1
|
Dong J, Fernández‐Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Biocatalytic Oxidation Reactions: A Chemist's Perspective. Angew Chem Int Ed Engl 2018; 57:9238-9261. [PMID: 29573076 PMCID: PMC6099261 DOI: 10.1002/anie.201800343] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 01/25/2023]
Abstract
Oxidation chemistry using enzymes is approaching maturity and practical applicability in organic synthesis. Oxidoreductases (enzymes catalysing redox reactions) enable chemists to perform highly selective and efficient transformations ranging from simple alcohol oxidations to stereoselective halogenations of non-activated C-H bonds. For many of these reactions, no "classical" chemical counterpart is known. Hence oxidoreductases open up shorter synthesis routes based on a more direct access to the target products. The generally very mild reaction conditions may also reduce the environmental impact of biocatalytic reactions compared to classical counterparts. In this Review, we critically summarise the most important recent developments in the field of biocatalytic oxidation chemistry and identify the most pressing bottlenecks as well as promising solutions.
Collapse
|
Review |
7 |
288 |
2
|
Knaus T, Paul CE, Levy CW, de Vries S, Mutti FG, Hollmann F, Scrutton NS. Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes. J Am Chem Soc 2016; 138:1033-9. [PMID: 26727612 PMCID: PMC4731831 DOI: 10.1021/jacs.5b12252] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
![]()
The search for affordable, green
biocatalytic processes is a challenge
for chemicals manufacture. Redox biotransformations are potentially
attractive, but they rely on unstable and expensive nicotinamide coenzymes
that have prevented their widespread exploitation. Stoichiometric
use of natural coenzymes is not viable economically, and the instability
of these molecules hinders catalytic processes that employ coenzyme
recycling. Here, we investigate the efficiency of man-made synthetic
biomimetics of the natural coenzymes NAD(P)H in redox biocatalysis.
Extensive studies with a range of oxidoreductases belonging to the
“ene” reductase family show that these biomimetics are
excellent analogues of the natural coenzymes, revealed also in crystal
structures of the ene reductase XenA with selected biomimetics. In
selected cases, these biomimetics outperform the natural coenzymes.
“Better-than-Nature” biomimetics should find widespread
application in fine and specialty chemicals production by harnessing
the power of high stereo-, regio-, and chemoselective redox biocatalysts
and enabling reactions under mild conditions at low cost.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
139 |
3
|
Paul CE, Gargiulo S, Opperman DJ, Lavandera I, Gotor-Fernández V, Gotor V, Taglieber A, Arends IWCE, Hollmann F. Mimicking nature: synthetic nicotinamide cofactors for C═C bioreduction using enoate reductases. Org Lett 2012; 15:180-3. [PMID: 23256747 DOI: 10.1021/ol303240a] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of synthetic nicotinamide cofactors were synthesized to replace natural nicotinamide cofactors and promote enoate reductase (ER) catalyzed reactions without compromising the activity or stereoselectivity of the bioreduction process. Conversions and enantioselectivities of >99% were obtained for C═C bioreductions, and the process was successfully upscaled. Furthermore, high chemoselectivity was observed when employing these nicotinamide cofactor mimics (mNADs) with crude extracts in ER-catalyzed reactions.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
133 |
4
|
Paul CE, Arends IWCE, Hollmann F. Is Simpler Better? Synthetic Nicotinamide Cofactor Analogues for Redox Chemistry. ACS Catal 2014. [DOI: 10.1021/cs4011056] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
11 |
111 |
5
|
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021; 60:5644-5665. [PMID: 32330347 PMCID: PMC7983917 DOI: 10.1002/anie.202001876] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
|
Review |
4 |
99 |
6
|
Abstract
Biocatalysis has an enormous impact on chemical synthesis. The waves in which biocatalysis has developed, and in doing so changed our perception of what organic chemistry is, were reviewed 20 and 10 years ago. Here we review the consequences of these waves of development. Nowadays, hydrolases are widely used on an industrial scale for the benign synthesis of commodity and bulk chemicals and are fully developed. In addition, further enzyme classes are gaining ever increasing interest. Particularly, enzymes catalysing selective C-C-bond formation reactions and enzymes catalysing selective oxidation and reduction reactions are solving long-standing synthetic challenges in organic chemistry. Combined efforts from molecular biology, systems biology, organic chemistry and chemical engineering will establish a whole new toolbox for chemistry. Recent developments are critically reviewed.
Collapse
|
Review |
4 |
89 |
7
|
Paul CE, Eggerichs D, Westphal AH, Tischler D, van Berkel WJH. Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnol Adv 2021; 51:107712. [PMID: 33588053 DOI: 10.1016/j.biotechadv.2021.107712] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Flavoprotein monooxygenases (FPMOs) are single- or two-component enzymes that catalyze a diverse set of chemo-, regio- and enantioselective oxyfunctionalization reactions. In this review, we describe how FPMOs have evolved from model enzymes in mechanistic flavoprotein research to biotechnologically relevant catalysts that can be applied for the sustainable production of valuable chemicals. After a historical account of the development of the FPMO field, we explain the FPMO classification system, which is primarily based on protein structural properties and electron donor specificities. We then summarize the most appealing reactions catalyzed by each group with a focus on the different types of oxygenation chemistries. Wherever relevant, we report engineering strategies that have been used to improve the robustness and applicability of FPMOs.
Collapse
|
Review |
4 |
87 |
8
|
Dong J, Fernández-Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Biokatalytische Oxidationsreaktionen - aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800343] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
|
7 |
84 |
9
|
Okamoto Y, Köhler V, Paul CE, Hollmann F, Ward TR. Efficient In Situ Regeneration of NADH Mimics by an Artificial Metalloenzyme. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00258] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
9 |
81 |
10
|
Köninger K, Gómez Baraibar Á, Mügge C, Paul CE, Hollmann F, Nowaczyk MM, Kourist R. Recombinant Cyanobacteria for the Asymmetric Reduction of C=C Bonds Fueled by the Biocatalytic Oxidation of Water. Angew Chem Int Ed Engl 2016; 55:5582-5. [PMID: 27029020 DOI: 10.1002/anie.201601200] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 02/04/2023]
Abstract
A recombinant enoate reductase was expressed in cyanobacteria and used for the light-catalyzed, enantioselective reduction of C=C bonds. The coupling of oxidoreductases to natural photosynthesis allows asymmetric syntheses fueled by the oxidation of water. Bypassing the addition of sacrificial cosubstrates as electron donors significantly improves the atom efficiency and avoids the formation of undesired side products. Crucial factors for product formation are the availability of NADPH and the amount of active enzyme in the cells. The efficiency of the reaction is comparable to typical whole-cell biotransformations in E. coli. Under optimized conditions, a solution of 100 mg prochiral 2-methylmaleimide was reduced to optically pure 2-methylsuccinimide (99 % ee, 80 % yield of isolated product). High product yields and excellent optical purities demonstrate the synthetic usefulness of light-catalyzed whole-cell biotransformations using recombinant cyanobacteria.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
77 |
11
|
Paul CE, Rodríguez-Mata M, Busto E, Lavandera I, Gotor-Fernández V, Gotor V, García-Cerrada S, Mendiola J, de Frutos Ó, Collado I. Transaminases Applied to the Synthesis of High Added-Value Enantiopure Amines. Org Process Res Dev 2014. [DOI: 10.1021/op4003104] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
11 |
71 |
12
|
Kim J, Lee SH, Tieves F, Choi DS, Hollmann F, Paul CE, Park CB. Biocatalytic C=C Bond Reduction through Carbon Nanodot-Sensitized Regeneration of NADH Analogues. Angew Chem Int Ed Engl 2018; 57:13825-13828. [PMID: 30062834 DOI: 10.1002/anie.201804409] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/20/2018] [Indexed: 12/12/2022]
Abstract
Light-driven activation of redox enzymes is an emerging route for sustainable chemical synthesis. Among redox enzymes, the family of Old Yellow Enzyme (OYE) dependent on the nicotinamide adenine dinucleotide cofactor (NADH) catalyzes the stereoselective reduction of α,β-unsaturated hydrocarbons. Here, we report OYE-catalyzed asymmetric hydrogenation through light-driven regeneration of NADH and its analogues (mNADHs) by N-doped carbon nanodots (N-CDs), a zero-dimensional photocatalyst. Our spectroscopic and photoelectrochemical analyses verified the transfer of photo-induced electrons from N-CDs to an organometallic electron mediator (M) for highly regioselective regeneration of cofactors. Light triggered the reduction of NAD+ and mNAD+ s with the cooperation of N-CDs and M, and the reduction behaviors of cofactors were dependent on their own reduction peak potentials. The regenerated cofactors subsequently delivered hydrides to OYE for stereoselective conversions of a broad range of substrates with excellent biocatalytic efficiencies.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
65 |
13
|
Lee SH, Choi DS, Pesic M, Lee YW, Paul CE, Hollmann F, Park CB. Cofactor-Free, Direct Photoactivation of Enoate Reductases for the Asymmetric Reduction of C=C Bonds. Angew Chem Int Ed Engl 2017; 56:8681-8685. [PMID: 28544039 PMCID: PMC5519925 DOI: 10.1002/anie.201702461] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/08/2017] [Indexed: 11/10/2022]
Abstract
Enoate reductases from the family of old yellow enzymes (OYEs) can catalyze stereoselective trans-hydrogenation of activated C=C bonds. Their application is limited by the necessity for a continuous supply of redox equivalents such as nicotinamide cofactors [NAD(P)H]. Visible light-driven activation of OYEs through NAD(P)H-free, direct transfer of photoexcited electrons from xanthene dyes to the prosthetic flavin moiety is reported. Spectroscopic and electrochemical analyses verified spontaneous association of rose bengal and its derivatives with OYEs. Illumination of a white light-emitting-diode triggered photoreduction of OYEs by xanthene dyes, which facilitated the enantioselective reduction of C=C bonds in the absence of NADH. The photoenzymatic conversion of 2-methylcyclohexenone resulted in enantiopure (ee>99 %) (R)-2-methylcyclohexanone with conversion yields as high as 80-90 %. The turnover frequency was significantly affected by the substitution of halogen atoms in xanthene dyes.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
63 |
14
|
Paul CE, Tischler D, Riedel A, Heine T, Itoh N, Hollmann F. Nonenzymatic Regeneration of Styrene Monooxygenase for Catalysis. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00041] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
10 |
61 |
15
|
Paul CE, Hollmann F. A survey of synthetic nicotinamide cofactors in enzymatic processes. Appl Microbiol Biotechnol 2016; 100:4773-8. [PMID: 27094184 PMCID: PMC4866995 DOI: 10.1007/s00253-016-7500-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/10/2022]
Abstract
Synthetic nicotinamide cofactors are analogues of the natural cofactors used by oxidoreductases as redox intermediates. Their ability to be fine-tuned makes these biomimetics an attractive alternative to the natural cofactors in terms of stability, reactivity, and cost. The following mini-review focuses on the current state of the art of those biomimetics in enzymatic processes.
Collapse
|
Review |
9 |
58 |
16
|
Paul CE, Churakova E, Maurits E, Girhard M, Urlacher VB, Hollmann F. In situ formation of H2O2 for P450 peroxygenases. Bioorg Med Chem 2014; 22:5692-6. [DOI: 10.1016/j.bmc.2014.05.074] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 11/25/2022]
|
|
11 |
49 |
17
|
van Schie MMCH, Zhang W, Tieves F, Choi DS, Park CB, Burek BO, Bloh JZ, Arends IWCE, Paul CE, Alcalde M, Hollmann F. Cascading g-C3N4 and Peroxygenases for Selective Oxyfunctionalization Reactions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01341] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
|
6 |
45 |
18
|
Paul CE, Lavandera I, Gotor-Fernández V, Kroutil W, Gotor V. Escherichia coli/ADH-A: An All-Inclusive Catalyst for the Selective Biooxidation and Deracemisation of Secondary Alcohols. ChemCatChem 2013. [DOI: 10.1002/cctc.201300409] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
12 |
40 |
19
|
Ismail M, Schroeder L, Frese M, Kottke T, Hollmann F, Paul CE, Sewald N. Straightforward Regeneration of Reduced Flavin Adenine Dinucleotide Required for Enzymatic Tryptophan Halogenation. ACS Catal 2019; 9:1389-1395. [PMID: 30775067 PMCID: PMC6369659 DOI: 10.1021/acscatal.8b04500] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/21/2018] [Indexed: 11/29/2022]
Abstract
Flavin-dependent halogenases are known to regioselectively introduce halide substituents into aromatic moieties, for example, the indole ring of tryptophan. The process requires halide salts and oxygen instead of molecular halogen in the chemical halogenation. However, the reduced cofactor flavin adenine dinucleotide (FADH2) has to be regenerated using a flavin reductase. Consequently, coupled biocatalytic steps are usually applied for cofactor regeneration. Nicotinamide adenine dinucleotide (NADH) mimics can be employed stoichiometrically to replace enzymatic cofactor regeneration in biocatalytic halogenation. Chlorination of l-tryptophan is successfully performed using such NADH mimics. The efficiency of this approach has been compared to the previously established enzymatic regeneration system using the two auxiliary enzymes flavin reductase (PrnF) and alcohol dehydrogenase (ADH). The reaction rates of some of the tested mimics were found to exceed that of the enzymatic system. Continuous enzymatic halogenation reaction for reaction scale-up is also possible.
Collapse
|
Journal Article |
6 |
36 |
20
|
Geddes A, Paul CE, Hay S, Hollmann F, Scrutton NS. Donor–Acceptor Distance Sampling Enhances the Performance of “Better than Nature” Nicotinamide Coenzyme Biomimetics. J Am Chem Soc 2016; 138:11089-92. [DOI: 10.1021/jacs.6b05625] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
9 |
32 |
21
|
Mügge C, Heine T, Baraibar AG, van Berkel WJH, Paul CE, Tischler D. Flavin-dependent N-hydroxylating enzymes: distribution and application. Appl Microbiol Biotechnol 2020; 104:6481-6499. [PMID: 32504128 PMCID: PMC7347517 DOI: 10.1007/s00253-020-10705-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Amino groups derived from naturally abundant amino acids or (di)amines can be used as "shuttles" in nature for oxygen transfer to provide intermediates or products comprising N-O functional groups such as N-hydroxy, oxazine, isoxazolidine, nitro, nitrone, oxime, C-, S-, or N-nitroso, and azoxy units. To this end, molecular oxygen is activated by flavin, heme, or metal cofactor-containing enzymes and transferred to initially obtain N-hydroxy compounds, which can be further functionalized. In this review, we focus on flavin-dependent N-hydroxylating enzymes, which play a major role in the production of secondary metabolites, such as siderophores or antimicrobial agents. Flavoprotein monooxygenases of higher organisms (among others, in humans) can interact with nitrogen-bearing secondary metabolites or are relevant with respect to detoxification metabolism and are thus of importance to understand potential medical applications. Many enzymes that catalyze N-hydroxylation reactions have specific substrate scopes and others are rather relaxed. The subsequent conversion towards various N-O or N-N comprising molecules is also described. Overall, flavin-dependent N-hydroxylating enzymes can accept amines, diamines, amino acids, amino sugars, and amino aromatic compounds and thus provide access to versatile families of compounds containing the N-O motif. Natural roles as well as synthetic applications are highlighted. Key points • N-O and N-N comprising natural and (semi)synthetic products are highlighted. • Flavin-based NMOs with respect to mechanism, structure, and phylogeny are reviewed. • Applications in natural product formation and synthetic approaches are provided. Graphical abstract .
Collapse
|
Review |
5 |
30 |
22
|
Rauch MCR, Tieves F, Paul CE, Arends IWCE, Alcalde M, Hollmann F. Peroxygenase-Catalysed Epoxidation of Styrene Derivatives in Neat Reaction Media. ChemCatChem 2019; 11:4519-4523. [PMID: 31762830 PMCID: PMC6853256 DOI: 10.1002/cctc.201901142] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/18/2019] [Indexed: 11/14/2022]
Abstract
Biocatalytic oxyfunctionalisation reactions are traditionally conducted in aqueous media limiting their production yield. Here we report the application of a peroxygenase in neat reaction conditions reaching product concentrations of up to 360 mM.
Collapse
|
brief-report |
6 |
29 |
23
|
Guarneri A, van Berkel WJ, Paul CE. Alternative coenzymes for biocatalysis. Curr Opin Biotechnol 2019; 60:63-71. [PMID: 30711813 DOI: 10.1016/j.copbio.2019.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 10/27/2022]
|
Review |
6 |
29 |
24
|
Qi J, Paul CE, Hollmann F, Tischler D. Changing the electron donor improves azoreductase dye degrading activity at neutral pH. Enzyme Microb Technol 2017; 100:17-19. [PMID: 28284307 DOI: 10.1016/j.enzmictec.2017.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/17/2017] [Accepted: 02/07/2017] [Indexed: 11/25/2022]
Abstract
The oxygen-insensitive azoreductase AzoRo originating from Rhodococcus opacus 1CP was found to be most active at low pH (ca. 4) and high temperature (ca. 50°C). AzoRo is not an efficient biocatalyst when used at low pH due to stability problems. To overcome this issue, we discovered that AzoRo accepts an alternative electron donor, 1-benzyl-1,4-dihydronicotinamide (BNAH), which allows fast turnover at neutral pH. In order to screen this nicotinamide coenzyme mimic as a source of electrons, AzoRo-catalysed reactions were run under neutral conditions, under which typically slow rates are observed with NADH. For the reduction of 1 azo bond by azoreductases 2mol nicotinamide coenzyme are needed. AzoRo displayed Methyl Red (MR) reduction activities with NADH and NADPH of 5.49±0.14Umg-1 and 4.96±0.25Umg-1, respectively, whereas with BNAH it displayed 17.01±0.74Umg-1 (following BNAH oxidation) and 7.16±0.06Umg-1 (following MR reduction). Binding of BNAH to AzoRo was determined with a Km of 18.75±2.45μM (BNAH oxidation) and 12.45±0.47μM (MR reduction). In order to show applicability of this system an upscaled reaction was performed using 78.6μg of purified AzoRo to convert 2.96μmol of MR (total reaction volume: 40ml) within a 1h reaction.
Collapse
|
Journal Article |
8 |
27 |
25
|
Lee SH, Choi DS, Pesic M, Lee YW, Paul CE, Hollmann F, Park CB. Cofactor-Free, Direct Photoactivation of Enoate Reductases for the Asymmetric Reduction of C=C Bonds. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702461] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
8 |
26 |