1
|
Journé V, Bogdziewicz M, Courbaud B, Kunstler G, Qiu T, Acuña MCA, Ascoli D, Bergeron Y, Berveiller D, Boivin T, Bonal R, Caignard T, Cailleret M, Calama R, Camarero JJ, Chang-Yang CH, Chave J, Chianucci F, Curt T, Cutini A, Das A, Daskalakou E, Davi H, Delpierre N, Delzon S, Dietze M, Calderon SD, Dormont L, Espelta JM, Farfan-Rios W, Fenner M, Franklin J, Gehring C, Gilbert G, Gratzer G, Greenberg CH, Guignabert A, Guo Q, Hacket-Pain A, Hampe A, Han Q, Hanley ME, Lambers JHR, Holík J, Hoshizaki K, Ibanez I, Johnstone JF, Knops JMH, Kobe RK, Kurokawa H, Lageard J, LaMontagne J, Ledwon M, Lefèvre F, Leininger T, Limousin JM, Lutz J, Macias D, Mårell A, McIntire E, Moran EV, Motta R, Myers J, Nagel TA, Naoe S, Noguchi M, Norghauer J, Oguro M, Ourcival JM, Parmenter R, Pearse I, Pérez-Ramos IM, Piechnik Ł, Podgórski T, Poulsen J, Redmond MD, Reid CD, Samonil P, Scher CL, Schlesinger WH, Seget B, Sharma S, Shibata M, Silman M, Steele M, Stephenson N, Straub J, Sutton S, Swenson JJ, Swift M, Thomas PA, Uriarte M, Vacchiano G, Whipple A, Whitham T, Wright SJ, Zhu K, Zimmerman J, Żywiec M, Clark JS. The Relationship Between Maturation Size and Maximum Tree Size From Tropical to Boreal Climates. Ecol Lett 2024; 27:e14500. [PMID: 39354911 DOI: 10.1111/ele.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/03/2024]
Abstract
The fundamental trade-off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape of this trade-off. Using seed production from five continents, we estimate tree maturation sizes for 486 tree species spanning tropical to boreal climates. Results show that a species' maturation size increases with maximum size, but in a non-proportional way: the largest species begin reproduction at smaller sizes than would be expected if maturation were simply proportional to maximum size. Furthermore, the decrease in relative maturation size is steepest in cold climates. These findings on maturation size drivers are key to accurately represent forests' responses to disturbance and climate change.
Collapse
|
2
|
Qiu T, Aravena MC, Ascoli D, Bergeron Y, Bogdziewicz M, Boivin T, Bonal R, Caignard T, Cailleret M, Calama R, Calderon SD, Camarero JJ, Chang-Yang CH, Chave J, Chianucci F, Courbaud B, Cutini A, Das AJ, Delpierre N, Delzon S, Dietze M, Dormont L, Espelta JM, Fahey TJ, Farfan-Rios W, Franklin JF, Gehring CA, Gilbert GS, Gratzer G, Greenberg CH, Guignabert A, Guo Q, Hacket-Pain A, Hampe A, Han Q, Holik J, Hoshizaki K, Ibanez I, Johnstone JF, Journé V, Kitzberger T, Knops JMH, Kunstler G, Kurokawa H, Lageard JGA, LaMontagne JM, Lefevre F, Leininger T, Limousin JM, Lutz JA, Macias D, Marell A, McIntire EJB, Moore CM, Moran E, Motta R, Myers JA, Nagel TA, Naoe S, Noguchi M, Oguro M, Parmenter R, Pearse IS, Perez-Ramos IM, Piechnik L, Podgorski T, Poulsen J, Redmond MD, Reid CD, Rodman KC, Rodriguez-Sanchez F, Samonil P, Sanguinetti JD, Scher CL, Seget B, Sharma S, Shibata M, Silman M, Steele MA, Stephenson NL, Straub JN, Sutton S, Swenson JJ, Swift M, Thomas PA, Uriarte M, Vacchiano G, Whipple AV, Whitham TG, Wion AP, Wright SJ, Zhu K, Zimmerman JK, Zywiec M, Clark JS. Masting is uncommon in trees that depend on mutualist dispersers in the context of global climate and fertility gradients. NATURE PLANTS 2023:10.1038/s41477-023-01446-5. [PMID: 37386149 DOI: 10.1038/s41477-023-01446-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/17/2023] [Indexed: 07/01/2023]
Abstract
The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.
Collapse
|
3
|
Viljur ML, Abella SR, Adámek M, Alencar JBR, Barber NA, Beudert B, Burkle LA, Cagnolo L, Campos BR, Chao A, Chergui B, Choi CY, Cleary DFR, Davis TS, Dechnik-Vázquez YA, Downing WM, Fuentes-Ramirez A, Gandhi KJK, Gehring C, Georgiev KB, Gimbutas M, Gongalsky KB, Gorbunova AY, Greenberg CH, Hylander K, Jules ES, Korobushkin DI, Köster K, Kurth V, Lanham JD, Lazarina M, Leverkus AB, Lindenmayer D, Marra DM, Martín-Pinto P, Meave JA, Moretti M, Nam HY, Obrist MK, Petanidou T, Pons P, Potts SG, Rapoport IB, Rhoades PR, Richter C, Saifutdinov RA, Sanders NJ, Santos X, Steel Z, Tavella J, Wendenburg C, Wermelinger B, Zaitsev AS, Thorn S. The effect of natural disturbances on forest biodiversity: an ecological synthesis. Biol Rev Camb Philos Soc 2022; 97:1930-1947. [PMID: 35808863 DOI: 10.1111/brv.12876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022]
Abstract
Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human-induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land-use change. Conversely, the suppression of natural disturbances threatens disturbance-dependent biota. Using a meta-analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α-diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground-dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α-diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55% of trees killed by disturbance. We further extended our meta-analysis by applying a unified diversity concept based on Hill numbers to estimate α-diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity-disturbance relationships are shaped by species relative abundances. Our synthesis of α-diversity was extended by a synthesis of disturbance-induced change in species assemblages, and revealed that disturbance changes the β-diversity of multiple taxonomic groups, including some groups that were not affected at the α-diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α-diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes.
Collapse
|
4
|
Awkerman JA, Greenberg CH. Projected Climate and Hydroregime Variability Constrain Ephemeral Wetland-Dependent Amphibian Populations in Simulations of Southern Toads. ECOLOGIES 2022; 3:235-248. [PMID: 38840846 PMCID: PMC11151813 DOI: 10.3390/ecologies3020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Amphibian populations are threatened globally by stressors, including diminishing availability of suitable wetland breeding sites, altered hydroregimes driven by changing weather patterns, and exposure to contaminants. Ecological risk assessment should encompass spatial and temporal scales that capture influential ecological processes and demographic responses. Following the PopGUIDE framework of population model development for risk assessment, we used matrix population models, in conjunction with existing hydroregime predictions, under a climate change scenario to evaluate the effects of environmental stochasticity and aquatic pesticide exposure on amphibians that are dependent on ephemeral wetlands. Using southern toads (Anaxyrus terrestris) as an example, we simulated population dynamics with breeding success dependent on hydroregime suitability. Years were defined as optimal, marginal, or insufficient for successful toad recruitment, based on the duration of their potential breeding season and rate of larval development to metamorphosis. We simulated both probabilistic and chronologically specific population projections, including variable annual fecundity, based on hydroregime suitability and reduced larval survival from carbaryl exposure. In our simulations, populations were more negatively impacted by prolonged drought, and consequently multiple sequential years of reproductive failure, than by aquatic pesticide exposure. These results highlight the necessity of reliable climate projections to accurately represent the effects of altered hydroregimes on amphibian populations. Risk assessment approaches could be improved with flexible modifications that allow inclusion of various extrinsic stressors and identification of demographic and ecological vulnerabilities when precise data are lacking.
Collapse
|
5
|
Qiu T, Andrus R, Aravena MC, Ascoli D, Bergeron Y, Berretti R, Berveiller D, Bogdziewicz M, Boivin T, Bonal R, Bragg DC, Caignard T, Calama R, Camarero JJ, Chang-Yang CH, Cleavitt NL, Courbaud B, Courbet F, Curt T, Das AJ, Daskalakou E, Davi H, Delpierre N, Delzon S, Dietze M, Calderon SD, Dormont L, Espelta J, Fahey TJ, Farfan-Rios W, Gehring CA, Gilbert GS, Gratzer G, Greenberg CH, Guo Q, Hacket-Pain A, Hampe A, Han Q, Hille Ris Lambers J, Hoshizaki K, Ibanez I, Johnstone JF, Journé V, Kabeya D, Kilner CL, Kitzberger T, Knops JMH, Kobe RK, Kunstler G, Lageard JGA, LaMontagne JM, Ledwon M, Lefevre F, Leininger T, Limousin JM, Lutz JA, Macias D, McIntire EJB, Moore CM, Moran E, Motta R, Myers JA, Nagel TA, Noguchi K, Ourcival JM, Parmenter R, Pearse IS, Perez-Ramos IM, Piechnik L, Poulsen J, Poulton-Kamakura R, Redmond MD, Reid CD, Rodman KC, Rodriguez-Sanchez F, Sanguinetti JD, Scher CL, Schlesinger WH, Schmidt Van Marle H, Seget B, Sharma S, Silman M, Steele MA, Stephenson NL, Straub JN, Sun IF, Sutton S, Swenson JJ, Swift M, Thomas PA, Uriarte M, Vacchiano G, Veblen TT, Whipple AV, Whitham TG, Wion AP, Wright B, Wright SJ, Zhu K, Zimmerman JK, Zlotin R, Zywiec M, Clark JS. Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery. Nat Commun 2022; 13:2381. [PMID: 35501313 PMCID: PMC9061860 DOI: 10.1038/s41467-022-30037-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/13/2022] [Indexed: 11/09/2022] Open
Abstract
The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.
Collapse
|
6
|
Journé V, Andrus R, Aravena MC, Ascoli D, Berretti R, Berveiller D, Bogdziewicz M, Boivin T, Bonal R, Caignard T, Calama R, Camarero JJ, Chang-Yang CH, Courbaud B, Courbet F, Curt T, Das AJ, Daskalakou E, Davi H, Delpierre N, Delzon S, Dietze M, Donoso Calderon S, Dormont L, Maria Espelta J, Fahey TJ, Farfan-Rios W, Gehring CA, Gilbert GS, Gratzer G, Greenberg CH, Guo Q, Hacket-Pain A, Hampe A, Han Q, Lambers JHR, Hoshizaki K, Ibanez I, Johnstone JF, Kabeya D, Kays R, Kitzberger T, Knops JMH, Kobe RK, Kunstler G, Lageard JGA, LaMontagne JM, Leininger T, Limousin JM, Lutz JA, Macias D, McIntire EJB, Moore CM, Moran E, Motta R, Myers JA, Nagel TA, Noguchi K, Ourcival JM, Parmenter R, Pearse IS, Perez-Ramos IM, Piechnik L, Poulsen J, Poulton-Kamakura R, Qiu T, Redmond MD, Reid CD, Rodman KC, Rodriguez-Sanchez F, Sanguinetti JD, Scher CL, Marle HSV, Seget B, Sharma S, Silman M, Steele MA, Stephenson NL, Straub JN, Swenson JJ, Swift M, Thomas PA, Uriarte M, Vacchiano G, Veblen TT, Whipple AV, Whitham TG, Wright B, Wright SJ, Zhu K, Zimmerman JK, Zlotin R, Zywiec M, Clark JS. Globally, tree fecundity exceeds productivity gradients. Ecol Lett 2022; 25:1471-1482. [PMID: 35460530 DOI: 10.1111/ele.14012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/30/2022]
Abstract
Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.
Collapse
|
7
|
Qiu T, Aravena MC, Andrus R, Ascoli D, Bergeron Y, Berretti R, Bogdziewicz M, Boivin T, Bonal R, Caignard T, Calama R, Julio Camarero J, Clark CJ, Courbaud B, Delzon S, Donoso Calderon S, Farfan-Rios W, Gehring CA, Gilbert GS, Greenberg CH, Guo Q, Hille Ris Lambers J, Hoshizaki K, Ibanez I, Journé V, Kilner CL, Kobe RK, Koenig WD, Kunstler G, LaMontagne JM, Ledwon M, Lutz JA, Motta R, Myers JA, Nagel TA, Nuñez CL, Pearse IS, Piechnik Ł, Poulsen JR, Poulton-Kamakura R, Redmond MD, Reid CD, Rodman KC, Scher CL, Schmidt Van Marle H, Seget B, Sharma S, Silman M, Swenson JJ, Swift M, Uriarte M, Vacchiano G, Veblen TT, Whipple AV, Whitham TG, Wion AP, Wright SJ, Zhu K, Zimmerman JK, Żywiec M, Clark JS. Is there tree senescence? The fecundity evidence. Proc Natl Acad Sci U S A 2021; 118:e2106130118. [PMID: 34400503 PMCID: PMC8403963 DOI: 10.1073/pnas.2106130118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size-fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.
Collapse
|
8
|
Clark JS, Andrus R, Aubry-Kientz M, Bergeron Y, Bogdziewicz M, Bragg DC, Brockway D, Cleavitt NL, Cohen S, Courbaud B, Daley R, Das AJ, Dietze M, Fahey TJ, Fer I, Franklin JF, Gehring CA, Gilbert GS, Greenberg CH, Guo Q, HilleRisLambers J, Ibanez I, Johnstone J, Kilner CL, Knops J, Koenig WD, Kunstler G, LaMontagne JM, Legg KL, Luongo J, Lutz JA, Macias D, McIntire EJB, Messaoud Y, Moore CM, Moran E, Myers JA, Myers OB, Nunez C, Parmenter R, Pearse S, Pearson S, Poulton-Kamakura R, Ready E, Redmond MD, Reid CD, Rodman KC, Scher CL, Schlesinger WH, Schwantes AM, Shanahan E, Sharma S, Steele MA, Stephenson NL, Sutton S, Swenson JJ, Swift M, Veblen TT, Whipple AV, Whitham TG, Wion AP, Zhu K, Zlotin R. Author Correction: Continent-wide tree fecundity driven by indirect climate effects. Nat Commun 2021; 12:1664. [PMID: 33686080 PMCID: PMC7940415 DOI: 10.1038/s41467-021-22025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A Correction to this paper has been published: https://doi.org/10.1038/s41467-021-22025-2
Collapse
|
9
|
Clark JS, Andrus R, Aubry-Kientz M, Bergeron Y, Bogdziewicz M, Bragg DC, Brockway D, Cleavitt NL, Cohen S, Courbaud B, Daley R, Das AJ, Dietze M, Fahey TJ, Fer I, Franklin JF, Gehring CA, Gilbert GS, Greenberg CH, Guo Q, HilleRisLambers J, Ibanez I, Johnstone J, Kilner CL, Knops J, Koenig WD, Kunstler G, LaMontagne JM, Legg KL, Luongo J, Lutz JA, Macias D, McIntire EJB, Messaoud Y, Moore CM, Moran E, Myers JA, Myers OB, Nunez C, Parmenter R, Pearse S, Pearson S, Poulton-Kamakura R, Ready E, Redmond MD, Reid CD, Rodman KC, Scher CL, Schlesinger WH, Schwantes AM, Shanahan E, Sharma S, Steele MA, Stephenson NL, Sutton S, Swenson JJ, Swift M, Veblen TT, Whipple AV, Whitham TG, Wion AP, Zhu K, Zlotin R. Continent-wide tree fecundity driven by indirect climate effects. Nat Commun 2021; 12:1242. [PMID: 33623042 PMCID: PMC7902660 DOI: 10.1038/s41467-020-20836-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023] Open
Abstract
Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
Collapse
|
10
|
Greenberg CH. Modelling Annual Southern Appalachian Acorn Production Using Visual Surveys. WILDLIFE SOC B 2020. [DOI: 10.1002/wsb.1082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Raybuck AL, Moorman CE, Fritts SR, Greenberg CH, Deperno CS, Simon DM, Warburton GS. Do silvicultural practices to restore oaks affect salamanders in the short term? WILDLIFE BIOLOGY 2015. [DOI: 10.2981/wlb.00076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
12
|
McCord JM, Harper CA, Greenberg CH. Brood cover and food resources for wild turkeys following silvicultural treatments in mature upland hardwoods. WILDLIFE SOC B 2014. [DOI: 10.1002/wsb.403] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Greenberg CH, Levey DJ, Kwit C, Mccarty JP, Pearson SF, Sargent S, Kilgo J. Long-term patterns of fruit production in five forest types of the South Carolina upper coastal plain. J Wildl Manage 2012. [DOI: 10.1002/jwmg.343] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Rose AK, Greenberg CH, Fearer TM. Acorn production prediction models for five common oak species of the eastern United States. J Wildl Manage 2011. [DOI: 10.1002/jwmg.291] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Aalseth CE, Barbeau PS, Bowden NS, Cabrera-Palmer B, Colaresi J, Collar JI, Dazeley S, de Lurgio P, Fast JE, Fields N, Greenberg CH, Hossbach TW, Keillor ME, Kephart JD, Marino MG, Miley HS, Miller ML, Orrell JL, Radford DC, Reyna D, Tench O, Van Wechel TD, Wilkerson JF, Yocum KM. Results from a search for light-mass dark matter with a p-type point contact germanium detector. PHYSICAL REVIEW LETTERS 2011; 106:131301. [PMID: 21517370 DOI: 10.1103/physrevlett.106.131301] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Indexed: 05/30/2023]
Abstract
We report on several features in the energy spectrum from an ultralow-noise germanium detector operated deep underground. By implementing a new technique able to reject surface events, a number of cosmogenic peaks can be observed for the first time. We discuss an irreducible excess of bulklike events below 3 keV in ionization energy. These could be caused by unknown backgrounds, but also dark matter interactions consistent with DAMA/LIBRA. It is not yet possible to determine their origin. Improved constraints are placed on a cosmological origin for the DAMA/LIBRA effect.
Collapse
|
16
|
Aalseth CE, Barbeau PS, Cerdeño DG, Colaresi J, Collar JI, de Lurgio P, Drake G, Fast JE, Greenberg CH, Hossbach TW, Kephart JD, Marino MG, Miley HS, Orrell JL, Reyna D, Robertson RGH, Talaga RL, Tench O, Van Wechel TD, Wilkerson JF, Yocum KM. Experimental constraints on a dark matter origin for the DAMA annual modulation effect. PHYSICAL REVIEW LETTERS 2008; 101:251301. [PMID: 19113689 DOI: 10.1103/physrevlett.101.251301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/06/2008] [Indexed: 05/27/2023]
Abstract
A claim for evidence of dark matter interactions in the DAMA experiment has been recently reinforced. We employ a new type of germanium detector to conclusively rule out a standard isothermal galactic halo of weakly interacting massive particles as the explanation for the annual modulation effect leading to the claim. Bounds are similarly imposed on a suggestion that dark pseudoscalars might lead to the effect. We describe the sensitivity to light dark matter particles achievable with our device, in particular, to next-to-minimal supersymmetric model candidates.
Collapse
|
17
|
Greenberg CH, Tanner GW. SPATIAL AND TEMPORAL ECOLOGY OF OAK TOADS (BUFO QUERCICUS) ON A FLORIDA LANDSCAPE. HERPETOLOGICA 2005. [DOI: 10.1655/04-89.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Greenberg CH, Tanner GW. SPATIAL AND TEMPORAL ECOLOGY OF EASTERN SPADEFOOT TOADS ON A FLORIDA LANDSCAPE. HERPETOLOGICA 2005. [DOI: 10.1655/04-32] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Greenberg CH, Miller S. Soricid Response to Canopy Gaps Created by Wind Disturbance in the Southern Appalachians. SOUTHEAST NAT 2004. [DOI: 10.1656/1528-7092(2004)003[0715:srtcgc]2.0.co;2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Kwit C, Levey DJ, Greenberg CH. Contagious seed dispersal beneath heterospecific fruiting trees and its consequences. OIKOS 2004. [DOI: 10.1111/j.0030-1299.2004.13388.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Kwit C, Levey DJ, Greenberg CH, Pearson SF, McCarty JP, Sargent S. Cold temperature increases winter fruit removal rate of a bird-dispersed shrub. Oecologia 2004; 139:30-4. [PMID: 14716556 DOI: 10.1007/s00442-003-1470-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2003] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
We tested the hypothesis that winter removal rates of fruits of wax myrtle, Myrica cerifera, are higher in colder winters. Over a 9-year period, we monitored M. cerifera fruit crops in 13 0.1-ha study plots in South Carolina, U.S.A. Peak ripeness occurred in November, whereas peak removal occurred in the coldest months, December and January. Mean time to fruit removal within study plots was positively correlated with mean winter temperatures, thereby supporting our hypothesis. This result, combined with the generally low availability of winter arthropods, suggests that fruit abundance may play a role in determining winter survivorship and distribution of permanent resident and short-distance migrant birds. From the plant's perspective, it demonstrates inter-annual variation in the temporal component of seed dispersal, with possible consequences for post-dispersal seed and seedling ecology.
Collapse
|
22
|
Greenberg CH, Forrest TG. SEASONAL ABUNDANCE OF GROUND-OCCURRING MACROARTHROPODS IN FOREST AND CANOPY GAPS IN THE SOUTHERN APPALACHIANS. SOUTHEAST NAT 2003. [DOI: 10.1656/1528-7092(2003)002[0591:saogmi]2.0.co;2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Pearson SF, Levey DJ, Greenberg CH, Martínez Del Rio C. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia 2003; 135:516-23. [PMID: 16228250 DOI: 10.1007/s00442-003-1221-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2002] [Accepted: 02/05/2003] [Indexed: 10/24/2022]
Abstract
The use of stable isotopes to infer diet requires quantifying the relationship between diet and tissues and, in particular, knowing of how quickly isotopes turnover in different tissues and how isotopic concentrations of different food components change (discriminate) when incorporated into consumer tissues. We used feeding trials with wild-caught yellow-rumped warblers (Dendroica coronata) to determine delta15N and delta13C turnover rates for blood, delta15N and delta13C diet-tissue discrimination factors, and diet-tissue relationships for blood and feathers. After 3 weeks on a common diet, 36 warblers were assigned to one of four diets differing in the relative proportion of fruit and insects. Plasma half-life estimates ranged from 0.4 to 0.7 days for delta13C and from 0.5 to 1.7 days for delta15N . Half-life did not differ among diets. Whole blood half-life for delta13C ranged from 3.9 to 6.1 days. Yellow-rumped warbler tissues were enriched relative to diet by 1.7-3.6% for nitrogen isotopes and by -1.2 to 4.3% for carbon isotopes, depending on tissue and diet. Consistent with previous studies, feathers were the most enriched and whole blood and plasma were the least enriched or, in the case of carbon, slightly depleted relative to diet. In general, tissues were more enriched relative to diet for birds on diets with high percentages of insects. For all tissues, carbon and nitrogen isotope discrimination factors increased with carbon and nitrogen concentrations of diets. The isotopic signature of plasma increased linearly with the sum of the isotopic signature of the diet and the discrimination factor. Because the isotopic signature of tissues depends on both elemental concentration and isotopic signature of the diet, attempts to reconstruct diet from stable isotope signatures require use of mixing models that incorporate elemental concentration.
Collapse
|
24
|
Greenberg CH. Spatio-Temporal Dynamics of Pond Use and Recruitment in Florida Gopher Frogs (Rana capito aesopus). J HERPETOL 2001. [DOI: 10.2307/1566026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
|