1
|
Holbert CE, Cullen MT, Casero RA, Stewart TM. Polyamines in cancer: integrating organismal metabolism and antitumour immunity. Nat Rev Cancer 2022; 22:467-480. [PMID: 35477776 PMCID: PMC9339478 DOI: 10.1038/s41568-022-00473-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/20/2022]
Abstract
The natural mammalian polyamines putrescine, spermidine and spermine are essential for both normal and neoplastic cell function and replication. Dysregulation of metabolism of polyamines and their requirements is common in many cancers. Both clinical and experimental depletion of polyamines have demonstrated their metabolism to be a rational target for therapy; however, the mechanisms through which polyamines can establish a tumour-permissive microenvironment are only now emerging. Recent data indicate that polyamines can play a major role in regulating the antitumour immune response, thus likely contributing to the existence of immunologically 'cold' tumours that do not respond to immune checkpoint blockade. Additionally, the interplay between the microbiota and associated tissues creates a tumour microenvironment in which polyamine metabolism, content and function can all be dramatically altered on the basis of microbiota composition, dietary polyamine availability and tissue response to its surrounding microenvironment. The goal of this Perspective is to introduce the reader to the many ways in which polyamines, polyamine metabolism, the microbiota and the diet interconnect to establish a tumour microenvironment that facilitates the initiation and progression of cancer. It also details ways in which polyamine metabolism and function can be successfully targeted for therapeutic benefit, including specifically enhancing the antitumour immune response.
Collapse
|
Review |
3 |
162 |
2
|
Travers M, Brown SM, Dunworth M, Holbert CE, Wiehagen KR, Bachman KE, Foley JR, Stone ML, Baylin SB, Casero RA, Zahnow CA. DFMO and 5-Azacytidine Increase M1 Macrophages in the Tumor Microenvironment of Murine Ovarian Cancer. Cancer Res 2019; 79:3445-3454. [PMID: 31088836 DOI: 10.1158/0008-5472.can-18-4018] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/25/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022]
Abstract
Although ovarian cancer has a low incidence rate, it remains the most deadly gynecologic malignancy. Previous work has demonstrated that the DNMTi 5-Azacytidine (5AZA-C) activates type I interferon signaling to increase IFNγ+ T cells and natural killer (NK) cells and reduce the percentage of macrophages in the tumor microenvironment. To improve the efficacy of epigenetic therapy, we hypothesized that the addition of α-difluoromethylornithine (DFMO), an ornithine decarboxylase inhibitor, may further decrease immunosuppressive cell populations improving outcome. We tested this hypothesis in an immunocompetent mouse model for ovarian cancer and found that in vivo, 5AZA-C and DFMO, either alone or in combination, significantly increased survival, decreased tumor burden, and caused recruitment of activated (IFNγ+) CD4+ T cells, CD8+ T cells, and NK cells. The combination therapy had a striking increase in survival when compared with single-agent treatment, despite a smaller difference in recruited lymphocytes. Instead, combination therapy led to a significant decrease in immunosuppressive cells such as M2 polarized macrophages and an increase in tumor-killing M1 macrophages. In this model, depletion of macrophages with a CSF1R-blocking antibody reduced the efficacy of 5AZA-C + DFMO treatment and resulted in fewer M1 macrophages in the tumor microenvironment. These observations suggest our novel combination therapy modifies macrophage polarization in the tumor microenvironment, recruiting M1 macrophages and prolonging survival. SIGNIFICANCE: Combined epigenetic and polyamine-reducing therapy stimulates M1 macrophage polarization in the tumor microenvironment of an ovarian cancer mouse model, resulting in decreased tumor burden and prolonged survival.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
70 |
3
|
Holbert CE, Dunworth M, Foley JR, Dunston TT, Stewart TM, Casero RA. Autophagy induction by exogenous polyamines is an artifact of bovine serum amine oxidase activity in culture serum. J Biol Chem 2020; 295:9061-9068. [PMID: 32430398 PMCID: PMC7335804 DOI: 10.1074/jbc.ra120.013867] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/18/2020] [Indexed: 11/06/2022] Open
Abstract
Polyamines are small polycationic alkylamines involved in many fundamental cellular processes, including proliferation, nucleic acid synthesis, apoptosis, and protection from oxidative damage. It has been proposed that in addition to these functions, elevated levels of polyamines promote longevity in various biological systems, including yeast, Drosophila, and murine models. A series of in vitro mechanistic studies by multiple investigators has led to the conclusion that addition of exogenous spermidine promotes longevity through autophagy induction; however, these experiments were confounded by the use of mammalian cell culture systems supplemented with fetal bovine serum. Using cell viability assays, LC3B immunoblots, and live-cell fluorescence microscopy, we report here that in the presence of ruminant serum, exogenously added polyamines are quickly oxidized by the copper-containing bovine serum amine oxidase. This polyamine oxidation resulted in the production of harmful byproducts including hydrogen peroxide, ammonia, and reactive aldehydes. Our data demonstrate that it is critically important to prevent confounding bovine serum amine oxidase-induced cytotoxicity in mechanistic studies of the roles of polyamines in autophagy.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
31 |
4
|
Stewart TM, Foley JR, Holbert CE, Klinke G, Poschet G, Steimbach RR, Miller AK, Casero RA. Histone deacetylase-10 liberates spermidine to support polyamine homeostasis and tumor cell growth. J Biol Chem 2022; 298:102407. [PMID: 35988653 PMCID: PMC9486564 DOI: 10.1016/j.jbc.2022.102407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Cytosolic histone deacetylase-10 (HDAC10) specifically deacetylates the modified polyamine N8-acetylspermidine (N8-AcSpd). Although intracellular concentrations of N8-AcSpd are low, extracellular sources can be abundant, particularly in the colonic lumen. Extracellular polyamines, including those from the diet and microbiota, can support tumor growth both locally and at distant sites. However, the contribution of N8-AcSpd in this context is unknown. We hypothesized that HDAC10, by converting N8- AcSpd to spermidine, may provide a source of this growth-supporting polyamine in circumstances of reduced polyamine biosynthesis, such as in polyamine-targeting anticancer therapies. Inhibitors of polyamine biosynthesis, including α-difluoromethylornithine (DFMO), inhibit tumor growth, but compensatory uptake of extracellular polyamines has limited their clinical success. Combining DFMO with inhibitors of polyamine uptake have improved the antitumor response. However, acetylated polyamines may use different transport machinery than the parent molecules. Here, we use CRISPR/Cas9-mediated HDAC10-knockout cell lines and HDAC10-specific inhibitors to investigate the contribution of HDAC10 in maintaining tumor cell proliferation. We demonstrate inhibition of cell growth by DFMO-associated polyamine depletion is successfully rescued by exogenous N8-AcSpd (at physiological concentrations), which is converted to spermidine and spermine, only in cell lines with HDAC10 activity. Furthermore, we show loss of HDAC10 prevents both restoration of polyamine levels and growth rescue, implicating HDAC10 in supporting polyamine-associated tumor growth. These data suggest the utility of HDAC10-specific inhibitors as an antitumor strategy that may have value in improving the response to polyamine-blocking therapies. Additionally, the cell-based assay developed in this study provides an inexpensive, high-throughput method of screening potentially selective HDAC10 inhibitors.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
9 |
5
|
Stewart TM, Foley JR, Holbert CE, Khomutov M, Rastkari N, Tao X, Khomutov AR, Zhai RG, Casero RA. Difluoromethylornithine rebalances aberrant polyamine ratios in Snyder-Robinson syndrome. EMBO Mol Med 2023; 15:e17833. [PMID: 37702369 PMCID: PMC10630878 DOI: 10.15252/emmm.202317833] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Snyder-Robinson syndrome (SRS) results from mutations in spermine synthase (SMS), which converts the polyamine spermidine into spermine. Affecting primarily males, common manifestations of SRS include intellectual disability, osteoporosis, hypotonia, and seizures. Symptom management is the only treatment. Reduced SMS activity causes spermidine accumulation while spermine levels are reduced. The resulting exaggerated spermidine:spermine ratio is a biochemical hallmark of SRS that tends to correlate with symptom severity. Our studies aim to pharmacologically manipulate polyamine metabolism to correct this imbalance as a therapeutic strategy for SRS. Here we report the repurposing of 2-difluoromethylornithine (DFMO), an FDA-approved inhibitor of polyamine biosynthesis, in rebalancing spermidine:spermine ratios in SRS patient cells. Mechanistic in vitro studies demonstrate that, while reducing spermidine biosynthesis, DFMO also stimulates the conversion of spermidine into spermine in hypomorphic SMS cells and induces uptake of exogenous spermine, altogether reducing the aberrant ratios. In a Drosophila SRS model characterized by reduced lifespan, DFMO improves longevity. As nearly all SRS patient mutations are hypomorphic, these studies form a strong foundation for translational studies with significant therapeutic potential.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
9 |
6
|
Holbert CE, Foley JR, Murray Stewart T, Casero RA. Expanded Potential of the Polyamine Analogue SBP-101 (Diethyl Dihydroxyhomospermine) as a Modulator of Polyamine Metabolism and Cancer Therapeutic. Int J Mol Sci 2022; 23:ijms23126798. [PMID: 35743239 PMCID: PMC9224330 DOI: 10.3390/ijms23126798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/07/2023] Open
Abstract
Naturally occurring polyamines are absolutely required for cellular growth and proliferation. Many neoplastic cells are reliant on elevated polyamine levels and maintain these levels through dysregulated polyamine metabolism. The modulation of polyamine metabolism is thus a promising avenue for cancer therapeutics and has been attempted with numerous molecules, including enzyme inhibitors and polyamine analogues. SBP-101 (diethyl dihydroxyhomospermine) is a spermine analogue that has shown efficacy in slowing pancreatic tumor progression both in vitro and in vivo; however, the mechanisms underlying these effects remain unclear. We determined the effects of the SBP-101 treatment on a variety of cancer cell types in vitro, including lung, pancreatic, and ovarian. We evaluated the activity of enzymes involved in polyamine metabolism and the effect on intracellular polyamine pools following the SBP-101 treatment. The SBP-101 treatment produced a modest but variable increase in polyamine catabolism; however, a robust downregulation of the activity of the biosynthetic enzyme, ornithine decarboxylase (ODC), was seen across all of the cell types studied and indicates that SBP-101 likely exerts its effect predominately through the downregulation of ODC, with a minor upregulation of catabolism. Our in vitro work indicated that SBP-101 was most toxic in the tested ovarian cell lines. Therefore, we evaluated the efficacy of SBP-101 as a monotherapy in the immunosuppressive VDID8+ murine ovarian model. Mice treated with SBP-101 demonstrated a delay in tumor progression, a decrease in the overall tumor burden, and a marked increase in median survival.
Collapse
|
|
3 |
8 |
7
|
Murray Stewart T, Khomutov M, Foley JR, Guo X, Holbert CE, Dunston TT, Schwartz CE, Gabrielson K, Khomutov A, Casero RA. ( R, R)-1,12-Dimethylspermine can mitigate abnormal spermidine accumulation in Snyder-Robinson syndrome. J Biol Chem 2020; 295:3247-3256. [PMID: 31996374 DOI: 10.1074/jbc.ra119.011572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/21/2020] [Indexed: 11/06/2022] Open
Abstract
Snyder-Robinson syndrome (SRS) is an X-linked intellectual disability syndrome caused by a loss-of-function mutation in the spermine synthase (SMS) gene. Primarily affecting males, the main manifestations of SRS include osteoporosis, hypotonic stature, seizures, cognitive impairment, and developmental delay. Because there is no cure for SRS, treatment plans focus on alleviating symptoms rather than targeting the underlying causes. Biochemically, the cells of individuals with SRS accumulate excess spermidine, whereas spermine levels are reduced. We recently demonstrated that SRS patient-derived lymphoblastoid cells are capable of transporting exogenous spermine and its analogs into the cell and, in response, decreasing excess spermidine pools to normal levels. However, dietary supplementation of spermine does not appear to benefit SRS patients or mouse models. Here, we investigated the potential use of a metabolically stable spermine mimetic, (R,R)-1,12-dimethylspermine (Me2SPM), to reduce the intracellular spermidine pools of SRS patient-derived cells. Me2SPM can functionally substitute for the native polyamines in supporting cell growth while stimulating polyamine homeostatic control mechanisms. We found that both lymphoblasts and fibroblasts from SRS patients can accumulate Me2SPM, resulting in significantly decreased spermidine levels with no adverse effects on growth. Me2SPM administration to mice revealed that Me2SPM significantly decreases spermidine levels in multiple tissues. Importantly, Me2SPM was detectable in brain tissue, the organ most affected in SRS, and was associated with changes in polyamine metabolic enzymes. These findings indicate that the (R,R)-diastereomer of 1,12-Me2SPM represents a promising lead compound in developing a treatment aimed at targeting the molecular mechanisms underlying SRS pathology.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
3 |
8
|
Holbert CE, Foley JR, Stewart TM, Walker MJ, Bruckheimer E, Simpson JK, Casero RA. Abstract 4944: Evaluating the efficacy of spermine analogue ivospemin (SBP-101) in combination with chemotherapy in ovarian cancer. Cancer Res 2023. [DOI: 10.1158/1538-7445.am2023-4944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Abstract
Polyamines are small cationic alkylamines that play critical roles in essential cellular processes governing growth and proliferation. As such, cancers are fully reliant on increased polyamine pools maintained through dysregulation of polyamine metabolism. Pharmaceutical modulation of polyamine metabolism is a promising avenue in cancer therapeutics and has been attempted with enzyme inhibitors, including DFMO (difluoromethylornithine), and polyamine analogues. Ivospemin is a spermine analogue that has shown efficacy in slowing pancreatic and ovarian tumor progression both in vitro and in vivo and demonstrated encouraging results in pancreatic cancer clinical trials. We have shown that ivospemin decreases polyamine content through depression of the activity of the polyamine biosynthetic enzyme ornithine decarboxylase (ODC) in a variety of cancer cell lines. Treatment of the VDID8+ murine ovarian cancer model with ivospemin resulted in a marked increase in survival. Here we examine the potential of combining ivospemin and chemotherapeutic agents that are used to treat cisplatin-resistant ovarian cancer. Treatment with gemcitabine, topotecan, and doxorubicin increased the in vitro toxicity of ivospemin, while paclitaxel and docetaxel did not have any added benefit over ivospemin alone. Using the VDID8+ model, we further evaluated the efficacy of ivospemin in combination with gemcitabine, topotecan, and doxorubicin in vivo. Ascites fluid was used as a marker of tumor burden and evaluated for polyamine content. Addition of ivospemin improved the survival of mice treated with any of the three chemotherapeutics. The ivospemin and doxorubicin combination mice had the greatest median survival time; this combination is being further evaluated in mechanistic studies and additional murine studies. Ovarian cancers have extremely immunosuppressive tumor microenvironments (TME) and metabolic reprogramming of the TME to reduce immunosuppressive phenotypes is a promising approach for treatment. Sustained elevation of polyamine levels supports an immunosuppressive TME, and evidence suggests that pharmacologic depletion of polyamines may reduce immunosuppressive phenotypes. DFMO treatment in the immunosuppressive VDID8+ model influences the immune cells of the TME, and we therefore are investigating the combination of ivospemin and DFMO in ovarian cancer. In addition to the cooperativity of ivospemin and chemotherapeutic agents, we have observed a cooperative antiproliferative response in ovarian cancer cells following DFMO and ivospemin cotreatment. Together, these studies suggest the potential of polyamine modulation by ivospemin and DFMO in combination with standard of care chemotherapy. Future studies will determine influences on the immune microenvironment and will evaluate cooperativity between ivospemin, DFMO, and chemotherapy.
Citation Format: Cassandra E. Holbert, Jackson R. Foley, Tracy Murray Stewart, Michael J. Walker, Elizabeth Bruckheimer, Jennifer K. Simpson, Robert A. Casero. Evaluating the efficacy of spermine analogue ivospemin (SBP-101) in combination with chemotherapy in ovarian cancer. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 4944.
Collapse
|
|
2 |
|
9
|
Yu A, Tang S, Ding L, Foley J, Tang W, Jia H, Panja S, Holbert CE, Hang Y, Stewart TM, Smith LM, Sil D, Casero RA, Oupický D. Hyaluronate-coated perfluoroalkyl polyamine prodrugs as bioactive siRNA delivery systems for the treatment of peritoneal cancers. BIOMATERIALS ADVANCES 2022; 136:212755. [PMID: 35813988 PMCID: PMC9268001 DOI: 10.1016/j.bioadv.2022.212755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
RNA interference (RNAi) is an emerging therapeutic modality for cancer, which remains in critical need of effective delivery vectors due to the unfavorable biopharmaceutical properties of small RNAs. Polyamines are essential for functioning of mammalian cells. Dysregulated polyamine metabolism is found in many cancers and has been an attractive therapeutic target in combination therapies. Combination therapies based on drugs that affect polyamine metabolism and nucleic acids promise to enhance anticancer activity due to a cooperative effect on multiple oncogenic pathways. Here, we report bioactive polycationic prodrug (F-PaP) based on an anticancer polyamine analog bisethylnorspermine (BENSpm) modified with perfluoroalkyl moieties. Following encapsulation of siRNA, F-PaP/siRNA nanoparticles were coated with hyaluronic acid (HA) to form ternary nanoparticles HA@F-PaP/siRNA. The presence of perfluoroalkyl moieties and HA reduced cell membrane toxicity and improved stability of the particles with cooperatively enhanced siRNA delivery in pancreatic and colon cancer cell lines. We then tested a therapeutic hypothesis that combining BENSpm with siRNA silencing of polo-like kinase 1 (PLK1) would result in cooperative cancer cell killing. HA@F-PaP/siPLK1 induced polyamine catabolism and cell cycle arrest, leading to enhanced apoptosis in the tested cell lines. The HA-coated nanoparticles facilitated tumor accumulation and contributed to strong tumor inhibition and favorable modulation of the immune tumor microenvironment in orthotopic pancreatic cancer model. Combination anticancer therapy with polyamine prodrug-mediated delivery of siRNA. Hyaluronate coating of the siRNA nanoparticles facilitates selective accumulation in orthotopic pancreatic tumors. Perfluoroalkyl conjugation reduces toxicity and improves gene silencing effect. Nanoparticle treatment induces polyamine catabolism and cell cycle arrest leading to strong tumor inhibition and favorable modulation of immune tumor microenvironment.
Collapse
|
research-article |
3 |
|
10
|
Holbert CE, Foley JR, Casero RA, Stewart TM. The Polyamine Analogue Ivospemin Increases Chemotherapeutic Efficacy in Murine Ovarian Cancer. Biomedicines 2024; 12:1157. [PMID: 38927364 PMCID: PMC11200633 DOI: 10.3390/biomedicines12061157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Polyamines are small polycationic alkylamines that are absolutely required for the continual growth and proliferation of cancer cells. The polyamine analogue ivospemin, also known as SBP-101, has shown efficacy in slowing pancreatic and ovarian tumor progression in vitro and in vivo and has demonstrated encouraging results in early pancreatic cancer clinical trials. We sought to determine if ivospemin was a viable treatment option for the under-served platinum-resistant ovarian cancer patient population by testing its efficacy in combination with commonly used chemotherapeutics. We treated four ovarian adenocarcinoma cell lines in vitro and found that each was sensitive to ivospemin regardless of cisplatin sensitivity. Next, we treated patients with ivospemin in combination with four commonly used chemotherapeutics and found that ivospemin increased the toxicity of each; however, only gemcitabine and topotecan combination treatments were more effective than ivospemin alone. Using the VDID8+ murine ovarian cancer model, we found that the addition of ivospemin to either topotecan or gemcitabine increased median survival over untreated animals alone, delayed tumor progression, and decreased the overall tumor burden. Our results indicate that the combination of ivospemin and chemotherapy is a worthwhile treatment option to further explore clinically in ovarian cancer.
Collapse
|
research-article |
1 |
|
11
|
Kumar R, Jonnatan S, Sanin DE, Vakkala V, Kadam A, Kumar S, Dalrymple SL, Zhao L, Foley J, Holbert CE, Nwafor A, Kittane S, Penner E, Apostolova P, Warner S, Dang CV, Toska E, Thompson EA, Isaacs JT, De Marzo AM, Pearce EL, Stewart TM, Casero RA, Denmeade SR, Sena LA. Androgen receptor drives polyamine synthesis creating a vulnerability for prostate cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.12.24318845. [PMID: 39711733 PMCID: PMC11661327 DOI: 10.1101/2024.12.12.24318845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Supraphysiological androgen (SPA) treatment can paradoxically restrict growth of castration-resistant prostate cancer with high androgen receptor (AR) activity, which is the basis for use of Bipolar Androgen Therapy (BAT) for patients with this disease. While androgens are widely appreciated to enhance anabolic metabolism, how SPA-mediated metabolic changes alter prostate cancer progression and therapy response is unknown. Here, we report that SPA markedly increased intracellular and secreted polyamines in prostate cancer models. This occurred through AR binding at enhancer sites upstream of the ODC1 promoter to increase abundance of ornithine decarboxylase (ODC), a rate-limiting enzyme of polyamine synthesis, and de novo synthesis of polyamines from arginine. SPA-stimulated polyamines enhance prostate cancer fitness, as dCas9-KRAB-mediated inhibition of AR regulation of ODC1 or direct ODC inhibition by difluoromethylornithine (DFMO) increased efficacy of SPA. Mechanistically, this occurred in part due to increased activity of S-adenosylmethionine decarboxylase 1 (AMD1), which was stimulated both by AR and by loss of negative feedback by polyamines, leading to depletion of its substrate S-adenosylmethionine and global protein methylation. These data provided the rationale for a clinical trial testing the safety and efficacy of BAT in combination with DFMO for patients with metastatic castration-resistant prostate cancer. Pharmacodynamic studies of this drug combination in the first five patients on trial indicated that the drug combination resulted in effective polyamine depletion in plasma. Thus, the AR potently stimulates polyamine synthesis, which constitutes a vulnerability in prostate cancer treated with SPA that can be targeted therapeutically.
Collapse
|
Preprint |
1 |
|
12
|
Holbert CE, Casero RA, Stewart TM. Polyamines: the pivotal amines in influencing the tumor microenvironment. Discov Oncol 2024; 15:173. [PMID: 38761252 PMCID: PMC11102423 DOI: 10.1007/s12672-024-01034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/11/2024] [Indexed: 05/20/2024] Open
Abstract
Cellular proliferation, function and survival is reliant upon maintaining appropriate intracellular polyamine levels. Due to increased metabolic needs, cancer cells elevate their polyamine pools through coordinated metabolism and uptake. High levels of polyamines have been linked to more immunosuppressive tumor microenvironments (TME) as polyamines support the growth and function of many immunosuppressive cell types such as MDSCs, macrophages and regulatory T-cells. As cancer cells and other pro-tumorigenic cell types are highly dependent on polyamines for survival, pharmacological modulation of polyamine metabolism is a promising cancer therapeutic strategy. This review covers the roles of polyamines in various cell types of the TME including both immune and stromal cells, as well as how competition for nutrients, namely polyamine precursors, influences the cellular landscape of the TME. It also details the use of polyamines as biomarkers and the ways in which polyamine depletion can increase the immunogenicity of the TME and reprogram tumors to become more responsive to immunotherapy.
Collapse
|
Review |
1 |
|
13
|
Stewart TRM, Foley JR, Holbert CE, Khomutov MA, Rastkari N, Tao X, Khomutov AR, Zhai RG, Casero RA. Difluoromethylornithine rebalances aberrant polyamine ratios in Snyder-Robinson syndrome: mechanism of action and therapeutic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534977. [PMID: 37034775 PMCID: PMC10081208 DOI: 10.1101/2023.03.30.534977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Snyder-Robinson Syndrome (SRS) is caused by mutations in the spermine synthase (SMS) gene, the enzyme product of which converts the polyamine spermidine into spermine. Affecting primarily males, common manifestations of SRS include intellectual disability, osteoporosis, hypotonic musculature, and seizures, along with other more variable symptoms. Currently, medical management focuses on treating these symptoms without addressing the underlying molecular cause of the disease. Reduced SMS catalytic activity in cells of SRS patients causes the accumulation of spermidine, while spermine levels are reduced. The resulting exaggeration in spermidine-to-spermine ratio is a biochemical hallmark of SRS that tends to correlate with symptom severity in the patient. Our studies aim to pharmacologically manipulate polyamine metabolism to correct this polyamine imbalance and investigate the potential of this approach as a therapeutic strategy for affected individuals. Here we report the use of difluoromethylornithine (DFMO; eflornithine), an FDA-approved inhibitor of polyamine biosynthesis, in re-establishing normal spermidine-to-spermine ratios in SRS patient cells. Through mechanistic studies, we demonstrate that, while reducing spermidine biosynthesis, DFMO also stimulates the conversion of existing spermidine into spermine in cell lines with hypomorphic variants of SMS. Further, DFMO treatment induces a compensatory uptake of exogenous polyamines, including spermine and spermine mimetics, cooperatively reducing spermidine and increasing spermine levels. In a Drosophila SRS model characterized by reduced lifespan, adding DFMO to the feed extended lifespan. As nearly all known SRS patient mutations are hypomorphic, these studies form a foundation for future translational studies with significant therapeutic potential.
Collapse
|
Preprint |
2 |
|