1
|
Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CHM, Jones DL, Visvader J, Weissman IL, Wahl GM. Cancer Stem Cells—Perspectives on Current Status and Future Directions: AACR Workshop on Cancer Stem Cells. Cancer Res 2006; 66:9339-44. [PMID: 16990346 DOI: 10.1158/0008-5472.can-06-3126] [Citation(s) in RCA: 2181] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
19 |
2181 |
2
|
Jamieson CHM, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, Gotlib J, Li K, Manz MG, Keating A, Sawyers CL, Weissman IL. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351:657-67. [PMID: 15306667 DOI: 10.1056/nejmoa040258] [Citation(s) in RCA: 1058] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The progression of chronic myelogenous leukemia (CML) to blast crisis is supported by self-renewing leukemic stem cells. In normal mouse hematopoietic stem cells, the process of self-renewal involves the beta-catenin-signaling pathway. We investigated whether leukemic stem cells in CML also use the beta-catenin pathway for self-renewal. METHODS We used fluorescence-activated cell sorting to isolate hematopoietic stem cells, common myeloid progenitors, granulocyte-macrophage progenitors, and megakaryocyte-erythroid progenitors from marrow during several phases of CML and from normal marrow. BCR-ABL, beta-catenin, and LEF-1 transcripts were compared by means of a quantitative reverse-transcriptase-polymerase-chain-reaction assay in normal and CML hematopoietic stem cells and granulocyte-macrophage progenitors. Confocal fluorescence microscopy and a lymphoid enhancer factor/T-cell factor reporter assay were used to detect nuclear beta-catenin in these cells. In vitro replating assays were used to identify self-renewing cells as candidate leukemic stem cells, and the dependence of self-renewal on beta-catenin activation was tested by lentiviral transduction of hematopoietic progenitors with axin, an inhibitor of the beta-catenin pathway. RESULTS The granulocyte-macrophage progenitor pool from patients with CML in blast crisis and imatinib-resistant CML was expanded, expressed BCR-ABL, and had elevated levels of nuclear beta-catenin as compared with the levels in progenitors from normal marrow. Unlike normal granulocyte-macrophage progenitors, CML granulocyte-macrophage progenitors formed self-renewing, replatable myeloid colonies, and in vitro self-renewal capacity was reduced by enforced expression of axin. CONCLUSIONS Activation of beta-catenin in CML granulocyte-macrophage progenitors appears to enhance the self-renewal activity and leukemic potential of these cells.
Collapse
MESH Headings
- Adult
- Aged
- Antineoplastic Agents/therapeutic use
- Benzamides
- Blast Crisis/physiopathology
- Colony-Forming Units Assay
- Cytoskeletal Proteins/metabolism
- DNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm
- Female
- Fusion Proteins, bcr-abl/metabolism
- Granulocytes/cytology
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/physiology
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology
- Lymphoid Enhancer-Binding Factor 1
- Macrophages/cytology
- Male
- Microscopy, Confocal
- Middle Aged
- Piperazines/therapeutic use
- Pyrimidines/therapeutic use
- RNA, Neoplasm
- Reverse Transcriptase Polymerase Chain Reaction
- Trans-Activators/metabolism
- Transcription Factors/metabolism
- beta Catenin
Collapse
|
|
21 |
1058 |
3
|
|
|
17 |
666 |
4
|
Passegué E, Jamieson CHM, Ailles LE, Weissman IL. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci U S A 2003; 100 Suppl 1:11842-9. [PMID: 14504387 PMCID: PMC304096 DOI: 10.1073/pnas.2034201100] [Citation(s) in RCA: 440] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leukemia can be viewed as a newly formed, abnormal hematopoietic tissue initiated by a few leukemic stem cells (LSCs) that undergo an aberrant and poorly regulated process of organogenesis analogous to that of normal hematopoietic stem cells. A hallmark of all cancers is the capacity for unlimited self-renewal, which is also a defining characteristic of normal stem cells. Given this shared attribute, it has been proposed that leukemias may be initiated by transforming events that take place in hematopoietic stem cells. Alternatively, leukemias may also arise from more committed progenitors caused by mutations and/or selective expression of genes that enhance their otherwise limited self-renewal capabilities. Identifying the LSCs for each type of leukemia is a current challenge and a critical step in understanding their respective biologies and may provide key insights into more effective treatments. Moreover, LSC identification and purification will provide a powerful diagnostic, prognostic, and therapeutic tool in the clinic.
Collapse
|
Review |
22 |
440 |
5
|
Abstract
The cancer stem cell (CSC) or cancer-initiating cancer (C-IC) model has garnered considerable attention over the past several years since Dick and colleagues published a seminal report showing that a hierarchy exists among leukemic cells. In more recent years, a similar hierarchical organization, at the apex of which exists the CSC, has been identified in a variety of solid tumors. Human CSCs are defined by their ability to: (i) generate a xenograft that histologically resembles the parent tumor from which it was derived, (ii) be serially transplanted in a xenograft assay thereby showing the ability to self-renew (regenerate), and (iii) generate daughter cells that possess some proliferative capacity but are unable to initiate or maintain the cancer because they lack intrinsic regenerative potential. The emerging complexity of the CSC phenotype and function is at times daunting and has led to some confusion in the field. However, at its core, the CSC model is about identifying and characterizing the cancer cells that possess the greatest capacity to regenerate all aspects of the tumor. It is becoming clear that cancer cells evolve as a result of their ability to hijack normal self-renewal pathways, a process that can drive malignant transformation. Studying self-renewal in the context of cancer and CSC maintenance will lead to a better understanding of the mechanisms driving tumor growth. This review will address some of the main controversies in the CSC field and emphasize the importance of focusing first and foremost on the defining feature of CSCs: dysregulated self-renewal capacity.
Collapse
|
Review |
15 |
331 |
6
|
Sanda T, Lawton LN, Barrasa MI, Fan ZP, Kohlhammer H, Gutierrez A, Ma W, Tatarek J, Ahn Y, Kelliher MA, Jamieson CHM, Staudt LM, Young RA, Look AT. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell 2012; 22:209-21. [PMID: 22897851 PMCID: PMC3422504 DOI: 10.1016/j.ccr.2012.06.007] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 03/09/2012] [Accepted: 06/15/2012] [Indexed: 11/16/2022]
Abstract
The oncogenic transcription factor TAL1/SCL is aberrantly expressed in over 40% of cases of human T cell acute lymphoblastic leukemia (T-ALL), emphasizing its importance in the molecular pathogenesis of T-ALL. Here we identify the core transcriptional regulatory circuit controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3, and RUNX1. We show that TAL1 forms a positive interconnected autoregulatory loop with GATA3 and RUNX1 and that the TAL1 complex directly activates the MYB oncogene, forming a positive feed-forward regulatory loop that reinforces and stabilizes the TAL1-regulated oncogenic program. One of the critical downstream targets in this circuitry is the TRIB2 gene, which is oppositely regulated by TAL1 and E2A/HEB and is essential for the survival of T-ALL cells.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
240 |
7
|
Jamieson CHM, Gotlib J, Durocher JA, Chao MP, Mariappan MR, Lay M, Jones C, Zehnder JL, Lilleberg SL, Weissman IL. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc Natl Acad Sci U S A 2006; 103:6224-9. [PMID: 16603627 PMCID: PMC1434515 DOI: 10.1073/pnas.0601462103] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although a large proportion of patients with polycythemia vera (PV) harbor a valine-to-phenylalanine mutation at amino acid 617 (V617F) in the JAK2 signaling molecule, the stage of hematopoiesis at which the mutation arises is unknown. Here we isolated and characterized hematopoietic stem cells (HSC) and myeloid progenitors from 16 PV patient samples and 14 normal individuals, testing whether the JAK2 mutation could be found at the level of stem or progenitor cells and whether the JAK2 V617F-positive cells had altered differentiation potential. In all PV samples analyzed, there were increased numbers of cells with a HSC phenotype (CD34+CD38-CD90+Lin-) compared with normal samples. Hematopoietic progenitor assays demonstrated that the differentiation potential of PV was already skewed toward the erythroid lineage at the HSC level. The JAK2 V617F mutation was detectable within HSC and their progeny in PV. Moreover, the aberrant erythroid potential of PV HSC was potently inhibited with a JAK2 inhibitor, AG490.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
214 |
8
|
Zipeto MA, Court AC, Sadarangani A, Delos Santos NP, Balaian L, Chun HJ, Pineda G, Morris SR, Mason CN, Geron I, Barrett C, Goff DJ, Wall R, Pellecchia M, Minden M, Frazer KA, Marra MA, Crews LA, Jiang Q, Jamieson CHM. ADAR1 Activation Drives Leukemia Stem Cell Self-Renewal by Impairing Let-7 Biogenesis. Cell Stem Cell 2016; 19:177-191. [PMID: 27292188 PMCID: PMC4975616 DOI: 10.1016/j.stem.2016.05.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/12/2016] [Accepted: 05/06/2016] [Indexed: 12/17/2022]
Abstract
Post-transcriptional adenosine-to-inosine RNA editing mediated by adenosine deaminase acting on RNA1 (ADAR1) promotes cancer progression and therapeutic resistance. However, ADAR1 editase-dependent mechanisms governing leukemia stem cell (LSC) generation have not been elucidated. In blast crisis chronic myeloid leukemia (BC CML), we show that increased JAK2 signaling and BCR-ABL1 amplification activate ADAR1. In a humanized BC CML mouse model, combined JAK2 and BCR-ABL1 inhibition prevents LSC self-renewal commensurate with ADAR1 downregulation. Lentiviral ADAR1 wild-type, but not an editing-defective ADAR1(E912A) mutant, induces self-renewal gene expression and impairs biogenesis of stem cell regulatory let-7 microRNAs. Combined RNA sequencing, qRT-PCR, CLIP-ADAR1, and pri-let-7 mutagenesis data suggest that ADAR1 promotes LSC generation via let-7 pri-microRNA editing and LIN28B upregulation. A small-molecule tool compound antagonizes ADAR1's effect on LSC self-renewal in stromal co-cultures and restores let-7 biogenesis. Thus, ADAR1 activation represents a unique therapeutic vulnerability in LSCs with active JAK2 signaling.
Collapse
|
research-article |
9 |
180 |
9
|
DeBoever C, Ghia EM, Shepard PJ, Rassenti L, Barrett CL, Jepsen K, Jamieson CHM, Carson D, Kipps TJ, Frazer KA. Transcriptome sequencing reveals potential mechanism of cryptic 3' splice site selection in SF3B1-mutated cancers. PLoS Comput Biol 2015; 11:e1004105. [PMID: 25768983 PMCID: PMC4358997 DOI: 10.1371/journal.pcbi.1004105] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/29/2014] [Indexed: 01/12/2023] Open
Abstract
Mutations in the splicing factor SF3B1 are found in several cancer types and have been associated with various splicing defects. Using transcriptome sequencing data from chronic lymphocytic leukemia, breast cancer and uveal melanoma tumor samples, we show that hundreds of cryptic 3’ splice sites (3’SSs) are used in cancers with SF3B1 mutations. We define the necessary sequence context for the observed cryptic 3’ SSs and propose that cryptic 3’SS selection is a result of SF3B1 mutations causing a shift in the sterically protected region downstream of the branch point. While most cryptic 3’SSs are present at low frequency (<10%) relative to nearby canonical 3’SSs, we identified ten genes that preferred out-of-frame cryptic 3’SSs. We show that cancers with mutations in the SF3B1 HEAT 5-9 repeats use cryptic 3’SSs downstream of the branch point and provide both a mechanistic model consistent with published experimental data and affected targets that will guide further research into the oncogenic effects of SF3B1 mutation. A key goal of cancer genomics studies is to identify genes that are recurrently mutated at a rate above background and likely contribute to cancer development. Many such recurrently mutated genes have been identified over the last few years, but we often do not know the underlying mechanisms by which they contribute to cancer growth. Unexpectedly, several genes in the spliceosome, the collection of RNAs and proteins that remove introns from transcribed RNAs, are recurrently mutated in different cancers. Here, we have examined mutations in the splicing factor SF3B1, a key component of the spliceosome, and identified a global splicing defect present in different cancers with SF3B1 mutations by comparing the expression of splice junctions using generalized linear models. While prior studies have reported a limited number of aberrant splicing events in SF3B1-mutated cancers, we have established that SF3B1 mutations are associated with usage of hundreds of atypical splice sites at the 3’ end of the intron. We have identified nucleotide sequence requirements for these cryptic splice sites that are consistent with a proposed mechanistic model. These findings greatly expand our understanding of the effect of SF3B1 mutations on splicing and provide new targets for determining the oncogenic effect of SF3B1 mutations.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
169 |
10
|
Goff DJ, Court Recart A, Sadarangani A, Chun HJ, Barrett CL, Krajewska M, Leu H, Low-Marchelli J, Ma W, Shih AY, Wei J, Zhai D, Geron I, Pu M, Bao L, Chuang R, Balaian L, Gotlib J, Minden M, Martinelli G, Rusert J, Dao KH, Shazand K, Wentworth P, Smith KM, Jamieson CAM, Morris SR, Messer K, Goldstein LSB, Hudson TJ, Marra M, Frazer KA, Pellecchia M, Reed JC, Jamieson CHM. A Pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition. Cell Stem Cell 2013; 12:316-28. [PMID: 23333150 DOI: 10.1016/j.stem.2012.12.011] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/09/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
Leukemia stem cells (LSCs) play a pivotal role in the resistance of chronic myeloid leukemia (CML) to tyrosine kinase inhibitors (TKIs) and its progression to blast crisis (BC), in part, through the alternative splicing of self-renewal and survival genes. To elucidate splice-isoform regulators of human BC LSC maintenance, we performed whole-transcriptome RNA sequencing, splice-isoform-specific quantitative RT-PCR (qRT-PCR), nanoproteomics, stromal coculture, and BC LSC xenotransplantation analyses. Cumulatively, these studies show that the alternative splicing of multiple prosurvival BCL2 family genes promotes malignant transformation of myeloid progenitors into BC LSCS that are quiescent in the marrow niche and that contribute to therapeutic resistance. Notably, sabutoclax, a pan-BCL2 inhibitor, renders marrow-niche-resident BC LSCs sensitive to TKIs at doses that spare normal progenitors. These findings underscore the importance of alternative BCL2 family splice-isoform expression in BC LSC maintenance and suggest that the combinatorial inhibition of prosurvival BCL2 family proteins and BCR-ABL may eliminate dormant LSCs and obviate resistance.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
163 |
11
|
Sanda T, Tyner JW, Gutierrez A, Ngo VN, Glover J, Chang BH, Yost A, Ma W, Fleischman AG, Zhou W, Yang Y, Kleppe M, Ahn Y, Tatarek J, Kelliher MA, Neuberg DS, Levine RL, Moriggl R, Müller M, Gray NS, Jamieson CHM, Weng AP, Staudt LM, Druker BJ, Look AT. TYK2-STAT1-BCL2 pathway dependence in T-cell acute lymphoblastic leukemia. Cancer Discov 2013; 3:564-77. [PMID: 23471820 DOI: 10.1158/2159-8290.cd-12-0504] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
UNLABELLED Targeted molecular therapy has yielded remarkable outcomes in certain cancers, but specific therapeutic targets remain elusive for many others. As a result of two independent RNA interference (RNAi) screens, we identified pathway dependence on a member of the Janus-activated kinase (JAK) tyrosine kinase family, TYK2, and its downstream effector STAT1, in T-cell acute lymphoblastic leukemia (T-ALL). Gene knockdown experiments consistently showed TYK2 dependence in both T-ALL primary specimens and cell lines, and a small-molecule inhibitor of JAK activity induced T-ALL cell death. Activation of this TYK2-STAT1 pathway in T-ALL cell lines occurs by gain-of-function TYK2 mutations or activation of interleukin (IL)-10 receptor signaling, and this pathway mediates T-ALL cell survival through upregulation of the antiapoptotic protein BCL2. These findings indicate that in many T-ALL cases, the leukemic cells are dependent upon the TYK2-STAT1-BCL2 pathway for continued survival, supporting the development of molecular therapies targeting TYK2 and other components of this pathway. SIGNIFICANCE In recent years, "pathway dependence" has been revealed in specific types of human cancer, which can be important because they pinpoint proteins that are particularly vulnerable to antitumor-targeted inhibition (so-called Achilles’ heel proteins). Here, we use RNAi technology to identify a novel oncogenic pathway that involves aberrant activation of the TYK2 tyrosine kinase and its downstream substrate, STAT1, which ultimately promotes T-ALL cell survival through the upregulation of BCL2 expression
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
109 |
12
|
Geron I, Abrahamsson AE, Barroga CF, Kavalerchik E, Gotlib J, Hood JD, Durocher J, Mak CC, Noronha G, Soll RM, Tefferi A, Kaushansky K, Jamieson CHM. Selective inhibition of JAK2-driven erythroid differentiation of polycythemia vera progenitors. Cancer Cell 2008; 13:321-30. [PMID: 18394555 DOI: 10.1016/j.ccr.2008.02.017] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 12/26/2007] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
Abstract
Polycythemia Vera (PV) is a myeloproliferative disorder (MPD) that is commonly characterized by mutant JAK2 (JAK2V617F) signaling, erythrocyte overproduction, and a propensity for thrombosis, progression to myelofibrosis, or acute leukemia. In this study, JAK2V617F expression by human hematopoietic progenitors promoted erythroid colony formation and erythroid engraftment in a bioluminescent xenogeneic immunocompromised mouse transplantation model. A selective JAK2 inhibitor, TG101348 (300 nM), significantly inhibited JAK2V617F+ progenitor-derived colony formation as well as engraftment (120 mg/kg) in xenogeneic transplantation studies. TG101348 treatment decreased GATA-1 expression, which is associated with erythroid-skewing of JAK2V617F+ progenitor differentiation, and inhibited STAT5 as well as GATA S310 phosphorylation. Thus, TG101348 may be an effective inhibitor of JAK2V617F+ MPDs in clinical trials.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
107 |
13
|
Mansour MR, Sanda T, Lawton LN, Li X, Kreslavsky T, Novina CD, Brand M, Gutierrez A, Kelliher MA, Jamieson CHM, von Boehmer H, Young RA, Look AT. The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2013; 210:1545-57. [PMID: 23857984 PMCID: PMC3727321 DOI: 10.1084/jem.20122516] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
miR-223 is upregulated by the transcription factor TAL1 in human T-ALL cells and suppress the FBXW7 tumor suppressor. The oncogenic transcription factor TAL1/SCL is aberrantly expressed in 60% of cases of human T cell acute lymphoblastic leukemia (T-ALL) and initiates T-ALL in mouse models. By performing global microRNA (miRNA) expression profiling after depletion of TAL1, together with genome-wide analysis of TAL1 occupancy by chromatin immunoprecipitation coupled to massively parallel DNA sequencing, we identified the miRNA genes directly controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3, and RUNX1. The most dynamically regulated miRNA was miR-223, which is bound at its promoter and up-regulated by the TAL1 complex. miR-223 expression mirrors TAL1 levels during thymic development, with high expression in early thymocytes and marked down-regulation after the double-negative-2 stage of maturation. We demonstrate that aberrant miR-223 up-regulation by TAL1 is important for optimal growth of TAL1-positive T-ALL cells and that sustained expression of miR-223 partially rescues T-ALL cells after TAL1 knockdown. Overexpression of miR-223 also leads to marked down-regulation of FBXW7 protein expression, whereas knockdown of TAL1 leads to up-regulation of FBXW7 protein levels, with a marked reduction of its substrates MYC, MYB, NOTCH1, and CYCLIN E. We conclude that TAL1-mediated up-regulation of miR-223 promotes the malignant phenotype in T-ALL through repression of the FBXW7 tumor suppressor.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
93 |
14
|
Jiang Q, Crews LA, Holm F, Jamieson CHM. RNA editing-dependent epitranscriptome diversity in cancer stem cells. Nat Rev Cancer 2017; 17:381-392. [PMID: 28416802 PMCID: PMC5665169 DOI: 10.1038/nrc.2017.23] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) can regenerate all facets of a tumour as a result of their stem cell-like capacity to self-renew, survive and become dormant in protective microenvironments. CSCs evolve during tumour progression in a manner that conforms to Charles Darwin's principle of natural selection. Although somatic DNA mutations and epigenetic alterations promote evolution, post-transcriptional RNA modifications together with RNA binding protein activity (the 'epitranscriptome') might also contribute to clonal evolution through dynamic determination of RNA function and gene expression diversity in response to environmental stimuli. Deregulation of these epitranscriptomic events contributes to CSC generation and maintenance, which governs cancer progression and drug resistance. In this Review, we discuss the role of malignant RNA processing in CSC generation and maintenance, including mechanisms of RNA methylation, RNA editing and RNA splicing, and the functional consequences of their aberrant regulation in human malignancies. Finally, we highlight the potential of these events as novel CSC biomarkers as well as therapeutic targets.
Collapse
|
Review |
8 |
93 |
15
|
Lazzari E, Mondala PK, Santos ND, Miller AC, Pineda G, Jiang Q, Leu H, Ali SA, Ganesan AP, Wu CN, Costello C, Minden M, Chiaramonte R, Stewart AK, Crews LA, Jamieson CHM. Alu-dependent RNA editing of GLI1 promotes malignant regeneration in multiple myeloma. Nat Commun 2017; 8:1922. [PMID: 29203771 PMCID: PMC5715072 DOI: 10.1038/s41467-017-01890-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022] Open
Abstract
Despite novel therapies, relapse of multiple myeloma (MM) is virtually inevitable. Amplification of chromosome 1q, which harbors the inflammation-responsive RNA editase adenosine deaminase acting on RNA (ADAR)1 gene, occurs in 30–50% of MM patients and portends a poor prognosis. Since adenosine-to-inosine RNA editing has recently emerged as a driver of cancer progression, genomic amplification combined with inflammatory cytokine activation of ADAR1 could stimulate MM progression and therapeutic resistance. Here, we report that high ADAR1 RNA expression correlates with reduced patient survival rates in the MMRF CoMMpass data set. Expression of wild-type, but not mutant, ADAR1 enhances Alu-dependent editing and transcriptional activity of GLI1, a Hedgehog (Hh) pathway transcriptional activator and self-renewal agonist, and promotes immunomodulatory drug resistance in vitro. Finally, ADAR1 knockdown reduces regeneration of high-risk MM in serially transplantable patient-derived xenografts. These data demonstrate that ADAR1 promotes malignant regeneration of MM and if selectively inhibited may obviate progression and relapse. The treatment of multiple myeloma is challenging due to high relapse rates. Here the authors show that expression of ADAR1 correlates with poor patient outcomes, and that ADAR1-mediated editing of GLI1 is a mechanism relevant in the context of multiple myeloma progression and drug resistance.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
80 |
16
|
Sadarangani A, Pineda G, Lennon KM, Chun HJ, Shih A, Schairer AE, Court AC, Goff DJ, Prashad SL, Geron I, Wall R, McPherson JD, Moore RA, Pu M, Bao L, Jackson-Fisher A, Munchhof M, VanArsdale T, Reya T, Morris SR, Minden MD, Messer K, Mikkola HKA, Marra MA, Hudson TJ, Jamieson CHM. GLI2 inhibition abrogates human leukemia stem cell dormancy. J Transl Med 2015; 13:98. [PMID: 25889765 PMCID: PMC4414375 DOI: 10.1186/s12967-015-0453-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 03/06/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Dormant leukemia stem cells (LSC) promote therapeutic resistance and leukemic progression as a result of unbridled activation of stem cell gene expression programs. Thus, we hypothesized that 1) deregulation of the hedgehog (Hh) stem cell self-renewal and cell cycle regulatory pathway would promote dormant human LSC generation and 2) that PF-04449913, a clinical antagonist of the GLI2 transcriptional activator, smoothened (SMO), would enhance dormant human LSC eradication. METHODS To test these postulates, whole transcriptome RNA sequencing (RNA-seq), microarray, qRT-PCR, stromal co-culture, confocal fluorescence microscopic, nanoproteomic, serial transplantation and cell cycle analyses were performed on FACS purified normal, chronic phase (CP) chronic myeloid leukemia (CML), blast crisis (BC) phase CML progenitors with or without PF-04449913 treatment. RESULTS Notably, RNA-seq analyses revealed that Hh pathway and cell cycle regulatory gene overexpression correlated with leukemic progression. While lentivirally enforced GLI2 expression enhanced leukemic progenitor dormancy in stromal co-cultures, this was not observed with a mutant GLI2 lacking a transactivation domain, suggesting that GLI2 expression prevented cell cycle transit. Selective SMO inhibition with PF-04449913 in humanized stromal co-cultures and LSC xenografts reduced downstream GLI2 protein and cell cycle regulatory gene expression. Moreover, SMO inhibition enhanced cell cycle transit and sensitized BC LSC to tyrosine kinase inhibition in vivo at doses that spare normal HSC. CONCLUSION In summary, while GLI2, forms part of a core HH pathway transcriptional regulatory network that promotes human myeloid leukemic progression and dormant LSC generation, selective inhibition with PF-04449913 reduces the dormant LSC burden thereby providing a strong rationale for clinical trials predicated on SMO inhibition in combination with TKIs or chemotherapeutic agents with the ultimate aim of obviating leukemic therapeutic resistance, persistence and progression.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
72 |
17
|
Crews LA, Jamieson CHM. Selective elimination of leukemia stem cells: hitting a moving target. Cancer Lett 2012; 338:15-22. [PMID: 22906415 DOI: 10.1016/j.canlet.2012.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/27/2012] [Accepted: 08/07/2012] [Indexed: 01/02/2023]
Abstract
Despite the widespread use of chemotherapeutic cytotoxic agents that eradicate proliferating cell populations, patients suffering from a wide variety of malignancies continue to relapse as a consequence of resistance to standard therapies. In hematologic malignancies, leukemia stem cells (LSCs) represent a malignant reservoir of disease that is believed to drive relapse and resistance to chemotherapy and tyrosine kinase inhibitor (TKIs). Major research efforts in recent years have been aimed at identifying and characterizing the LSC population in leukemias, such as chronic myeloid leukemia (CML), which represents an important paradigm for understanding the molecular evolution of cancer. However, the precise molecular mechanisms that promote LSC-mediated therapeutic recalcitrance have remained elusive. It has become clear that the LSC population evolves during disease progression, thus presenting a serious challenge for development of effective therapeutic strategies. Multiple reports have demonstrated that LSC initiation and propagation occurs as a result of aberrant activation of pro-survival and self-renewal pathways regulated by stem-cell related signaling molecules including β-catenin and Sonic Hedgehog (Shh). Enhanced survival in LSC protective microenvironments, such as the bone marrow niche, as well as acquired dormancy of cells in these niches, also contributes to LSC persistence. Key components of these cell-intrinsic and cell-extrinsic pathways provide novel potential targets for therapies aimed at eradicating this dynamic and therapeutically recalcitrant LSC population. Furthermore, combination strategies that exploit LSC have the potential to dramatically improve the quality and quantity of life for patients that are resistant to current therapies.
Collapse
|
Review |
13 |
48 |
18
|
Crews LA, Jiang Q, Zipeto MA, Lazzari E, Court AC, Ali S, Barrett CL, Frazer KA, Jamieson CHM. An RNA editing fingerprint of cancer stem cell reprogramming. J Transl Med 2015; 13:52. [PMID: 25889244 PMCID: PMC4341880 DOI: 10.1186/s12967-014-0370-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/19/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deregulation of RNA editing by adenosine deaminases acting on dsRNA (ADARs) has been implicated in the progression of diverse human cancers including hematopoietic malignancies such as chronic myeloid leukemia (CML). Inflammation-associated activation of ADAR1 occurs in leukemia stem cells specifically in the advanced, often drug-resistant stage of CML known as blast crisis. However, detection of cancer stem cell-associated RNA editing by RNA sequencing in these rare cell populations can be technically challenging, costly and requires PCR validation. The objectives of this study were to validate RNA editing of a subset of cancer stem cell-associated transcripts, and to develop a quantitative RNA editing fingerprint assay for rapid detection of aberrant RNA editing in human malignancies. METHODS To facilitate quantification of cancer stem cell-associated RNA editing in exons and intronic or 3'UTR primate-specific Alu sequences using a sensitive, cost-effective method, we established an in vitro RNA editing model and developed a sensitive RNA editing fingerprint assay that employs a site-specific quantitative PCR (RESSq-PCR) strategy. This assay was validated in a stably-transduced human leukemia cell line, lentiviral-ADAR1 transduced primary hematopoietic stem and progenitor cells, and in primary human chronic myeloid leukemia stem cells. RESULTS In lentiviral ADAR1-expressing cells, increased RNA editing of MDM2, APOBEC3D, GLI1 and AZIN1 transcripts was detected by RESSq-PCR with improved sensitivity over sequencing chromatogram analysis. This method accurately detected cancer stem cell-associated RNA editing in primary chronic myeloid leukemia samples, establishing a cancer stem cell-specific RNA editing fingerprint of leukemic transformation that will support clinical development of novel diagnostic tools to predict and prevent cancer progression. CONCLUSIONS RNA editing quantification enables rapid detection of malignant progenitors signifying cancer progression and therapeutic resistance, and will aid future RNA editing inhibitor development efforts.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
42 |
19
|
Abstract
Leukemia stem cells are defined as transformed hematopoietic stem cells or committed progenitor cells that have amplified or acquired the stem cell capacity for self-renewal, albeit in a poorly regulated fashion. In this issue of Cancer Cell, Huntly and colleagues report a striking difference in the ability of two leukemia-associated fusion proteins, MOZ-TIF2 and BCR-ABL, to transform myeloid progenitor populations. This rigorous study supports the idea of a hierarchy among leukemia-associated protooncogenes for their ability to endow committed myeloid progenitors with the self-renewal capacity driving leukemic stem cell propagation, and sheds new light on the pathogenesis of chronic and acute myelogenous leukemias.
Collapse
MESH Headings
- Acute Disease
- Cell Differentiation/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myeloid/etiology
- Leukemia, Myeloid/genetics
- Models, Biological
- Myeloid Progenitor Cells/metabolism
- Myeloid Progenitor Cells/pathology
- Myeloid-Lymphoid Leukemia Protein
- Neoplastic Stem Cells
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Proto-Oncogenes/genetics
- Proto-Oncogenes/physiology
- Trans-Activators/genetics
- Trans-Activators/metabolism
- beta Catenin
Collapse
|
Comment |
21 |
39 |
20
|
Jamieson CHM, Amylon MD, Wong RM, Blume KG. Allogeneic hematopoietic cell transplantation for patients with high-risk acute lymphoblastic leukemia in first or second complete remission using fractionated total-body irradiation and high-dose etoposide: a 15-year experience. Exp Hematol 2003; 31:981-6. [PMID: 14550815 DOI: 10.1016/s0301-472x(03)00231-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The rationale for this retrospective study was to identify the long-term overall and event-free survival, relapse, and treatment-related mortality rates of high-risk pediatric and adult first (CR1) and second remission (CR2) patients with acute lymphoblastic leukemia (ALL) who were treated with a single preparatory regimen consisting of fractionated total-body irradiation (FTBI) and high-dose etoposide (VP-16) prior to allogeneic hematopoietic cell transplantation. PATIENTS AND METHODS Over a 15-year period at Stanford University Medical Center, 85 consecutive high-risk pediatric (up to age 17 years; n=41) and adult (age 18-55 years; n=44); patients with leukemia (ALL) in CR1 (n=55) and CR2 (n=30) received HLA-matched sibling allogeneic bone marrow or peripheral blood progenitor grafts after being treated with FTBI (1320 cGy) and high-dose VP-16 (60 mg/kg) as their preparatory regimen. The majority of patients transplanted in CR1 (n=45) had high-risk features, including age above 30 years, white blood cell count at presentation exceeding 25000/microL, extramedullary disease, need for more than 4 weeks of induction chemotherapy to achieve CR, or high-risk chromosomal translocations. Most patients transplanted in CR1 were adults (n=39), whereas patients in CR2 were primarily children or adolescents (n=25). RESULTS The 10-year Kaplan-Meier estimates of relapse were significantly (p=0.05) lower in CR1 patients (15%+/-10%) than in CR2 patients (33%+/-20%). Relapse was the most common cause of treatment failure in patients transplanted in CR2. There was a significantly (p=0.05) higher rate of chronic graft-vs-host disease in CR1 (32%+/-14%) compared with CR2 (9%+/-11%) patients; however, overall survival for patients transplanted in CR1 (66%+/-14%) was comparable (p=0.67) to that of patients transplanted in CR2 (62%+/-19%). Event-free survival rates also were similar (p=0.53) between CR1 (64%+/-14%) and CR2 (61%+/-18%) patients. Treatment-related mortality rates were equivalent (p=0.51) between CR1 and CR2, as well as between Philadelphia chromosome (Ph) positive (Ph(+))and Ph(-) (p=0.23) ALL patients. CONCLUSION Overall, FTBI/VP-16 is a highly effective preparatory regimen that provides durable remissions for patients receiving allogeneic hematopoietic cell transplantation for high-risk ALL in CR1 or CR2.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
38 |
21
|
Raheem O, Kulidjian AA, Wu C, Jeong YB, Yamaguchi T, Smith KM, Goff D, Leu H, Morris SR, Cacalano NA, Masuda K, Jamieson CHM, Kane CJ, Jamieson CAM. A novel patient-derived intra-femoral xenograft model of bone metastatic prostate cancer that recapitulates mixed osteolytic and osteoblastic lesions. J Transl Med 2011; 9:185. [PMID: 22035283 PMCID: PMC3269442 DOI: 10.1186/1479-5876-9-185] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/28/2011] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer metastasizes to bone in the majority of patients with advanced disease leading to painfully debilitating fractures, spinal compression and rapid decline. In addition, prostate cancer bone metastases often become resistant to standard therapies including androgen deprivation, radiation and chemotherapy. There are currently few models to elucidate mechanisms of interaction between the bone microenvironment and prostate cancer. It is, thus, essential to develop new patient-derived, orthotopic models. Here we report the development and characterization of PCSD1 (Prostate Cancer San Diego 1), a novel patient-derived intra-femoral xenograft model of prostate bone metastatic cancer that recapitulates mixed osteolytic and osteoblastic lesions. Methods A femoral bone metastasis of prostate cancer was removed during hemiarthroplasty and transplanted into Rag2-/-;γc-/- mice either intra-femorally or sub-cutaneously. Xenograft tumors that developed were analyzed for prostate cancer biomarker expression using RT-PCR and immunohistochemistry. Osteoblastic, osteolytic and mixed lesion formation was measured using micro-computed tomography (microCT). Results PCSD1 cells isolated directly from the patient formed tumors in all mice that were transplanted intra-femorally or sub-cutaneously into Rag2-/-;γc-/- mice. Xenograft tumors expressed human prostate specific antigen (PSA) in RT-PCR and immunohistochemical analyses. PCSD1 tumors also expressed AR, NKX3.1, Keratins 8 and 18, and AMACR. Histologic and microCT analyses revealed that intra-femoral PCSD1 xenograft tumors formed mixed osteolytic and osteoblastic lesions. PCSD1 tumors have been serially passaged in mice as xenografts intra-femorally or sub-cutaneously as well as grown in culture. Conclusions PCSD1 xenografts tumors were characterized as advanced, luminal epithelial prostate cancer from a bone metastasis using RT-PCR and immunohistochemical biomarker analyses. PCSD1 intra-femoral xenografts formed mixed osteoblastic/osteolytic lesions that closely resembled the bone lesions in the patient. PCSD1 is a new primary prostate cancer bone metastasis-derived xenograft model to study metastatic disease in the bone and to develop novel therapies for inhibiting prostate cancer growth in the bone-niche.
Collapse
|
Journal Article |
14 |
30 |
22
|
Smith EN, Ghia EM, DeBoever CM, Rassenti LZ, Jepsen K, Yoon KA, Matsui H, Rozenzhak S, Alakus H, Shepard PJ, Dai Y, Khosroheidari M, Bina M, Gunderson KL, Messer K, Muthuswamy L, Hudson TJ, Harismendy O, Barrett CL, Jamieson CHM, Carson DA, Kipps TJ, Frazer KA. Genetic and epigenetic profiling of CLL disease progression reveals limited somatic evolution and suggests a relationship to memory-cell development. Blood Cancer J 2015; 5:e303. [PMID: 25860294 PMCID: PMC4450323 DOI: 10.1038/bcj.2015.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 01/01/2023] Open
Abstract
We examined genetic and epigenetic changes that occur during disease progression from indolent to aggressive forms of chronic lymphocytic leukemia (CLL) using serial samples from 27 patients. Analysis of DNA mutations grouped the leukemia cases into three categories: evolving (26%), expanding (26%) and static (47%). Thus, approximately three-quarters of the CLL cases had little to no genetic subclonal evolution. However, we identified significant recurrent DNA methylation changes during progression at 4752 CpGs enriched for regions near Polycomb 2 repressive complex (PRC2) targets. Progression-associated CpGs near the PRC2 targets undergo methylation changes in the same direction during disease progression as during normal development from naive to memory B cells. Our study shows that CLL progression does not typically occur via subclonal evolution, but that certain CpG sites undergo recurrent methylation changes. Our results suggest CLL progression may involve developmental processes shared in common with the generation of normal memory B cells.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
26 |
23
|
Silvestri G, Trotta R, Stramucci L, Ellis JJ, Harb JG, Neviani P, Wang S, Eisfeld AK, Walker CJ, Zhang B, Srutova K, Gambacorti-Passerini C, Pineda G, Jamieson CHM, Stagno F, Vigneri P, Nteliopoulos G, May PC, Reid AG, Garzon R, Roy DC, Moutuou MM, Guimond M, Hokland P, Deininger MW, Fitzgerald G, Harman C, Dazzi F, Milojkovic D, Apperley JF, Marcucci G, Qi J, Polakova KM, Zou Y, Fan X, Baer MR, Calabretta B, Perrotti D. Persistence of Drug-Resistant Leukemic Stem Cells and Impaired NK Cell Immunity in CML Patients Depend on MIR300 Antiproliferative and PP2A-Activating Functions. Blood Cancer Discov 2020; 1:48-67. [PMID: 32974613 DOI: 10.1158/0008-5472.bcd-19-0039] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Persistence of drug-resistant quiescent leukemic stem cells (LSC) and impaired natural killer (NK) cell immune response account for relapse of chronic myelogenous leukemia (CML). Inactivation of protein phosphatase 2A (PP2A) is essential for CML-quiescent LSC survival and NK cell antitumor activity. Here we show that MIR300 has antiproliferative and PP2A-activating functions that are dose dependently differentially induced by CCND2/CDK6 and SET inhibition, respectively. MIR300 is upregulated in CML LSCs and NK cells by bone marrow microenvironment (BMM) signals to induce quiescence and impair immune response, respectively. Conversely, BCR-ABL1 downregulates MIR300 in CML progenitors to prevent growth arrest and PP2A-mediated apoptosis. Quiescent LSCs escape apoptosis by upregulating TUG1 long noncoding RNA that uncouples and limits MIR300 function to cytostasis. Genetic and pharmacologic MIR300 modulation and/or PP2A-activating drug treatment restore NK cell activity, inhibit BMM-induced growth arrest, and selectively trigger LSC apoptosis in vitro and in patient-derived xenografts; hence, the importance of MIR300 and PP2A activity for CML development and therapy.
Collapse
|
Journal Article |
5 |
26 |
24
|
Abe A, Minami Y, Hayakawa F, Kitamura K, Nomura Y, Murata M, Katsumi A, Kiyoi H, Jamieson CHM, Wang JYJ, Naoe T. Retention but significant reduction of BCR-ABL transcript in hematopoietic stem cells in chronic myelogenous leukemia after imatinib therapy. Int J Hematol 2008; 88:471-475. [PMID: 19039626 DOI: 10.1007/s12185-008-0221-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 10/24/2008] [Accepted: 10/31/2008] [Indexed: 02/07/2023]
Abstract
Chronic myelogenous leukemia (CML) is effectively treated with imatinib mesylate (IM), a small molecule inhibitor of the BCR-ABL tyrosine kinase that is expressed in the entire hematopoietic compartment including stem cells (HSC) and progenitors in CML patients. While IM induces disease remission, it does not appear to eradicate BCR-ABL-positive stem cells. We investigated the residual CML cells in HSC and myeloid progenitors isolated using fluorescence-activated cell sorting after IM-therapy. Quantitative real-time polymerase chain reaction detecting BCR-ABL transcripts showed that CML progenitors were eradicated within 12 months while the BCR-ABL-positive HSC remained. However, IM-therapy continuation could significantly decrease the ratio of BCR-ABL to BCR also in the HSC population. Our results implicate that the sorted and purified stem cells are useful for more sensitive quantification of BCR-ABL-positive minimal residual disease.
Collapse
MESH Headings
- Adult
- Benzamides
- Female
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Middle Aged
- Neoplasm, Residual/enzymology
- Neoplasm, Residual/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Piperazines/administration & dosage
- Protein Kinase Inhibitors/administration & dosage
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Pyrimidines/administration & dosage
- RNA, Messenger/metabolism
- RNA, Neoplasm/metabolism
- Remission Induction
- Time Factors
Collapse
|
Research Support, N.I.H., Extramural |
17 |
25 |
25
|
Mondala PK, Vora AA, Zhou T, Lazzari E, Ladel L, Luo X, Kim Y, Costello C, MacLeod AR, Jamieson CHM, Crews LA. Selective antisense oligonucleotide inhibition of human IRF4 prevents malignant myeloma regeneration via cell cycle disruption. Cell Stem Cell 2021; 28:623-636.e9. [PMID: 33476575 DOI: 10.1016/j.stem.2020.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/22/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022]
Abstract
In multiple myeloma, inflammatory and anti-viral pathways promote disease progression and cancer stem cell generation. Using diverse pre-clinical models, we investigated the role of interferon regulatory factor 4 (IRF4) in myeloma progenitor regeneration. In a patient-derived xenograft model that recapitulates IRF4 pathway activation in human myeloma, we test the effects of IRF4 antisense oligonucleotides (ASOs) and identify a lead agent for clinical development (ION251). IRF4 overexpression expands myeloma progenitors, while IRF4 ASOs impair myeloma cell survival and reduce IRF4 and c-MYC expression. IRF4 ASO monotherapy impedes tumor formation and myeloma dissemination in xenograft models, improving animal survival. Moreover, IRF4 ASOs eradicate myeloma progenitors and malignant plasma cells while sparing normal human hematopoietic stem cell development. Mechanistically, IRF4 inhibition disrupts cell cycle progression, downregulates stem cell and cell adhesion transcript expression, and promotes sensitivity to myeloma drugs. These findings will enable rapid clinical development of selective IRF4 inhibitors to prevent myeloma progenitor-driven relapse.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
24 |