1
|
Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A, Montabana E, Lang UE, Fu Q, Fong L, Blelloch R. Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory. Cell 2019; 177:414-427.e13. [PMID: 30951669 PMCID: PMC6499401 DOI: 10.1016/j.cell.2019.02.016] [Citation(s) in RCA: 956] [Impact Index Per Article: 159.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/19/2018] [Accepted: 02/11/2019] [Indexed: 12/21/2022]
Abstract
PD-L1 on the surface of tumor cells binds its receptor PD-1 on effector T cells, thereby suppressing their activity. Antibody blockade of PD-L1 can activate an anti-tumor immune response leading to durable remissions in a subset of cancer patients. Here, we describe an alternative mechanism of PD-L1 activity involving its secretion in tumor-derived exosomes. Removal of exosomal PD-L1 inhibits tumor growth, even in models resistant to anti-PD-L1 antibodies. Exosomal PD-L1 from the tumor suppresses T cell activation in the draining lymph node. Systemically introduced exosomal PD-L1 rescues growth of tumors unable to secrete their own. Exposure to exosomal PD-L1-deficient tumor cells suppresses growth of wild-type tumor cells injected at a distant site, simultaneously or months later. Anti-PD-L1 antibodies work additively, not redundantly, with exosomal PD-L1 blockade to suppress tumor growth. Together, these findings show that exosomal PD-L1 represents an unexplored therapeutic target, which could overcome resistance to current antibody approaches.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
956 |
2
|
Han J, Pedersen JS, Kwon SC, Belair CD, Kim YK, Yeom KH, Yang WY, Haussler D, Blelloch R, Kim VN. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 2009; 136:75-84. [PMID: 19135890 DOI: 10.1016/j.cell.2008.10.053] [Citation(s) in RCA: 332] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 09/04/2008] [Accepted: 10/29/2008] [Indexed: 02/09/2023]
Abstract
The Drosha-DGCR8 complex, also known as Microprocessor, is essential for microRNA (miRNA) maturation. Drosha functions as the catalytic subunit, while DGCR8 (also known as Pasha) recognizes the RNA substrate. Although the action mechanism of this complex has been intensively studied, it remains unclear how Drosha and DGCR8 are regulated and if these proteins have any additional role(s) apart from miRNA processing. Here, we report that Drosha and DGCR8 regulate each other posttranscriptionally. The Drosha-DGCR8 complex cleaves the hairpin structures embedded in the DGCR8 mRNA and thereby destabilizes the mRNA. We further find that DGCR8 stabilizes the Drosha protein via protein-protein interaction. This crossregulation between Drosha and DGCR8 may contribute to the homeostatic control of miRNA biogenesis. Furthermore, microarray analyses suggest that a number of mRNAs may be downregulated in a Microprocessor-dependent, miRNA-independent manner. Our study reveals a previously unsuspected function of Microprocessor in mRNA stability control.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
332 |
3
|
Belair CD, Yeager TR, Lopez PM, Reznikoff CA. Telomerase activity: a biomarker of cell proliferation, not malignant transformation. Proc Natl Acad Sci U S A 1997; 94:13677-82. [PMID: 9391085 PMCID: PMC28365 DOI: 10.1073/pnas.94.25.13677] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/1997] [Indexed: 02/05/2023] Open
Abstract
Telomerase activity is readily detected in most cancer biopsies, but not in premalignant lesions or in normal tissue samples with a few exceptions that include germ cells and hemopoietic stem cells. Telomerase activity may, therefore, be a useful biomarker for diagnosis of malignancies and a target for inactivation in chemotherapy or gene therapy. These observations have led to the hypothesis that activation of telomerase may be an important step in tumorigenesis. To test this hypothesis, we studied telomerase activity in isogeneic samples of uncultured and cultured specimens of normal human uroepithelial cells (HUCs) and in uncultured and cultured biopsies of superficial and myoinvasive transitional cell carcinoma (TCC) of the bladder. Our results demonstrated that four of four TCC biopsies, representing both superficial and myoinvasive TCCs, were positive for telomerase activity, but all samples of uncultured HUC were telomerase negative. However, when the same normal HUC samples were established as proliferating cultures in vitro, telomerase activity was readily detected but usually at lower levels than in TCCs. Consistent with the above observation of the telomerase activity in HUCs, telomeres did not shorten during the HUC in vitro lifespan. Demonstration of telomerase in proliferating human epithelial cells in vitro was not restricted to HUCs, because it was also present in prostate and mammary cell cultures. Notably, telomerase activity was relatively low or undetectable in nonproliferating HUC cultures. These data do not support a model in which telomerase is inactive in normal cells and activated during tumorigenic transformation. Rather, these data support a model in which the detection of telomerase in TCC biopsies, but not uncultured HUC samples, reflects differences in proliferation between tumor and normal cells in vivo.
Collapse
|
research-article |
28 |
175 |
4
|
Savelieva E, Belair CD, Newton MA, DeVries S, Gray JW, Waldman F, Reznikoff CA. 20q gain associates with immortalization: 20q13.2 amplification correlates with genome instability in human papillomavirus 16 E7 transformed human uroepithelial cells. Oncogene 1997; 14:551-60. [PMID: 9053853 DOI: 10.1038/sj.onc.1200868] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Breast, bladder, colon, and ovarian carcinomas show frequent low level 20q gain and less frequently high level 20q13.2 amplification, but the significance of these 20q amplifications in transformation has not been defined. Using karyotypic and comparative genomic hybridization (CGH) analyses, chromosome losses and gains were analysed in six newly immortalized human uroepithelial cell (HUC) lines transformed by Human Papillomavirus 16 (HPV16) E7. Results showed clonal chromosomes with 20q11->qter gain in all six lines. CGH revealed a peak of 20q13.2 amplification in two cell lines. FISH with whole chromosome 20 paint showed expanded chromosome regions (ECRs) and double minute chromosomes (DMs) that contained chromosome 20 material in cell lines with 20q13.2 amplification. FISH with probes from the center of the 20q13.2 human breast cancer amplicon showed as many as 24 signals in cells with 20q13.2 amplification. The acquisition of genome instability in these E7-HUCs did not correlate with TP53 mutation, as all E7-HUCs contained only wildtype TP53. These results suggest that low level 20q gain is associated with overcoming cellular senescence in E7 transformed cells (P-value=2 x 10(-7)), but does not confer genome instability, while high level 20q13.2 amplification is associated with chromosome instability. Loss of 10p (P-value = 3 x 10(-5)) was also important in immortalization of E7-transformed HUCs. Thus, these results have profound implications for interpreting the significance of high versus low level 20q gains in human cancers.
Collapse
|
|
28 |
103 |
5
|
Reznikoff CA, Belair C, Savelieva E, Zhai Y, Pfeifer K, Yeager T, Thompson KJ, DeVries S, Bindley C, Newton MA. Long-term genome stability and minimal genotypic and phenotypic alterations in HPV16 E7-, but not E6-, immortalized human uroepithelial cells. Genes Dev 1994; 8:2227-40. [PMID: 7958891 DOI: 10.1101/gad.8.18.2227] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Parameters of genome instability and morphological alterations associated with cell transformation were studied in an isogeneic set of clonal human uroepithelial cell (HUC) lines immortalized by the human papilloma virus 16 (HPV16) E6 and/or E7 gene(s). HPV16 E6 binds p53, leading to rapid degradation of p53, whereas E7 binds and alters pRb and other proteins. We report that two independent E7-immortalized HUC lines showed minimal phenotypic or genotypic alterations, except that both lines contained amplification of 20q DNA sequences and a greater polyploidization at an early passage. The E7-immortalized HUC line resembled normal HUC lines, except that they failed to senesce. In contrast, the E6-immortalized HUC lines were morphologically altered, contained numerous random chromosome aberrations, and showed unstable evolving karyotypes with passage in culture. No amplified DNA sequences were detected in E6-immortalized HUC lines. Instead, clonal losses of chromosome regions (i.e., -3p, -6q, -9p), putatively containing tumor suppressor or senescence genes, accompanied the E6-HUC immortalization event. E6-immortalized HUC lines showed transformed phenotypes similar to E6/E7-HUC lines. The difference in genome stability between E6- and E7-immortalized HUC was highly significant statistically (p-value < 10(-6). Thus, the HPV16 E7 gene led to HUC immortalization by a pathway that blocked cellular senescence, but did not disrupt genome stability. These results implicate p53 loss, but not pRb alteration, in genome destabilization.
Collapse
|
|
31 |
101 |
6
|
Belair CD, Peterson RE, Heideman W. Disruption of erythropoiesis by dioxin in the zebrafish. Dev Dyn 2001; 222:581-94. [PMID: 11748828 DOI: 10.1002/dvdy.1213] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p- dioxin (TCDD, or dioxin) causes early life stage mortality in a variety of fish species. We have used the zebrafish (Danio rerio) to study the cardiovascular effects of TCDD treatment over the time course of zebrafish development. Early TCDD exposure (6 ng/ml) starting at 4 hr postfertilization (hpf) produced reductions in blood flow and in the number of circulating erythrocytes. These defects were consistently observable by 72 hpf. However, these responses were not observed when TCDD exposure was delayed until 96 hpf or later. These results suggest a model in which TCDD interferes with cardiovascular and erythropoietic developmental processes that are normally completed by 96 hpf. This model is strengthened by the finding that TCDD exposure blocks the step in hematopoiesis in which developing zebrafish switch from the primitive phase to the definitive phase of erythropoiesis. We observed no effect of TCDD on the levels of circulating primitive erythrocytes before 72 hpf and the expression of markers for early hematopoiesis, GATA-1 and GATA-2. However, early TCDD exposure prevented the appearance of definitive phase erythrocytes. TCDD produced a small delay in the migration of blood cells expressing SCL from the intermediate cell mass to the dorsal mesentery and dorsal aorta. Despite the decrease in blood flow produced by TCDD, confocal microscopy of the trunk vasculature by using a Tie2/green fluorescence protein endothelial marker at 48, 60, 72, and 96 hpf of TCDD-exposed (4 hpf) revealed no apparent defects in blood vessel structure.
Collapse
|
|
24 |
87 |
7
|
Belair C, Darfeuille F, Staedel C. Helicobacter pylori and gastric cancer: possible role of microRNAs in this intimate relationship. Clin Microbiol Infect 2009; 15:806-12. [PMID: 19702585 DOI: 10.1111/j.1469-0691.2009.02960.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic infection by Helicobacter pylori is a major risk factor for gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. H. pylori possesses a set of virulence factors, including the CagA effector, which interferes with intracellular signalling pathways and mediates phenotypic alterations, strongly evoking neoplasic transformation. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression involved in development, cell proliferation and immune responses. miRNAs are frequently altered in cancers, revealing their functions as oncogenes or tumour suppressors. However, the role, if any, that miRNAs play in the host cell responses to H. pylori remains unknown. This review considers the possible involvement of some miRNAs, including miR-146, miR-155, miR-21, miR-27a, miR-106-93-25 and miR-221-222 clusters and the miR-200 family in H. pylori-induced infection and gastric cancers. Further exploration of miRNA-mediated gene silencing, taking into account the relationship between host targets and bacterial effectors, will most certainly bring new insights into the control of gene expression in human gastric cells chronically infected by H. pylori.
Collapse
|
Review |
16 |
68 |
8
|
Wang SY, Shiboski S, Belair CD, Cooperberg MR, Simko JP, Stoppler H, Cowan J, Carroll PR, Blelloch R. miR-19, miR-345, miR-519c-5p serum levels predict adverse pathology in prostate cancer patients eligible for active surveillance. PLoS One 2014; 9:e98597. [PMID: 24893170 PMCID: PMC4043973 DOI: 10.1371/journal.pone.0098597] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 05/05/2014] [Indexed: 01/07/2023] Open
Abstract
Serum microRNAs hold great promise as easily accessible and measurable biomarkers of disease. In prostate cancer, serum miRNA signatures have been associated with the presence of disease as well as correlated with previously validated risk models. However, it is unclear whether miRNAs can provide independent prognostic information beyond current risk models. Here, we focus on a group of low-risk prostate cancer patients who were eligible for active surveillance, but chose surgery. A major criteria for the low risk category is a Gleason score of 6 or lower based on pre-surgical biopsy. However, a third of these patients are upgraded to Gleason 7 on post surgical pathological analysis. Both in a discovery and a validation cohort, we find that pre-surgical serum levels of miR-19, miR-345 and miR-519c-5p can help identify these patients independent of their pre-surgical age, PSA, stage, and percent biopsy involvement. A combination of the three miRNAs increased the area under a receiver operator characteristics curve from 0.77 to 0.94 (p<0.01). Also, when combined with the CAPRA risk model the miRNA signature significantly enhanced prediction of patients with Gleason 7 disease. In-situ hybridizations of matching tumors showed miR-19 upregulation in transformed versus normal-appearing tumor epithelial, but independent of tumor grade suggesting an alternative source for the increase in serum miR-19a/b levels or the release of pre-existing intracellular miR-19a/b upon progression. Together, these data show that serum miRNAs can predict relatively small steps in tumor progression improving the capacity to predict disease risk and, therefore, potentially drive clinical decisions in prostate cancer patients. It will be important to validate these findings in a larger multi-institutional study as well as with independent methodologies.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
40 |
9
|
Vieten L, Belair CD, Savelieva L, Jülicher K, Bröcker F, Bardenheuer W, Schütte J, Opalka B, Reznikoff CA. Minimal deletion of 3p13-->14.2 associated with immortalization of human uroepithelial cells. Genes Chromosomes Cancer 1998; 21:39-48. [PMID: 9443040 DOI: 10.1002/(sici)1098-2264(199801)21:1<39::aid-gcc6>3.0.co;2-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Immortalization and tumorigenic transformation of many human cell types, including human uroepithelial cells (HUCs), are frequently associated with loss of genetic material from the short arm of chromosome 3 (3p). In addition, losses of 3p have been observed in many human cancers including renal cell carcinoma, lung cancer, breast cancer, and bladder cancer. Genetic studies suggest that there are at least two regions on 3p in which tumor suppressor genes might be located, but the precise location of these genes is not known. We studied chromosome 3 losses that were specifically associated with immortalization of five independent human papilloma virus 16 (HPV16) E6- or E7-transformed HUCs. Cytogenetic analysis showed that the smallest common region of deletion was 3p14.1-->14.2. Fluorescence in situ hybridization using a 3p13-->14-specific yeast artificial chromosome (YAC) contig showed the precise localization of the breakpoints to be in 3p13 and 3p14.2, thus defining the smallest common overlap of 3p deletions in HPV16 E6- or E7-immortalized HUCs. These results suggest the presence in this region of genes involved in the control of senescence in vitro and possibly tumorigenesis in vivo.
Collapse
|
|
27 |
22 |
10
|
Subramanyam D, Belair CD, Barry-Holson KQ, Lin H, Kogan SC, Passegué E, Blelloch R. PML-RAR{alpha} and Dnmt3a1 cooperate in vivo to promote acute promyelocytic leukemia. Cancer Res 2010; 70:8792-801. [PMID: 20861188 DOI: 10.1158/0008-5472.can-08-4481] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The PML-RARα oncogene is the central effector of acute promyelocytic leukemia (APL). PML-RARα physically interacts with epigenetic-modifying enzymes including DNA methyltransferases (Dnmt) to suppress critical downstream targets. Here, we show that increased expression of Dnmt3a1 cooperates with PML-RARα in vivo to promote early lethality secondary to myeloid expansion and dysfunction in primary mice. Bone marrow cells from these mice cause leukemogenesis with a shortened latency and a higher penetrance on transplantation into irradiated recipients. Furthermore, leukemic cells overexpressing PML-RARα and Dnmt3a1 display increased methylation at a target promoter compared with PML-RARα or Dnmt3a1 controls. Our findings show a cooperation between the PML-RARα oncogene and the Dnmt3a1 enzyme in vivo and that Dnmt levels can be rate limiting in APL progression.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
21 |
11
|
Freeman JL, Ceol C, Feng H, Langenau DM, Belair C, Stern HM, Song A, Paw BH, Look AT, Zhou Y, Zon LI, Lee C. Construction and application of a zebrafish array comparative genomic hybridization platform. Genes Chromosomes Cancer 2009; 48:155-70. [PMID: 18973135 DOI: 10.1002/gcc.20623] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The zebrafish is emerging as a prominent model system for studying the genetics of human development and disease. Genetic alterations that underlie each mutant model can exist in the form of single base changes, balanced chromosomal rearrangements, or genetic imbalances. To detect genetic imbalances in an unbiased genome-wide fashion, array comparative genomic hybridization (CGH) can be used. We have developed a 5-Mb resolution array CGH platform specifically for the zebrafish. This platform contains 286 bacterial artificial chromosome (BAC) clones, enriched for orthologous sequences of human oncogenes and tumor suppressor genes. Each BAC clone has been end-sequenced and cytogenetically assigned to a specific location within the zebrafish genome, allowing for ease of integration of array CGH data with the current version of the genome assembly. This platform has been applied to three zebrafish cancer models. Significant genomic imbalances were detected in each model, identifying different regions that may potentially play a role in tumorigenesis. Hence, this platform should be a useful resource for genetic dissection of additional zebrafish developmental and disease models as well as a benchmark for future array CGH platform development.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
20 |
12
|
Paikari A, D Belair C, Saw D, Blelloch R. The eutheria-specific miR-290 cluster modulates placental growth and maternal-fetal transport. Development 2017; 144:3731-3743. [PMID: 28935707 DOI: 10.1242/dev.151654] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Abstract
The vertebrate-specific ESCC microRNA family arises from two genetic loci in mammals: miR-290/miR-371 and miR-302. The miR-302 locus is found broadly among vertebrates, whereas the miR-290/miR-371 locus is unique to eutheria, suggesting a role in placental development. Here, we evaluate that role. A knock-in reporter for the mouse miR-290 cluster is expressed throughout the embryo until gastrulation, when it becomes specifically expressed in extraembryonic tissues and the germline. In the placenta, expression is limited to the trophoblast lineage, where it remains highly expressed until birth. Deletion of the miR-290 cluster gene (Mirc5) results in reduced trophoblast progenitor cell proliferation and a reduced DNA content in endoreduplicating trophoblast giant cells. The resulting placenta is reduced in size. In addition, the vascular labyrinth is disorganized, with thickening of the maternal-fetal blood barrier and an associated reduction in diffusion. Multiple mRNA targets of the miR-290 cluster microRNAs are upregulated. These data uncover a crucial function for the miR-290 cluster in the regulation of a network of genes required for placental development, suggesting a central role for these microRNAs in the evolution of placental mammals.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
20 |
13
|
Monteiro DA, Dole NS, Campos JL, Kaya S, Schurman CA, Belair CD, Alliston T. Fluid shear stress generates a unique signaling response by activating multiple TGFβ family type I receptors in osteocytes. FASEB J 2021; 35:e21263. [PMID: 33570811 PMCID: PMC7888383 DOI: 10.1096/fj.202001998r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022]
Abstract
Bone is a dynamic tissue that constantly adapts to changing mechanical demands. The transforming growth factor beta (TGFβ) signaling pathway plays several important roles in maintaining skeletal homeostasis by both coupling the bone‐forming and bone‐resorbing activities of osteoblasts and osteoclasts and by playing a causal role in the anabolic response of bone to applied loads. However, the extent to which the TGFβ signaling pathway in osteocytes is directly regulated by fluid shear stress (FSS) is unknown, despite work suggesting that fluid flow along canaliculi is a dominant physical cue sensed by osteocytes following bone compression. To investigate the effects of FSS on TGFβ signaling in osteocytes, we stimulated osteocytic OCY454 cells cultured within a microfluidic platform with FSS. We find that FSS rapidly upregulates Smad2/3 phosphorylation and TGFβ target gene expression, even in the absence of added TGFβ. Indeed, relative to treatment with TGFβ, FSS induced a larger increase in levels of pSmad2/3 and Serpine1 that persisted even in the presence of a TGFβ receptor type I inhibitor. Our results show that FSS stimulation rapidly induces phosphorylation of multiple TGFβ family R‐Smads by stimulating multimerization and concurrently activating several TGFβ and BMP type I receptors, in a manner that requires the activity of the corresponding ligand. While the individual roles of the TGFβ and BMP signaling pathways in bone mechanotransduction remain unclear, these results implicate that FSS activates both pathways to generate a downstream response that differs from that achieved by either ligand alone.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
4 |
16 |
14
|
Belair CD, Hu T, Chu B, Freimer JW, Cooperberg MR, Blelloch RH. High-throughput, Efficient, and Unbiased Capture of Small RNAs from Low-input Samples for Sequencing. Sci Rep 2019; 9:2262. [PMID: 30783180 PMCID: PMC6381177 DOI: 10.1038/s41598-018-38458-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs hold great promise as biomarkers of disease. However, there are few efficient and robust methods for measuring microRNAs from low input samples. Here, we develop a high-throughput sequencing protocol that efficiently captures small RNAs while minimizing inherent biases associated with library production. The protocol is based on early barcoding such that all downstream manipulations can be performed on a pool of many samples thereby reducing reagent usage and workload. We show that the optimization of adapter concentrations along with the addition of nucleotide modifications and random nucleotides increases the efficiency of small RNA capture. We further show, using unique molecular identifiers, that stochastic capture of low input RNA rather than PCR amplification influences the biased quantitation of intermediately and lowly expressed microRNAs. Our improved method allows the processing of tens to hundreds of samples simultaneously while retaining high efficiency quantitation of microRNAs in low input samples from tissues or bodily fluids.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
14 |
15
|
Belair CD, Paikari A, Moltzahn F, Shenoy A, Yau C, Dall'Era M, Simko J, Benz C, Blelloch R. DGCR8 is essential for tumor progression following PTEN loss in the prostate. EMBO Rep 2015. [PMID: 26206718 DOI: 10.15252/embr.201439925] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In human prostate cancer, the microRNA biogenesis machinery increases with prostate cancer progression. Here, we show that deletion of the Dgcr8 gene, a critical component of this complex, inhibits tumor progression in a Pten-knockout mouse model of prostate cancer. Early stages of tumor development were unaffected, but progression to advanced prostatic intraepithelial neoplasia was severely inhibited. Dgcr8 loss blocked Pten null-induced expansion of the basal-like, but not luminal, cellular compartment. Furthermore, while late-stage Pten knockout tumors exhibit decreased senescence-associated beta-galactosidase activity and increased proliferation, the simultaneous deletion of Dgcr8 blocked these changes resulting in levels similar to wild type. Sequencing of small RNAs in isolated epithelial cells uncovered numerous miRNA changes associated with PTEN loss. Consistent with a Pten-Dgcr8 association, analysis of a large cohort of human prostate tumors shows a strong correlation between Akt activation and increased Dgcr8 mRNA levels. Together, these findings uncover a critical role for microRNAs in enhancing proliferation and enabling the expansion of the basal cell compartment associated with tumor progression following Pten loss.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
8 |
16
|
Zhou X, Nair GG, Russ HA, Belair CD, Li ML, Shveygert M, Hebrok M, Blelloch R. LIN28B Impairs the Transition of hESC-Derived β Cells from the Juvenile to Adult State. Stem Cell Reports 2019; 14:9-20. [PMID: 31883920 PMCID: PMC6962644 DOI: 10.1016/j.stemcr.2019.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022] Open
Abstract
Differentiation of human embryonic stem cells into pancreatic β cells holds great promise for the treatment of diabetes. Recent advances have led to the production of glucose-responsive insulin-secreting cells in vitro, but resulting cells remain less mature than their adult primary β cell counterparts. The barrier(s) to in vitro β cell maturation are unclear. Here, we evaluated a potential role for microRNAs. MicroRNA profiling showed high expression of let-7 family microRNAs in vivo, but not in in vitro differentiated β cells. Reduced levels of let-7 in vitro were associated with increased levels of the RNA binding protein LIN28B, a negative regulator of let-7 biogenesis. Ablation of LIN28B during human embryonic stem cell (hESC) differentiation toward β cells led to a more mature glucose-stimulated insulin secretion profile and the suppression of juvenile-specific genes. However, let-7 overexpression had little effect. These results uncover LIN28B as a modulator of β cell maturation in vitro.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
6 |
17
|
Belair CD, Blelloch RH, Reznikoff CA. Immortalization of human uroepithelial cells by human papillomavirus 16 E6 or E7. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/roi.2970030623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
|
30 |
5 |
18
|
Dole NS, Yoon J, Monteiro DA, Yang J, Mazur CM, Kaya S, Belair CD, Alliston T. Mechanosensitive miR-100 coordinates TGFβ and Wnt signaling in osteocytes during fluid shear stress. FASEB J 2021; 35:e21883. [PMID: 34569659 PMCID: PMC9153140 DOI: 10.1096/fj.202100930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/12/2021] [Indexed: 11/12/2022]
Abstract
Organism scale mechanical forces elicit cellular scale changes through coordinated regulation of multiple signaling pathways. The mechanisms by which cells integrate signaling to generate a unified biological response remains a major question in mechanobiology. For example, the mechanosensitive response of bone and other tissues requires coordinated signaling by the transforming growth factor beta (TGFβ) and Wnt pathways through mechanisms that are not well‐defined. Here we report a new microRNA‐dependent mechanism that mediates mechanosensitive crosstalk between TGFβ and Wnt signaling in osteocytes exposed to fluid shear stress (FSS). From 60 mechanosensitive microRNA (miRs) identified by small‐RNAseq, miR100 expression is suppressed by in vivo hindlimb loading in the murine tibia and by cellular scale FSS in OCY454 cells. Though FSS activates both TGFβ and Wnt signaling in osteocytes, only TGFβ represses miR‐100 expression. miR‐100, in turn, antagonizes Wnt signaling by targeting and inhibiting expression of Frizzled receptors (FZD5/FZD8). Accordingly, miR‐100 inhibition blunts FSS‐ and TGFβ‐inducible Wnt signaling. Therefore, our results identify FSS‐responsive miRNAs in osteocytes, including one that integrates the mechanosensitive function of two essential signaling pathways in the osteoanabolic response of bone to mechanical load.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
3 |
19
|
Reznikoff CA, Belair CD, Yeager TR, Savelieva E, Blelloch RH, Puthenveettil JA, Cuthill S. A molecular genetic model of human bladder cancer pathogenesis. Semin Oncol 1996; 23:571-84. [PMID: 8893868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An understanding of the biological significance of the multiple genetic alterations identified in clinical bladder cancers to the stepwise pathogenesis of the disease is evolving. Alterations in p53 and pRb, products of the chromosomes 17p13 TP53 and 13q14 RB tumor suppressor genes, occur in approximately 50% and approximately 33% of bladder cancers respectively, and are associated with later stage, higher grade disease. p53 and pRb alterations are also known to occur in early stage bladder carcinoma in situ where they are thought to represent a poor prognosis for tumor progression. Allelic loss of genes on 9p21 occurs in approximately 50% of bladder cancers, but whether the only critical gene in this region is the CDKN2/p16 cyclin/CDK inhibitor is at present uncertain. Amplification and/or overexpression of the oncogenes epidermal growth factor receptor and erbB2 are associated with later stage disease. Finally, recent findings generated using in vitro transformation systems with human uroepithelial cells provide strong evidence that loss of genes on 3p, which occurs in approximately 20% of bladder cancers, and/or gain of genes on 20q play an important role in blocking HUC cellular senescence. This latter phenotype should represent a critical step in oncogenesis, as cells that do not senesce can survive to accumulate the multiple genetic alterations associated with invasive and metastatic bladder cancers. Further understanding of the biochemical mechanisms underlying these genetic changes will provide the additional information needed to design better strategies for bladder cancer intervention and treatment.
Collapse
|
Review |
29 |
|
20
|
Reznikoff CA, Yeager TR, Belair CD, Savelieva E, Puthenveettil JA, Stadler WM. Elevated p16 at senescence and loss of p16 at immortalization in human papillomavirus 16 E6, but not E7, transformed human uroepithelial cells. Cancer Res 1996; 56:2886-90. [PMID: 8674033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
CDKN2/p16 inhibits the cyclin D/cyclin-dependent kinase complexes that phosphorylate pRb, thus blocking cell cycle progression. We previously reported that p16 levels are low to undetectable in normal human uroepithelial cells (HUCs) and in immortalized uroepithelial cells with functional pRb, whereas p16 levels are markedly elevated in immortal HUCs with altered pRb (T. Yeager et al., Cancer Res., 55: 493-497, 1995). We now report that elevation of p16 levels occurs at senescence in HUCs, including HUCs transformed by human papillomavirus 16 E7 or E6, whose oncoprotein products lead to functional loss of pRb and p53, respectively. We also report that six of six independently immortalized E7 HUCs show high levels of p16 similar to those observed at HUC senescence, whereas p16 is undetectable in five of five immortal E6 HUCs. Four of the five independent E6 HUCs that lost p16 at immortalization showed hemizygous deletion of the 9p21 region. However, no homozygous CDKN2 deletions were detected, and only one CDKN2 mutation was identified. For the first time, these data associate elevated p16 with senescence in human epithelial cells. These data also suggest that a component of immortalization may be abrogation, either by pRb inactivation (as in the E7-transformed HUCs) or by p16 inactivation (as in the E6-transformed HUCs), of a p16-mediated senescence cell cycle block.
Collapse
|
|
29 |
|
21
|
Yang J, Wang L, Byrnes JR, Kirkemo LL, Driks H, Belair CD, Aguilar OA, Lanier LL, Wells JA, Fong L, Blelloch R. PVRL2 Suppresses Antitumor Immunity through PVRIG- and TIGIT-independent Pathways. Cancer Immunol Res 2024; 12:575-591. [PMID: 38588410 PMCID: PMC11063765 DOI: 10.1158/2326-6066.cir-23-0722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/04/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
Poliovirus receptor-related 2 (PVRL2, also known as nectin-2 or CD112) is believed to act as an immune checkpoint protein in cancer; however, most insight into its role is inferred from studies on its known receptor, poliovirus receptor (PVR)-related immunoglobulin domain protein (PVRIG, also known as CD112R). Here, we study PVRL2 itself. PVRL2 levels were found to be high in tumor cells and tumor-derived exosomes. Deletion of PVRL2 in multiple syngeneic mouse models of cancer showed a dramatic reduction in tumor growth that was immune dependent. This effect was even greater than that seen with deletion of PD-L1. PVRL2 was shown to function by suppressing CD8+ T and natural killer cells in the tumor microenvironment. The loss of PVRL2 suppressed tumor growth even in the absence of PVRIG. In contrast, PVRIG loss showed no additive effect in the absence of PVRL2. T-cell immunoreceptor with Ig and ITIM domains (TIGIT) blockade combined with PVRL2 deletion resulted in a near complete block in tumor growth. This effect was not recapitulated by the combined deletion of PVRL2 with its paralog, PVR, which is the ligand for TIGIT. These data uncover PVRL2 as a distinct inhibitor of the antitumor immune response with functions beyond that of its known receptor PVRIG. Moreover, the data provide a strong rationale for combinatorial targeting of PVRL2 and TIGIT for cancer immunotherapy.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
|
22
|
Yeager T, Stadler W, Belair C, Puthenveettil J, Olopade O, Reznikoff C. Increased p16 levels correlate with pRb alterations in human urothelial cells. Cancer Res 1995; 55:493-7. [PMID: 7834615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The CDKN2 (MTS1) gene is located at 9p21; its product, p16, inhibits the cyclin D/CDK4 complex that phosphorylates pRb, thus negatively regulating cell cycle progression [M. Serrano et al., Nature (Lond.), 366: 704, 1994; A. Kamb et al., Science (Washington DC), 264: 436, 1994; T. Nobori et al., Nature (Lond.), 368: 753, 1994]. CDKN2 mutations are more common in cultured human uroepithelial cells (HUC) than in uncultured bladder cancers. We examined the status of CDKN2/p16 in early and late passage (P) cultures of HUC. HUC immortalization was not accompanied by p16 loss, even in cells with a hemizygous 9p21-pter deletion, but late passage cultures with a p16 loss showed decreased generation time. Thus, the data do not indicate that CDKN2 is a candidate for a chromosome 9 senescence gene but suggest that p16 loss may confer a growth advantage in vitro. Significant differences in p16 levels were observed among HUC cell lines, but no CDKN2 mutations were detected. However, an inverse correlation between elevated p16 and loss of pRb function was observed (P < 10(-4)). Ten samples with normal pRb showed low or undetectable p16 levels, while seven samples with known pRb alterations showed abundant p16 but nevertheless grew vigorously in culture. These results support the hypothesis that p16 mediated cell cycle inhibition, as well as p16 regulation, occurs via pRb dependent pathway(s).
Collapse
MESH Headings
- Base Sequence
- Carcinoma, Transitional Cell/genetics
- Carrier Proteins/genetics
- Cells, Cultured
- Cellular Senescence
- Chromosome Deletion
- Chromosome Mapping
- Chromosomes, Human, Pair 9
- Cyclin-Dependent Kinase Inhibitor p16
- DNA Primers
- Epithelial Cells
- Epithelium/metabolism
- Gene Expression
- Genes, Retinoblastoma
- Genes, Tumor Suppressor
- Humans
- Molecular Sequence Data
- Polymerase Chain Reaction
- Polymorphism, Genetic
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Repetitive Sequences, Nucleic Acid
- Tumor Cells, Cultured
- Urinary Bladder/cytology
- Urinary Bladder/metabolism
- Urinary Bladder Neoplasms/genetics
Collapse
|
|
30 |
|
23
|
Blelloch R, Subramanyam D, Melton C, Judson R, Belair C. MicroRNAs to Pathways in Stem Cells and Cancer. FASEB J 2012. [DOI: 10.1096/fasebj.26.1_supplement.199.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
13 |
|
24
|
Shee K, Belair C, Neuhaus J, Cowen J, Blelloch R, Cooperberg M. MP45-05 MICRORNA 185-5P IS A NOVEL BIOMARKER ASSOCIATED WITH HIGH-RISK PATHOLOGY AT RADICAL PROSTATECTOMY IN PATIENTS WITH LOW-RISK DISEASE AT DIAGNOSIS. J Urol 2022. [DOI: 10.1097/ju.0000000000002611.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
|
3 |
|