article |
28 |
314 |
7
|
Larsen JE, Nathan V, Osborne JK, Farrow RK, Deb D, Sullivan JP, Dospoy PD, Augustyn A, Hight SK, Sato M, Girard L, Behrens C, Wistuba II, Gazdar AF, Hayward NK, Minna JD. ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J Clin Invest 2016; 126:3219-35. [PMID: 27500490 DOI: 10.1172/jci76725] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/09/2016] [Indexed: 12/17/2022] Open
Abstract
Increased expression of zinc finger E-box binding homeobox 1 (ZEB1) is associated with tumor grade and metastasis in lung cancer, likely due to its role as a transcription factor in epithelial-to-mesenchymal transition (EMT). Here, we modeled malignant transformation in human bronchial epithelial cells (HBECs) and determined that EMT and ZEB1 expression are early, critical events in lung cancer pathogenesis. Specific oncogenic mutations in TP53 and KRAS were required for HBECs to engage EMT machinery in response to microenvironmental (serum/TGF-β) or oncogenetic (MYC) factors. Both TGF-β- and MYC-induced EMT required ZEB1, but engaged distinct TGF-β-dependent and vitamin D receptor-dependent (VDR-dependent) pathways, respectively. Functionally, we found that ZEB1 causally promotes malignant progression of HBECs and tumorigenicity, invasion, and metastases in non-small cell lung cancer (NSCLC) lines. Mechanistically, ZEB1 expression in HBECs directly repressed epithelial splicing regulatory protein 1 (ESRP1), leading to increased expression of a mesenchymal splice variant of CD44 and a more invasive phenotype. In addition, ZEB1 expression in early stage IB primary NSCLC correlated with tumor-node-metastasis stage. These findings indicate that ZEB1-induced EMT and associated molecular changes in ESRP1 and CD44 contribute to early pathogenesis and metastatic potential in established lung cancer. Moreover, TGF-β and VDR signaling and CD44 splicing pathways associated with ZEB1 are potential EMT chemoprevention and therapeutic targets in NSCLC.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
261 |
8
|
Wistuba II, Behrens C, Milchgrub S, Bryant D, Hung J, Minna JD, Gazdar AF. Sequential molecular abnormalities are involved in the multistage development of squamous cell lung carcinoma. Oncogene 1999; 18:643-50. [PMID: 9989814 DOI: 10.1038/sj.onc.1202349] [Citation(s) in RCA: 256] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To understand the molecular pathways involved in the pathogenesis of squamous cell lung carcinoma, we obtained DNA from 94 microdissected foci from 12 archival surgically resected tumors including histologically normal epithelium (n=13), preneoplastic lesions (n=54), carcinoma is situ (CIS) (n=15) and invasive tumors (n=12). We determined loss of heterozygosity (LOH) at 10 chromosomal regions (3p12, 3p14.2, 3p14.1-21.3, 3p21, 3p22-24, 3p25, 5q22, 9p21, 13q14 RB, and 17p13 TP53) frequently deleted in lung cancer, using 31 polymorphic microsatellite markers, including 24 that spanned the entire 3p arm. Our major findings are as follows: (1) Thirty one percent of histologically normal epithelium and 42% of mildly abnormal (hyperplasia/metaplasia) specimens had clones of cells with allelic loss at one or more regions; (2) There was a progressive increase of the overall LOH frequency within clones with increasing severity of histopathological changes; (3) The earliest and most frequent regions of allelic loss occurred at 3p21, 3p22-24, 3p25 and 9p21; (4) The size of the 3p deletions increased with progressive histologic changes; (5) TP53 allelic loss was present in many histologically advanced lesions (dysplasia and CIS); (6) Analyses of 58 normal and non-invasive foci having any molecular abnormality, indicated that 30 probably arose as independent clonal events, while 28 were potentially of the same clonal origin as the corresponding tumor; (7) Nevertheless, when the allelic losses in the 30 clonally independent lesions and their clonally unrelated tumors were compared the same parental allele was lost in 113 of 125 (90%) of comparisons. The mechanism by which this phenomenon (known as allele specific mutations) occurs is unknown; (8) Four patterns of allelic loss in clones were found. Histologically normal or mildly abnormal foci had a negative pattern (no allelic loss) or early pattern of loss while all foci of CIS and invasive tumor had an advanced pattern. However dysplasias demonstrated the entire spectrum of allelic loss patterns, and were the only histologic category having the intermediate pattern. Our findings indicate that multiple, sequentially occurring allele specific molecular changes commence in widely dispersed, apparently clonally independent foci, early in the multistage pathogenesis of squamous cell carcinomas of the lung.
Collapse
|
|
26 |
256 |
9
|
Tang H, Xiao G, Behrens C, Schiller J, Allen J, Chow CW, Suraokar M, Corvalan A, Mao J, White MA, Wistuba II, Minna JD, Xie Y. A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients. Clin Cancer Res 2013; 19:1577-86. [PMID: 23357979 DOI: 10.1158/1078-0432.ccr-12-2321] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Prospectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non-small cell lung cancer (NSCLC) patients. In this study, we aim to develop and validate a functional gene set that predicts the clinical benefits of ACT in NSCLC. EXPERIMENTAL DESIGN An 18-hub-gene prognosis signature was developed through a systems biology approach, and its prognostic value was evaluated in six independent cohorts. The 18-hub-gene set was then integrated with genome-wide functional (RNAi) data and genetic aberration data to derive a 12-gene predictive signature for ACT benefits in NSCLC. RESULTS Using a cohort of 442 stage I to III NSCLC patients who underwent surgical resection, we identified an 18-hub-gene set that robustly predicted the prognosis of patients with adenocarcinoma in all validation datasets across four microarray platforms. The hub genes, identified through a purely data-driven approach, have significant biological implications in tumor pathogenesis, including NKX2-1, Aurora Kinase A, PRC1, CDKN3, MBIP, and RRM2. The 12-gene predictive signature was successfully validated in two independent datasets (n = 90 and 176). The predicted benefit group showed significant improvement in survival after ACT (UT Lung SPORE data: HR = 0.34, P = 0.017; JBR.10 clinical trial data: HR = 0.36, P = 0.038), whereas the predicted nonbenefit group showed no survival benefit for 2 datasets (HR = 0.80, P = 0.70; HR = 0.91, P = 0.82). CONCLUSIONS This is the first study to integrate genetic aberration, genome-wide RNAi data, and mRNA expression data to identify a functional gene set that predicts which resectable patients with non-small cell lung cancer will have a survival benefit with ACT.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
210 |
10
|
Caetano MS, Zhang H, Cumpian AM, Gong L, Unver N, Ostrin EJ, Daliri S, Chang SH, Ochoa CE, Hanash S, Behrens C, Wistuba II, Sternberg C, Kadara H, Ferreira CG, Watowich SS, Moghaddam SJ. IL6 Blockade Reprograms the Lung Tumor Microenvironment to Limit the Development and Progression of K-ras-Mutant Lung Cancer. Cancer Res 2016; 76:3189-99. [PMID: 27197187 DOI: 10.1158/0008-5472.can-15-2840] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/21/2016] [Indexed: 12/22/2022]
Abstract
Activating mutations of K-ras are the most common oncogenic alterations found in lung cancer. Unfortunately, attempts to target K-ras-mutant lung tumors have thus far failed, clearly indicating the need for new approaches in patients with this molecular profile. We have previously shown NF-κB activation, release of IL6, and activation of its responsive transcription factor STAT3 in K-ras-mutant lung tumors, which was further amplified by the tumor-enhancing effect of chronic obstructive pulmonary disease (COPD)-type airway inflammation. These findings suggest an essential role for this inflammatory pathway in K-ras-mutant lung tumorigenesis and its enhancement by COPD. Therefore, here we blocked IL6 using a monoclonal anti-IL6 antibody in a K-ras-mutant mouse model of lung cancer in the absence or presence of COPD-type airway inflammation. IL6 blockade significantly inhibited lung cancer promotion, tumor cell-intrinsic STAT3 activation, tumor cell proliferation, and angiogenesis markers. Moreover, IL6 inhibition reduced expression of protumor type 2 molecules (arginase 1, Fizz 1, Mgl, and IDO), number of M2-type macrophages and granulocytic myeloid-derived suppressor cells, and protumor T-regulatory/Th17 cell responses. This was accompanied by increased expression of antitumor type 1 molecule (Nos2), and antitumor Th1/CD8 T-cell responses. Our study demonstrates that IL6 blockade not only has direct intrinsic inhibitory effect on tumor cells, but also reeducates the lung microenvironment toward an antitumor phenotype by altering the relative proportion between protumor and antitumor immune cells. This information introduces IL6 as a potential druggable target for prevention and treatment of K-ras-mutant lung tumors. Cancer Res; 76(11); 3189-99. ©2016 AACR.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
167 |
11
|
Marinelli A, Ratner D, Lutman AA, Turner J, Welch J, Decker FJ, Loos H, Behrens C, Gilevich S, Miahnahri AA, Vetter S, Maxwell TJ, Ding Y, Coffee R, Wakatsuki S, Huang Z. High-intensity double-pulse X-ray free-electron laser. Nat Commun 2015; 6:6369. [PMID: 25744344 PMCID: PMC4366525 DOI: 10.1038/ncomms7369] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/22/2015] [Indexed: 11/21/2022] Open
Abstract
The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitude in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion. Two-colour X-ray pulses from free-electron lasers can be used to probe ultrafast dynamics, but the total power is a fraction of the saturation power. Here, Marinelli et al. use twin electron bunches to reach full saturation power and increase the two-colour intensity by an order of magnitude at hard-X-ray energies.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
159 |
12
|
Schliekelman MJ, Taguchi A, Zhu J, Dai X, Rodriguez J, Celiktas M, Zhang Q, Chin A, Wong CH, Wang H, McFerrin L, Selamat SA, Yang C, Kroh EM, Garg KS, Behrens C, Gazdar AF, Laird-Offringa IA, Tewari M, Wistuba II, Thiery JP, Hanash SM. Molecular portraits of epithelial, mesenchymal, and hybrid States in lung adenocarcinoma and their relevance to survival. Cancer Res 2015; 75:1789-800. [PMID: 25744723 DOI: 10.1158/0008-5472.can-14-2535] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/28/2015] [Indexed: 12/22/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a key process associated with tumor progression and metastasis. To define molecular features associated with EMT states, we undertook an integrative approach combining mRNA, miRNA, DNA methylation, and proteomic profiles of 38 cell populations representative of the genomic heterogeneity in lung adenocarcinoma. The resulting data were integrated with functional profiles consisting of cell invasiveness, adhesion, and motility. A subset of cell lines that were readily defined as epithelial or mesenchymal based on their morphology and E-cadherin and vimentin expression elicited distinctive molecular signatures. Other cell populations displayed intermediate/hybrid states of EMT, with mixed epithelial and mesenchymal characteristics. A dominant proteomic feature of aggressive hybrid cell lines was upregulation of cytoskeletal and actin-binding proteins, a signature shared with mesenchymal cell lines. Cytoskeletal reorganization preceded loss of E-cadherin in epithelial cells in which EMT was induced by TGFβ. A set of transcripts corresponding to the mesenchymal protein signature enriched in cytoskeletal proteins was found to be predictive of survival in independent datasets of lung adenocarcinomas. Our findings point to an association between cytoskeletal and actin-binding proteins, a mesenchymal or hybrid EMT phenotype and invasive properties of lung adenocarcinomas.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
159 |
13
|
Tang X, Liu D, Shishodia S, Ozburn N, Behrens C, Lee JJ, Hong WK, Aggarwal BB, Wistuba II. Nuclear factor-kappaB (NF-kappaB) is frequently expressed in lung cancer and preneoplastic lesions. Cancer 2006; 107:2637-46. [PMID: 17078054 DOI: 10.1002/cncr.22315] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Nuclear factor-kappaB (NF-kappaB), a key transcription factor thought to play a major role in carcinogenesis, regulates many important signaling pathways involved in tumor promotion. Although NF-kappaB can be activated in lung cancer cell lines by tobacco exposure, there have been no studies of the expression of NF-kappaB in lung cancer pathogenesis. METHODS The immunohistochemical expression of NF-kappaB p65 was investigated in 394 lung cancers (370 nonsmall cell lung carcinomas [NSCLC]; and 24 small cell lung carcinomas [SCLC]) and 269 lung normal epithelium and preneoplastic lesions, including hyperplasias, squamous metaplasias, dysplasias, and atypical adenomatous hyperplasias. RESULTS High levels of nuclear immunohistochemical expression of NF-kappaB p65 were detected in the lung cancers, with significantly higher levels in SCLCs compared with NSCLCs (P<.0001). In adenocarcinomas the NF-kappaB p65 expression level was significantly higher in advanced TNM stages (III-IV) than in earlier stages (I-II) (P<.0001), and when NF-kappaB p65 is dichotomized using 50% as the cutoff point (high vs low), a higher NF-kappaB p65 expression level was detected in tumors having either K-RAS (P = .02) or EGFR (P = .009) mutations compared with wildtype tumors. A relatively high level of nuclear NF-kappaB p65 expression was detected in normal and mildly abnormal epithelium, and a progression with increasing histology severity was detected in preneoplastic lesions. CONCLUSIONS NF-kappaB p65 nuclear expression is an early and frequent phenomenon in the pathogenesis of lung cancer. The findings indicate that NF-kappaB activation plays an important role in lung cancer pathogenesis and is a suitable target for the development of new lung cancer therapies and chemoprevention strategies.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
156 |
14
|
Peng DH, Ungewiss C, Tong P, Byers LA, Wang J, Canales JR, Villalobos PA, Uraoka N, Mino B, Behrens C, Wistuba II, Han RI, Wanna CA, Fahrenholtz M, Grande-Allen KJ, Creighton CJ, Gibbons DL. ZEB1 induces LOXL2-mediated collagen stabilization and deposition in the extracellular matrix to drive lung cancer invasion and metastasis. Oncogene 2017; 36:1925-1938. [PMID: 27694892 PMCID: PMC5378666 DOI: 10.1038/onc.2016.358] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths, primarily due to distant metastatic disease. Metastatic lung cancer cells can undergo an epithelial-to-mesenchymal transition (EMT) regulated by various transcription factors, including a double-negative feedback loop between the microRNA-200 (miR-200) family and ZEB1, but the precise mechanisms by which ZEB1-dependent EMT promotes malignancy remain largely undefined. Although the cell-intrinsic effects of EMT are important for tumor progression, the reciprocal dynamic crosstalk between mesenchymal cancer cells and the extracellular matrix (ECM) is equally critical in regulating invasion and metastasis. Investigating the collaborative effect of EMT and ECM in the metastatic process reveals increased collagen deposition in metastatic tumor tissues as a direct consequence of amplified collagen gene expression in ZEB1-activated mesenchymal lung cancer cells. In addition, collagen fibers in metastatic lung tumors exhibit greater linearity and organization as a result of collagen crosslinking by the lysyl oxidase (LOX) family of enzymes. Expression of the LOX and LOXL2 isoforms is directly regulated by miR-200 and ZEB1, respectively, and their upregulation in metastatic tumors and mesenchymal cell lines is coordinated to that of collagen. Functionally, LOXL2, as opposed to LOX, is the principal isoform that crosslinks and stabilizes insoluble collagen deposition in tumor tissues. In turn, focal adhesion formation and FAK/SRC signaling is activated in mesenchymal tumor cells by crosslinked collagen in the ECM. Our study is the first to validate direct regulation of LOX and LOXL2 by the miR-200/ZEB1 axis, defines a novel mechanism driving tumor metastasis, delineates collagen as a prognostic marker, and identifies LOXL2 as a potential therapeutic target against tumor progression.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
156 |
15
|
Kadara H, Choi M, Zhang J, Parra ER, Rodriguez-Canales J, Gaffney SG, Zhao Z, Behrens C, Fujimoto J, Chow C, Yoo Y, Kalhor N, Moran C, Rimm D, Swisher S, Gibbons DL, Heymach J, Kaftan E, Townsend JP, Lynch TJ, Schlessinger J, Lee J, Lifton RP, Wistuba II, Herbst RS. Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up. Ann Oncol 2017; 28:75-82. [PMID: 27687306 DOI: 10.1093/annonc/mdw436] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Lung adenocarcinomas (LUADs) lead to the majority of deaths attributable to lung cancer. We performed whole-exome sequencing (WES) and immune profiling analyses of a unique set of clinically annotated early-stage LUADs to better understand the pathogenesis of this disease and identify clinically relevant molecular markers. Methods We performed WES of 108 paired stage I-III LUADs and normal lung tissues using the Illumina HiSeq 2000 platform. Ten immune markers (PD-L1, PD-1, CD3, CD4, CD8, CD45ro, CD57, CD68, FOXP3 and Granzyme B) were profiled by imaging-based immunohistochemistry (IHC) in a subset of LUADs (n = 92). Associations among mutations, immune markers and clinicopathological variables were analyzed using ANOVA and Fisher's exact test. Cox proportional hazards regression models were used for multivariate analysis of clinical outcome. Results LUADs in this cohort exhibited an average of 243 coding mutations. We identified 28 genes with significant enrichment for mutation. SETD2-mutated LUADs exhibited relatively poor recurrence- free survival (RFS) and mutations in STK11 and ATM were associated with poor RFS among KRAS-mutant tumors. EGFR, KEAP1 and PIK3CA mutations were predictive of poor response to adjuvant therapy. Immune marker analysis revealed that LUADs in smokers and with relatively high mutation burdens exhibited increased levels of immune markers. Analysis of immunophenotypes revealed that LUADs with STK11 mutations exhibited relatively low levels of infiltrating CD4+/CD8+ T-cells indicative of a muted immune response. Tumoral PD-L1 was significantly elevated in TP53 mutant LUADs whereas PIK3CA mutant LUADs exhibited markedly down-regulated PD-L1 expression. LUADs with TP53 or KEAP1 mutations displayed relatively increased CD57 and Granzyme B levels indicative of augmented natural killer (NK) cell infiltration. Conclusion(s) Our study highlights molecular and immune phenotypes that warrant further analysis for their roles in clinical outcomes and personalized immune-based therapy of LUAD.
Collapse
|
Journal Article |
8 |
141 |
16
|
Reuben A, Gittelman R, Gao J, Zhang J, Yusko EC, Wu CJ, Emerson R, Zhang J, Tipton C, Li J, Quek K, Gopalakrishnan V, Chen R, Vence LM, Cascone T, Vignali M, Fujimoto J, Rodriguez-Canales J, Parra ER, Little LD, Gumbs C, Forget MA, Federico L, Haymaker C, Behrens C, Benzeno S, Bernatchez C, Sepesi B, Gibbons DL, Wargo JA, William WN, Swisher S, Heymach JV, Robins H, Lee JJ, Sharma P, Allison JP, Futreal PA, Wistuba II, Zhang J. TCR Repertoire Intratumor Heterogeneity in Localized Lung Adenocarcinomas: An Association with Predicted Neoantigen Heterogeneity and Postsurgical Recurrence. Cancer Discov 2017; 7:1088-1097. [PMID: 28733428 DOI: 10.1158/2159-8290.cd-17-0256] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/01/2017] [Accepted: 07/19/2017] [Indexed: 12/27/2022]
Abstract
Genomic intratumor heterogeneity (ITH) may be associated with postsurgical relapse of localized lung adenocarcinomas. Recently, mutations, through generation of neoantigens, were shown to alter tumor immunogenicity through T-cell responses. Here, we performed sequencing of the T-cell receptor (TCR) in 45 tumor regions from 11 localized lung adenocarcinomas and observed substantial intratumor differences in T-cell density and clonality with the majority of T-cell clones restricted to individual tumor regions. TCR ITH positively correlated with predicted neoantigen ITH, suggesting that spatial differences in the T-cell repertoire may be driven by distinct neoantigens in different tumor regions. Finally, a higher degree of TCR ITH was associated with an increased risk of postsurgical relapse and shorter disease-free survival, suggesting a potential clinical significance of T-cell repertoire heterogeneity.Significance: The present study provides insights into the ITH of the T-cell repertoire in localized lung adenocarcinomas and its potential biological and clinical impact. The results suggest that T-cell repertoire ITH may be tightly associated to genomic ITH and disease relapse. Cancer Discov; 7(10); 1088-97. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1047.
Collapse
|
Journal Article |
8 |
141 |
17
|
Raso MG, Behrens C, Herynk MH, Liu S, Prudkin L, Ozburn NC, Woods DM, Tang X, Mehran RJ, Moran C, Lee JJ, Wistuba II. Immunohistochemical expression of estrogen and progesterone receptors identifies a subset of NSCLCs and correlates with EGFR mutation. Clin Cancer Res 2009; 15:5359-68. [PMID: 19706809 DOI: 10.1158/1078-0432.ccr-09-0033] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE To determine the frequency of estrogen receptor alpha and beta and progesterone receptor protein immunohistochemical expression in a large set of non-small cell lung carcinoma (NSCLC) specimens and to compare our results with those for some of the same antibodies that have provided inconsistent results in previously published reports. EXPERIMENTAL DESIGN Using multiple antibodies, we investigated the immunohistochemical expression of estrogen receptors alpha and beta and progesterone receptor in 317 NSCLCs placed in tissue microarrays and correlated their expression with patients' clinicopathologic characteristics and in adenocarcinomas with EGFR mutation status. RESULTS Estrogen receptors alpha and beta were detected in the nucleus and cytoplasm of NSCLC cells; however, the frequency of expression (nucleus, 5-36% for alpha and 42-56% for beta; cytoplasm: <1-42% for alpha and 20-98% for beta) varied among the different antibodies tested. Progesterone receptor was expressed in the nuclei of malignant cells in 63% of the tumors. Estrogen receptor alpha nuclear expression significantly correlated with adenocarcinoma histology, female gender, and history of never smoking (P = 0.0048 to <0.0001). In NSCLC, higher cytoplasmic estrogen receptor alpha expression significantly correlated with worse recurrence-free survival (hazard ratio, 1.77; 95% confidence interval, 1.12, 2.82; P = 0.015) in multivariate analysis. In adenocarcinomas, estrogen receptor alpha expression correlated with EGFR mutation (P = 0.0029 to <0.0001). Estrogen receptor beta and progesterone receptor but not estrogen receptor alpha expressed in the normal epithelium adjacent to lung adenocarcinomas. CONCLUSIONS Estrogen receptor alpha and beta expression distinguishes a subset of NSCLC that has defined clinicopathologic and genetic features. In lung adenocarcinoma, estrogen receptor alpha expression correlates with EGFR mutations.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
16 |
133 |
18
|
Chen Y, Terajima M, Yang Y, Sun L, Ahn YH, Pankova D, Puperi DS, Watanabe T, Kim MP, Blackmon SH, Rodriguez J, Liu H, Behrens C, Wistuba II, Minelli R, Scott KL, Sanchez-Adams J, Guilak F, Pati D, Thilaganathan N, Burns AR, Creighton CJ, Martinez ED, Zal T, Grande-Allen KJ, Yamauchi M, Kurie JM. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma. J Clin Invest 2015; 125:1147-62. [PMID: 25664850 DOI: 10.1172/jci74725] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/05/2015] [Indexed: 01/08/2023] Open
Abstract
Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde-derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde-derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma.
Collapse
MESH Headings
- Adenocarcinoma/enzymology
- Adenocarcinoma/mortality
- Adenocarcinoma/secondary
- Animals
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/secondary
- Cell Line, Tumor
- Cells, Cultured
- Collagen/metabolism
- Enzyme Induction
- Extracellular Matrix/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Lung Neoplasms/enzymology
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Male
- Mice, 129 Strain
- Mice, Transgenic
- Neoplasm Transplantation
- Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/physiology
- Promoter Regions, Genetic
- STAT3 Transcription Factor/metabolism
- Tumor Microenvironment
- Up-Regulation
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
131 |
19
|
Xie Y, Xiao G, Coombes KR, Behrens C, Solis LM, Raso G, Girard L, Erickson HS, Roth J, Heymach JV, Moran C, Danenberg K, Minna JD, Wistuba II. Robust gene expression signature from formalin-fixed paraffin-embedded samples predicts prognosis of non-small-cell lung cancer patients. Clin Cancer Res 2011; 17:5705-14. [PMID: 21742808 DOI: 10.1158/1078-0432.ccr-11-0196] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE The requirement of frozen tissues for microarray experiments limits the clinical usage of genome-wide expression profiling by using microarray technology. The goal of this study is to test the feasibility of developing lung cancer prognosis gene signatures by using genome-wide expression profiling of formalin-fixed paraffin-embedded (FFPE) samples, which are widely available and provide a valuable rich source for studying the association of molecular changes in cancer and associated clinical outcomes. EXPERIMENTAL DESIGN We randomly selected 100 Non-Small-Cell lung cancer (NSCLC) FFPE samples with annotated clinical information from the UT-Lung SPORE Tissue Bank. We microdissected tumor area from FFPE specimens and used Affymetrix U133 plus 2.0 arrays to attain gene expression data. After strict quality control and analysis procedures, a supervised principal component analysis was used to develop a robust prognosis signature for NSCLC. Three independent published microarray datasets were used to validate the prognosis model. RESULTS This study showed that the robust gene signature derived from genome-wide expression profiling of FFPE samples is strongly associated with lung cancer clinical outcomes and can be used to refine the prognosis for stage I lung cancer patients, and the prognostic signature is independent of clinical variables. This signature was validated in several independent studies and was refined to a 59-gene lung cancer prognosis signature. CONCLUSIONS We conclude that genome-wide profiling of FFPE lung cancer samples can identify a set of genes whose expression level provides prognostic information across different platforms and studies, which will allow its application in clinical settings.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
14 |
128 |
20
|
Liu Y, Zhang J, Li L, Yin G, Zhang J, Zheng S, Cheung H, Wu N, Lu N, Mao X, Yang L, Zhang J, Zhang L, Seth S, Chen H, Song X, Liu K, Xie Y, Zhou L, Zhao C, Han N, Chen W, Zhang S, Chen L, Cai W, Li L, Shen M, Xu N, Cheng S, Yang H, Lee JJ, Correa A, Fujimoto J, Behrens C, Chow CW, William WN, Heymach JV, Hong WK, Swisher S, Wistuba II, Wang J, Lin D, Liu X, Futreal PA, Gao Y. Genomic heterogeneity of multiple synchronous lung cancer. Nat Commun 2016; 7:13200. [PMID: 27767028 PMCID: PMC5078731 DOI: 10.1038/ncomms13200] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/11/2016] [Indexed: 12/15/2022] Open
Abstract
Multiple synchronous lung cancers (MSLCs) present a clinical dilemma as to whether individual tumours represent intrapulmonary metastases or independent tumours. In this study we analyse genomic profiles of 15 lung adenocarcinomas and one regional lymph node metastasis from 6 patients with MSLC. All 15 lung tumours demonstrate distinct genomic profiles, suggesting all are independent primary tumours, which are consistent with comprehensive histopathological assessment in 5 of the 6 patients. Lung tumours of the same individuals are no more similar to each other than are lung adenocarcinomas of different patients from TCGA cohort matched for tumour size and smoking status. Several known cancer-associated genes have different mutations in different tumours from the same patients. These findings suggest that in the context of identical constitutional genetic background and environmental exposure, different lung cancers in the same individual may have distinct genomic profiles and can be driven by distinct molecular events. Some patients present with multiple lung tumours but it is unclear whether these are metastases or individual lesions. Here, the authors use genomics techniques to demonstrate in six patients that multiple tumours have individual genetic profiles and represent separate tumours.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
127 |
21
|
Saintigny P, Massarelli E, Lin S, Ahn YH, Chen Y, Goswami S, Erez B, O'Reilly MS, Liu D, Lee JJ, Zhang L, Ping Y, Behrens C, Solis Soto LM, Heymach JV, Kim ES, Herbst RS, Lippman SM, Wistuba II, Hong WK, Kurie JM, Koo JS. CXCR2 expression in tumor cells is a poor prognostic factor and promotes invasion and metastasis in lung adenocarcinoma. Cancer Res 2012. [PMID: 23204236 DOI: 10.1158/0008-5472.can-12-0263] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CXCR2 in non-small cell lung cancer (NSCLC) has been studied mainly in stromal cells and is known to increase tumor inflammation and angiogenesis. Here, we examined the prognostic importance of CXCR2 in NSCLC and the role of CXCR2 and its ligands in lung cancer cells. The effect of CXCR2 expression on tumor cells was studied using stable knockdown clones derived from a murine KRAS/p53-mutant lung adenocarcinoma cell line with high metastatic potential and an orthotopic syngeneic mouse model and in vitro using a CXCR2 small-molecule antagonist (SB225002). CXCR2 protein expression was analyzed in tumor cells from 262 NSCLC. Gene expression profiles for CXCR2 and its ligands (CXCR2 axis) were analyzed in 52 human NSCLC cell lines and 442 human lung adenocarcinomas. Methylation of CXCR2 axis promoters was determined in 70 human NSCLC cell lines. Invasion and metastasis were decreased in CXCR2 knockdown clones in vitro and in vivo. SB225002 decreased invasion in vitro. In lung adenocarcinomas, CXCR2 expression in tumor cells was associated with smoking and poor prognosis. CXCR2 axis gene expression profiles in human NSCLC cell lines and lung adenocarcinomas defined a cluster driven by CXCL5 and associated with smoking, poor prognosis, and RAS pathway activation. Expression of CXCL5 was regulated by promoter methylation. The CXCR2 axis may be an important target in smoking-related lung adenocarcinoma.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
13 |
125 |
22
|
Girard L, Rodriguez-Canales J, Behrens C, Thompson DM, Botros IW, Tang H, Xie Y, Rekhtman N, Travis WD, Wistuba II, Minna JD, Gazdar AF. An Expression Signature as an Aid to the Histologic Classification of Non-Small Cell Lung Cancer. Clin Cancer Res 2016; 22:4880-4889. [PMID: 27354471 PMCID: PMC5492382 DOI: 10.1158/1078-0432.ccr-15-2900] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/12/2016] [Indexed: 12/15/2022]
Abstract
PURPOSE Most non-small cell lung cancers (NSCLC) are now diagnosed from small specimens, and classification using standard pathology methods can be difficult. This is of clinical relevance as many therapy regimens and clinical trials are histology dependent. The purpose of this study was to develop an mRNA expression signature as an adjunct test for routine histopathologic classification of NSCLCs. EXPERIMENTAL DESIGN A microarray dataset of resected adenocarcinomas (ADC) and squamous cell carcinomas (SCC) was used as the learning set for an ADC-SCC signature. The Cancer Genome Atlas (TCGA) lung RNAseq dataset was used for validation. Another microarray dataset of ADCs and matched nonmalignant lung was used as the learning set for a tumor versus nonmalignant signature. The classifiers were selected as the most differentially expressed genes and sample classification was determined by a nearest distance approach. RESULTS We developed a 62-gene expression signature that contained many genes used in immunostains for NSCLC typing. It includes 42 genes that distinguish ADC from SCC and 20 genes differentiating nonmalignant lung from lung cancer. Testing of the TCGA and other public datasets resulted in high prediction accuracies (93%-95%). In addition, a prediction score was derived that correlates both with histologic grading and prognosis. We developed a practical version of the Classifier using the HTG EdgeSeq nuclease protection-based technology in combination with next-generation sequencing that can be applied to formalin-fixed paraffin-embedded (FFPE) tissues and small biopsies. CONCLUSIONS Our RNA classifier provides an objective, quantitative method to aid in the pathologic diagnosis of lung cancer. Clin Cancer Res; 22(19); 4880-9. ©2016 AACR.
Collapse
|
research-article |
9 |
122 |
23
|
Sun M, Behrens C, Feng L, Ozburn N, Tang X, Yin G, Komaki R, Varella-Garcia M, Hong WK, Aldape KD, Wistuba II. HER family receptor abnormalities in lung cancer brain metastases and corresponding primary tumors. Clin Cancer Res 2009; 15:4829-37. [PMID: 19622585 PMCID: PMC3372920 DOI: 10.1158/1078-0432.ccr-08-2921] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To compare the characteristics of deregulation of HER receptors and their ligands between primary tumor and corresponding brain metastases of non-small cell lung carcinoma (NSCLC). EXPERIMENTAL DESIGN Fifty-five NSCLC primary tumors and corresponding brain metastases specimens were examined for the immunohistochemical expression of epidermal growth factor receptor (EGFR), phosphorylated EGFR, Her2, Her3, and phosphorylated Her3, and their ligands EGF, transforming growth factor-alpha, amphiregulin, epiregulin, betacellulin, heparin-binding EGFR-like growth factor, neuregulin (NRG) 1, and NRG2. Analysis of EGFR copy number using fluorescence in situ hybridization and mutation by PCR-based sequencing was also done. RESULTS Metastases showed significantly higher immunohistochemical expression of EGF (membrane: brain metastases 66.0 versus primary tumors 48.5; P = 0.027; nucleus: brain metastases 92.2 versus 67.4; P = 0.008), amphiregulin (nucleus: brain metastases 53.7 versus primary tumors 33.7; P = 0.019), phosphorylated EGFR (membrane: brain metastases 161.5 versus primary tumors 76.0; P < 0.0001; cytoplasm: brain metastases 101.5 versus primary tumors 55.9; P = 0.014), and phosphorylated Her3 (membrane: brain metastases 25.0 versus primary tumors 3.7; P = 0.001) than primary tumors did. Primary tumors showed significantly higher expression of cytoplasmic transforming growth factor-alpha(primary tumors 149.8 versus brain metastases 111.3; P = 0.008) and NRG1 (primary tumors 158.5 versus brain metastases 122.8; P = 0.006). In adenocarcinomas, a similar high frequency of EGFR copy number gain (high polysomy and amplification) was detected in primary (65%) and brain metastasis (63%) sites. However, adenocarcinoma metastases (30%) showed higher frequency of EGFR amplification than corresponding primary tumors (10%). Patients whose primary tumors showed EGFR amplification tended to develop brain metastases at an earlier time point. CONCLUSIONS Our findings suggest that NSCLC brain metastases have some significant differences in HER family receptor-related abnormalities from primary lung tumors.
Collapse
|
research-article |
16 |
121 |
24
|
Parra ER, Villalobos P, Behrens C, Jiang M, Pataer A, Swisher SG, William WN, Zhang J, Lee J, Cascone T, Heymach JV, Forget MA, Haymaker C, Bernatchez C, Kalhor N, Weissferdt A, Moran C, Zhang J, Vaporciyan A, Gibbons DL, Sepesi B, Wistuba II. Effect of neoadjuvant chemotherapy on the immune microenvironment in non-small cell lung carcinomas as determined by multiplex immunofluorescence and image analysis approaches. J Immunother Cancer 2018; 6:48. [PMID: 29871672 PMCID: PMC5989476 DOI: 10.1186/s40425-018-0368-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/25/2018] [Indexed: 01/12/2023] Open
Abstract
Background The clinical efficacy observed with inhibitors of programed cell death 1/programed cell death ligand 1 (PD-L1/PD-1) in cancer therapy has prompted studies to characterize the immune response in several tumor types, including lung cancer. However, the immunological profile of non–small cell lung carcinoma (NSCLC) treated with neoadjuvant chemotherapy (NCT) is not yet fully characterized, and it may be therapeutically important. The aim of this retrospective study was to characterize and quantify PD-L1/PD-1 expression and tumor-associated immune cells (TAICs) in surgically resected NSCLCs from patients who received NCT or did not receive NCT (non-NCT). Methods We analyzed immune markers in formalin-fixed, paraffin-embedded tumor tissues resected from 112 patients with stage II/III NSCLC, including 61 non-NCT (adenocarcinoma [ADC] = 33; squamous cell carcinoma [SCC] = 28) and 51 NCT (ADC = 31; SCC = 20). We used multiplex immunofluorescence to identify and quantify immune markers grouped into two 6-antibody panels: panel 1 included AE1/AE3, PD-L1, CD3, CD4, CD8, and CD68; panel 2 included AE1/AE3, PD1, granzyme B, FOXP3, CD45RO, and CD57. Results PD-L1 expression was higher (> overall median) in NCT cases (median, 19.53%) than in non-NCT cases (median, 1.55%; P = 0.022). Overall, density of TAICs was higher in NCT-NSCLCs than in non-NCT-NSCLCs. Densities of CD3+ cells in the tumor epithelial compartment were higher in NCT-ADCs and NCT-SCCs than in non-NCT-ADCs and non-NCT-SCCs (P = 0.043). Compared with non-NCT-SCCs, NCT-SCCs showed significantly higher densities of CD3 + CD4+ (P = 0.019) and PD-1+ (P < 0.001) cells in the tumor epithelial compartment. Density of CD68+ tumor-associated macrophages (TAMs) was higher in NCT-NSCLCs than in non-NCT-NSCLCs and was significantly higher in NCT-SCCs than in non-NCT-SCCs. In NCT-NSCLCs, higher levels of epithelial T lymphocytes (CD3 + CD4+) and epithelial and stromal TAMs (CD68+) were associated with better outcome in univariate and multivariate analyses. Conclusions NCT-NSCLCs exhibited higher levels of PD-L1 expression and T-cell subset regulation than non-NCT-NSCLCs, suggesting that NCT activates specific immune response mechanisms in lung cancer. These results suggest the need for clinical trials and translational studies of combined chemotherapy and immunotherapy prior to surgical resection of locally advanced NSCLC. Electronic supplementary material The online version of this article (10.1186/s40425-018-0368-0) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
120 |
25
|
Shao C, Sullivan JP, Girard L, Augustyn A, Yenerall P, Rodriguez-Canales J, Liu H, Behrens C, Shay JW, Wistuba II, Minna JD. Essential role of aldehyde dehydrogenase 1A3 for the maintenance of non-small cell lung cancer stem cells is associated with the STAT3 pathway. Clin Cancer Res 2014; 20:4154-66. [PMID: 24907115 DOI: 10.1158/1078-0432.ccr-13-3292] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Lung cancer stem cells (CSC) with elevated aldehyde dehydrogenase (ALDH) activity are self-renewing, clonogenic, and tumorigenic. The purpose of our study is to elucidate the mechanisms by which lung CSCs are regulated. EXPERIMENTAL DESIGN A genome-wide gene expression analysis was performed to identify genes differentially expressed in the ALDH(+) versus ALDH -: cells. RT-PCR, Western blot analysis, and Aldefluor assay were used to validate identified genes. To explore the function in CSCs, we manipulated their expression followed by colony and tumor formation assays. RESULTS We identified a subset of genes that were differentially expressed in common in ALDH(+) cells, among which ALDH1A3 was the most upregulated gene in ALDH(+) versus ALDH -: cells. shRNA-mediated knockdown of ALDH1A3 in non-small cell lung cancer (NSCLC) resulted in a dramatic reduction in ALDH activity, clonogenicity, and tumorigenicity, indicating that ALDH1A3 is required for tumorigenic properties. In contrast, overexpression of ALDH1A3 by itself it was not sufficient to increase tumorigenicity. The ALDH(+) cells also expressed more activated STAT3 than ALDH -: cells. Inhibition of STAT3 or its activator EZH2 genetically or pharmacologically diminished the level of ALDH(+) cells and clonogenicity. Unexpectedly, ALDH1A3 was highly expressed in female, never smokers, well-differentiated tumors, or adenocarcinoma. ALDH1A3 low expression was associated with poor overall survival. CONCLUSIONS Our data show that ALDH1A3 is the predominant ALDH isozyme responsible for ALDH activity and tumorigenicity in most NSCLCs, and that inhibiting either ALDH1A3 or the STAT3 pathway are potential therapeutic strategies to eliminate the ALDH(+) subpopulation in NSCLCs.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
120 |