1
|
Sampietro J, Dahlberg CL, Cho US, Hinds TR, Kimelman D, Xu W. Crystal structure of a beta-catenin/BCL9/Tcf4 complex. Mol Cell 2006; 24:293-300. [PMID: 17052462 DOI: 10.1016/j.molcel.2006.09.001] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 08/10/2006] [Accepted: 09/01/2006] [Indexed: 10/24/2022]
Abstract
The canonical Wnt pathway plays critical roles in embryonic development, stem cell growth, and tumorigenesis. Stimulation of the Wnt pathway leads to the association of beta-catenin with Tcf and BCL9 in the nucleus, resulting in the transactivation of Wnt target genes. We have determined the crystal structure of a beta-catenin/BCL9/Tcf-4 triple complex at 2.6 A resolution. Our studies reveal that the beta-catenin binding site of BCL9 is distinct from that of most other beta-catenin partners and forms a good target for developing drugs that block canonical Wnt/beta-catenin signaling. The BCL9 beta-catenin binding domain (CBD) forms an alpha helix that binds to the first armadillo repeat of beta-catenin, which can be mutated to prevent beta-catenin binding to BCL9 without affecting cadherin or alpha-catenin binding. We also demonstrate that beta-catenin Y142 phosphorylation, which has been proposed to regulate BCL9-2 binding, does not directly affect the interaction of beta-catenin with either BCL9 or BCL9-2.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
162 |
2
|
Dahlberg CL, Juo P. The WD40-repeat proteins WDR-20 and WDR-48 bind and activate the deubiquitinating enzyme USP-46 to promote the abundance of the glutamate receptor GLR-1 in the ventral nerve cord of Caenorhabditis elegans. J Biol Chem 2013; 289:3444-56. [PMID: 24356955 DOI: 10.1074/jbc.m113.507541] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin-mediated endocytosis and degradation of glutamate receptors controls their synaptic abundance and is implicated in modulating synaptic strength. The deubiquitinating enzymes (DUBs) that function in the nervous system are beginning to be defined, but the mechanisms that control DUB activity in vivo are understood poorly. We found previously that the DUB USP-46 deubiquitinates the Caenorhabditis elegans glutamate receptor GLR-1 and prevents its degradation in the lysosome. The WD40-repeat (WDR) proteins WDR20 and WDR48/UAF1 have been shown to bind to USP46 and stimulate its catalytic activity in other systems. Here we identify the C. elegans homologs of these WDR proteins and show that C. elegans WDR-20 and WDR-48 can bind and stimulate USP-46 catalytic activity in vitro. Overexpression of these activator proteins in vivo increases the abundance of GLR-1 in the ventral nerve cord, and this effect is further enhanced by coexpression of USP-46. Biochemical characterization indicates that this increase in GLR-1 abundance correlates with decreased levels of ubiquitin-GLR-1 conjugates, suggesting that WDR-20, WDR-48, and USP-46 function together to deubiquitinate and stabilize GLR-1 in neurons. Overexpression of WDR-20 and WDR-48 results in alterations in locomotion behavior consistent with increased glutamatergic signaling, and this effect is blocked in usp-46 loss-of-function mutants. Conversely, wdr-20 and wdr-48 loss-of-function mutants exhibit changes in locomotion behavior that are consistent with decreased glutamatergic signaling. We propose that WDR-20 and WDR-48 form a complex with USP-46 and stimulate the DUB to deubiquitinate and stabilize GLR-1 in vivo.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
34 |
3
|
Meneely PM, Dahlberg CL, Rose JK. Working with Worms:Caenorhabditis elegansas a Model Organism. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/cpet.35] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
|
6 |
22 |
4
|
Dickson KA, Dahlberg CL, Raines RT. Compensating effects on the cytotoxicity of ribonuclease A variants. Arch Biochem Biophys 2003; 415:172-7. [PMID: 12831839 DOI: 10.1016/s0003-9861(03)00214-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ribonuclease (RNase) A can be endowed with cytotoxic activity by enabling it to evade the cytosolic ribonuclease inhibitor protein (RI). Enhancing its conformational stability can increase further its cytotoxicity. Herein, the A4C/K41R/G88R/V118C variant of RNase A was created to integrate four individual changes that greatly decrease RI affinity (K41R/G88R) and increase conformational stability (A4C/V118C). Yet, the variant suffers a decrease in ribonucleolytic activity and is only as potent a cytotoxin as its precursors. Thus, individual changes that increase cytotoxicity can have offsetting consequences. Overall, cytotoxicity correlates well with the maintenance of ribonucleolytic activity in the presence of RI. The parameter (k(cat)/K(m))(cyto), which reports on the ability of a ribonuclease to manifest its ribonucleolytic activity in the cytosol, is especially useful in predicting the cytotoxicity of an RNase A variant.
Collapse
|
|
22 |
16 |
5
|
Hodul M, Dahlberg CL, Juo P. Function of the Deubiquitinating Enzyme USP46 in the Nervous System and Its Regulation by WD40-Repeat Proteins. Front Synaptic Neurosci 2017; 9:16. [PMID: 29302259 PMCID: PMC5735123 DOI: 10.3389/fnsyn.2017.00016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/29/2017] [Indexed: 11/13/2022] Open
Abstract
Posttranslational modification of proteins by ubiquitin regulates synapse development and synaptic transmission. Much progress has been made investigating the role of ubiquitin ligases at the synapse, however very little is known about the deubiquitinating enzymes (DUBs) which remove ubiquitin from target proteins. Although there are far fewer DUBs than ubiquitin ligases encoded by the human genome, it is becoming clear that DUBs have very specific physiological functions, suggesting that DUB activity is tightly regulated in vivo. Many DUBs function as part of larger protein complexes, and multiple regulatory mechanisms exist to control the expression, localization and catalytic activity of DUBs. In this review article, we focus on the role of the DUB USP46 in the nervous system, and illustrate potential mechanisms of regulating DUBs by describing how USP46 is regulated by two WD40-repeat (WDR) proteins, WDR48/UAF1 and WDR20, based on recent structural studies and genetic analyses in vivo.
Collapse
|
Journal Article |
8 |
13 |
6
|
Moss BJ, Park L, Dahlberg CL, Juo P. The CaM Kinase CMK-1 Mediates a Negative Feedback Mechanism Coupling the C. elegans Glutamate Receptor GLR-1 with Its Own Transcription. PLoS Genet 2016; 12:e1006180. [PMID: 27462879 PMCID: PMC4963118 DOI: 10.1371/journal.pgen.1006180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/15/2016] [Indexed: 12/26/2022] Open
Abstract
Regulation of synaptic AMPA receptor levels is a major mechanism underlying homeostatic synaptic scaling. While in vitro studies have implicated several molecules in synaptic scaling, the in vivo mechanisms linking chronic changes in synaptic activity to alterations in AMPA receptor expression are not well understood. Here we use a genetic approach in C. elegans to dissect a negative feedback pathway coupling levels of the AMPA receptor GLR-1 with its own transcription. GLR-1 trafficking mutants with decreased synaptic receptors in the ventral nerve cord (VNC) exhibit compensatory increases in glr-1 mRNA, which can be attributed to increased glr-1 transcription. Glutamatergic transmission mutants lacking presynaptic eat-4/VGLUT or postsynaptic glr-1, exhibit compensatory increases in glr-1 transcription, suggesting that loss of GLR-1 activity is sufficient to trigger the feedback pathway. Direct and specific inhibition of GLR-1-expressing neurons using a chemical genetic silencing approach also results in increased glr-1 transcription. Conversely, expression of a constitutively active version of GLR-1 results in decreased glr-1 transcription, suggesting that bidirectional changes in GLR-1 signaling results in reciprocal alterations in glr-1 transcription. We identify the CMK-1/CaMK signaling axis as a mediator of the glr-1 transcriptional feedback mechanism. Loss-of-function mutations in the upstream kinase ckk-1/CaMKK, the CaM kinase cmk-1/CaMK, or a downstream transcription factor crh-1/CREB, result in increased glr-1 transcription, suggesting that the CMK-1 signaling pathway functions to repress glr-1 transcription. Genetic double mutant analyses suggest that CMK-1 signaling is required for the glr-1 transcriptional feedback pathway. Furthermore, alterations in GLR-1 signaling that trigger the feedback mechanism also regulate the nucleocytoplasmic distribution of CMK-1, and activated, nuclear-localized CMK-1 blocks the feedback pathway. We propose a model in which synaptic activity regulates the nuclear localization of CMK-1 to mediate a negative feedback mechanism coupling GLR-1 activity with its own transcription.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
13 |
7
|
Hodul M, Ganji R, Dahlberg CL, Raman M, Juo P. The WD40-repeat protein WDR-48 promotes the stability of the deubiquitinating enzyme USP-46 by inhibiting its ubiquitination and degradation. J Biol Chem 2020; 295:11776-11788. [PMID: 32587090 DOI: 10.1074/jbc.ra120.014590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/22/2020] [Indexed: 01/11/2023] Open
Abstract
Ubiquitination is a reversible post-translational modification that has emerged as a critical regulator of synapse development and function. However, the mechanisms that regulate the deubiquitinating enzymes (DUBs) responsible for the removal of ubiquitin from target proteins are poorly understood. We have previously shown that the DUB ubiquitin-specific protease 46 (USP-46) removes ubiquitin from the glutamate receptor GLR-1 and regulates its trafficking and degradation in Caenorhabditis elegans We found that the WD40-repeat proteins WDR-20 and WDR-48 bind and stimulate the catalytic activity of USP-46. Here, we identified another mechanism by which WDR-48 regulates USP-46. We found that increased expression of WDR-48, but not WDR-20, promotes USP-46 abundance in mammalian cells in culture and in C. elegans neurons in vivo Inhibition of the proteasome increased USP-46 abundance, and this effect was nonadditive with increased WDR-48 expression. We found that USP-46 is ubiquitinated and that expression of WDR-48 reduces the levels of ubiquitin-USP-46 conjugates and increases the t 1/2 of USP-46. A point-mutated WDR-48 variant that disrupts binding to USP-46 was unable to promote USP-46 abundance in vivo Finally, siRNA-mediated knockdown of wdr48 destabilizes USP46 in mammalian cells. Together, these results support a model in which WDR-48 binds and stabilizes USP-46 protein levels by preventing the ubiquitination and degradation of USP-46 in the proteasome. Given that a large number of USPs interact with WDR proteins, we propose that stabilization of DUBs by their interacting WDR proteins may be a conserved and widely used mechanism that controls DUB availability and function.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
5 |
7 |
8
|
Dahlberg CL, Grove CA, Hulsey-Vincent H, Ismail S. Student Annotations of Published Data as a Collaboration between an Online Laboratory Course and the C. elegans Database, WormBase. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2021; 22:22.1.21. [PMID: 33884078 PMCID: PMC8012049 DOI: 10.1128/jmbe.v22i1.2331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Course-based undergraduate research experiences (CUREs) provide the same benefits as individual, mentored faculty research while expanding the availability of research opportunities. One important aspect of CUREs is students' engagement in collaboration. The shift to online learning during the COVID-19 pandemic created an immediate need for meaningful, collaborative experiences in CUREs. We developed a partnership with the Caenorhabditis elegans (C. elegans) database, WormBase, in which students submitted annotations of published manuscripts to the website. Due to the stress on students during this time of crisis, qualitative data were collected in lieu of quantitative pre- and postanalyses. Most students reported on cognitive processes that represent mid-level Bloom's categories. By partnering with WormBase, students gained insight into the scientific community and contributed as community members. We describe possible modifications for future courses, potential expansion of the WormBase collaboration, and future directions for quantitative analysis.
Collapse
|
research-article |
4 |
3 |
9
|
Hulsey-Vincent H, McClain M, Buckley M, Kowalski JR, Dahlberg CL. Comparison and agreement between two image analysis tools for quantifying GFP::SNB-1 puncta in fshr-1 mutants of C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.001005. [PMID: 38162412 PMCID: PMC10755584 DOI: 10.17912/micropub.biology.001005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Quantitative imaging of synaptic vesicle localization and abundance using fluorescently labeled synaptic vesicle associated proteins like GFP::SNB-1 is a well-established method for measuring changes in synapse structure at neuromuscular junctions (NMJ) in C. elegans . To date, however, the ability to easily and reproducibly measure key parameters at the NMJ - maximum intensity, size of GFP::SNB-1 puncta, density of puncta - has relied on the use of expensive, customizable software that requires coding skills to modify, precluding widespread access and thus preventing standardization within the field. We carried out a comparative evaluation of a new, open-source Fiji puncta plugin versus traditional Igor-based analysis of GFP::SNB-1 imaging data taken of cholinergic motor neurons in the dorsal nerve cord of loss of function mutants in fshr-1 , which encodes a G protein-coupled receptor known to impact GFP::SNB-1 accumulation. We analyzed images taken on a widefield fluorescence microscope, as well as on a spinning disk confocal microscope. Our data demonstrate strong concordance between the differences in GFP::SNB-1 localization in fshr-1 mutants compared to wild type worms across both analysis platforms (Fiji and Igor), as well as across microscope types (widefield and confocal). These data also agree with previously published observations related to synapse number and GFP::SNB-1 intensity in fshr-1 and wild type worms. Based on these findings, we conclude that the Fiji platform is viable as a method for analyzing synaptic vesicle localization and abundance at cholinergic dorsal nerve cord motor NMJs and expect the Fiji puncta plugin to be of broad utility in imaging across a variety of imaging platforms and synaptic markers.
Collapse
|
brief-report |
2 |
2 |
10
|
Little W, Robblee JP, Dahlberg CL, Kokona B, Fairman R. Effect of helix length on the stability of the Lac repressor antiparallel coiled coil. Biopolymers 2015; 104:395-404. [PMID: 25969365 DOI: 10.1002/bip.22676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 05/02/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
The helix length dependence of the stability of antiparallel four-chain coiled coils is investigated using eight synthetic peptides (Lac21-Lac28) whose sequences are derived from the tetramerization domain of the Lac repressor protein. Previous studies using analytical ultracentrifugation sedimentation equilibrium experiments to characterize Lac21 and Lac28 justifies the use of a two state model to describe the unfolding behavior of these two peptides. Using circular dichroism spectropolarimetry as a measure of tetramer assembly, both chemical and thermal denaturation experiments were carried out to determine thermodynamic parameters. We found that the hydrophobic core residues provide the greatest impact on stability and, as a consequence, must reorganize the register of the antiparallel helices to accommodate the burial of the nonpolar amino acids. Addition of noncore residues appears to have only a minor effect on stability, and in some cases, show a slight destabilization.
Collapse
|
|
10 |
1 |
11
|
Wiggins BL, Sefi-Cyr H, Lily LS, Dahlberg CL. Repetition Is Important to Students and Their Understanding during Laboratory Courses That Include Research. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2021; 22:e00158-21. [PMID: 34594448 PMCID: PMC8442015 DOI: 10.1128/jmbe.00158-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/29/2021] [Indexed: 06/13/2023]
Abstract
Course-based undergraduate research experiences (CUREs) provide students with opportunities for the same gains that apprenticed research with faculty members offers. As their popularity increases, it is important that critical elements of CUREs be supported by thoughtful design. Student experiences in CUREs can provide important insights into why CUREs are so effective. We present evidence from students who participated in CUREs at the introductory, intermediate, and advanced levels, as well as from graduate teaching assistants for an introductory lab course that included a CURE. Students and teaching assistants describe repetition as a valuable element in CUREs and other laboratory experiences. We used student work and open-ended interviews to identify which of five previously described elements of CUREs students found important. Because repetition was particularly salient, we characterized how students described repetition as they experienced it in courses that contained full-length CUREs or "micro-CUREs." In prompted interviews, students described how repetition in CUREs provided cognitive (learning concepts) and practical (learning technical skills) value. Recent graduates who had participated in CUREs at each level of their biology education were particularly aware that they placed value on repetition and acknowledged it as motivational in their own learning. Many students described repetition in metacognitive terms, which also suggests that as students advance through laboratory and CURE curricula, their understanding of how repetition supports their learning becomes more sophisticated. Finally, we integrated student descriptions to suggest ways in which repetition can be designed into CUREs or other laboratory courses to support scientific learning and enhance students' sense of scientific identity.
Collapse
|
research-article |
4 |
|
12
|
Hulsey-Vincent HJ, Cameron EA, Dahlberg CL, Galati DF. Spectral scanning and fluorescence lifetime imaging microscopy (FLIM) enable separation and characterization of C. elegans autofluorescence in the cuticle and gut. Biol Open 2024; 13:bio060613. [PMID: 39714513 PMCID: PMC11708769 DOI: 10.1242/bio.060613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Caenorhabditis elegans gut and cuticle produce a disruptive amount of autofluorescence during imaging. Although C. elegans autofluorescence has been characterized, it has not been characterized at high resolution using both spectral and fluorescence lifetime-based approaches. We performed high resolution spectral scans of whole, living animals to characterize autofluorescence of adult C. elegans. By scanning animals at 405 nm, 473 nm, 561 nm, and 647 nm excitations, we produced spectral profiles that confirm the brightest autofluorescence has a clear spectral overlap with the emission of green fluorescent protein (GFP). We then used fluorescence lifetime imaging microscopy (FLIM) to further characterize autofluorescence in the cuticle and the gut. Using FLIM, we were able to isolate and quantify dim GFP signal within the sensory cilia of a single pair of neurons that is often obscured by cuticle autofluorescence. In the gut, we found distinct spectral populations of autofluorescence that could be excited by 405 nm and 473 nm lasers. Further, we found lifetime differences between subregions of this autofluorescence when stimulated at 473 nm. Our results suggest that FLIM can be used to differentiate biochemically unique populations of gut autofluorescence without labeling. Further studies involving C. elegans may benefit from combining high resolution spectral and lifetime imaging to isolate fluorescent protein signal that is mixed with background autofluorescence and to perform useful characterization of subcellular structures in a label-free manner.
Collapse
|
research-article |
1 |
|