1
|
Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P, Allen B, Allocca A, Altin PA, Anderson SB, Anderson WG, Arai K, Arain MA, Araya MC, Arceneaux CC, Areeda JS, Arnaud N, Arun KG, Ascenzi S, Ashton G, Ast M, Aston SM, Astone P, Aufmuth P, Aulbert C, Babak S, Bacon P, Bader MKM, Baker PT, Baldaccini F, Ballardin G, Ballmer SW, Barayoga JC, Barclay SE, Barish BC, Barker D, Barone F, Barr B, Barsotti L, Barsuglia M, Barta D, Bartlett J, Barton MA, Bartos I, Bassiri R, Basti A, Batch JC, Baune C, Bavigadda V, Bazzan M, Behnke B, Bejger M, Belczynski C, Bell AS, Bell CJ, Berger BK, Bergman J, Bergmann G, Berry CPL, Bersanetti D, Bertolini A, Betzwieser J, Bhagwat S, Bhandare R, Bilenko IA, Billingsley G, Birch J, Birney R, Birnholtz O, Biscans S, Bisht A, Bitossi M, Biwer C, Bizouard MA, Blackburn JK, Blair CD, Blair DG, Blair RM, Bloemen S, Bock O, Bodiya TP, Boer M, Bogaert G, Bogan C, Bohe A, Bojtos P, Bond C, et alAbbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P, Allen B, Allocca A, Altin PA, Anderson SB, Anderson WG, Arai K, Arain MA, Araya MC, Arceneaux CC, Areeda JS, Arnaud N, Arun KG, Ascenzi S, Ashton G, Ast M, Aston SM, Astone P, Aufmuth P, Aulbert C, Babak S, Bacon P, Bader MKM, Baker PT, Baldaccini F, Ballardin G, Ballmer SW, Barayoga JC, Barclay SE, Barish BC, Barker D, Barone F, Barr B, Barsotti L, Barsuglia M, Barta D, Bartlett J, Barton MA, Bartos I, Bassiri R, Basti A, Batch JC, Baune C, Bavigadda V, Bazzan M, Behnke B, Bejger M, Belczynski C, Bell AS, Bell CJ, Berger BK, Bergman J, Bergmann G, Berry CPL, Bersanetti D, Bertolini A, Betzwieser J, Bhagwat S, Bhandare R, Bilenko IA, Billingsley G, Birch J, Birney R, Birnholtz O, Biscans S, Bisht A, Bitossi M, Biwer C, Bizouard MA, Blackburn JK, Blair CD, Blair DG, Blair RM, Bloemen S, Bock O, Bodiya TP, Boer M, Bogaert G, Bogan C, Bohe A, Bojtos P, Bond C, Bondu F, Bonnand R, Boom BA, Bork R, Boschi V, Bose S, Bouffanais Y, Bozzi A, Bradaschia C, Brady PR, Braginsky VB, Branchesi M, Brau JE, Briant T, Brillet A, Brinkmann M, Brisson V, Brockill P, Brooks AF, Brown DA, Brown DD, Brown NM, Buchanan CC, Buikema A, Bulik T, Bulten HJ, Buonanno A, Buskulic D, Buy C, Byer RL, Cabero M, Cadonati L, Cagnoli G, Cahillane C, Calderón Bustillo J, Callister T, Calloni E, Camp JB, Cannon KC, Cao J, Capano CD, Capocasa E, Carbognani F, Caride S, Casanueva Diaz J, Casentini C, Caudill S, Cavaglià M, Cavalier F, Cavalieri R, Cella G, Cepeda CB, Cerboni Baiardi L, Cerretani G, Cesarini E, Chakraborty R, Chalermsongsak T, Chamberlin SJ, Chan M, Chao S, Charlton P, Chassande-Mottin E, Chen HY, Chen Y, Cheng C, Chincarini A, Chiummo A, Cho HS, Cho M, Chow JH, Christensen N, Chu Q, Chua S, Chung S, Ciani G, Clara F, Clark JA, Cleva F, Coccia E, Cohadon PF, Colla A, Collette CG, Cominsky L, Constancio M, Conte A, Conti L, Cook D, Corbitt TR, Cornish N, Corsi A, Cortese S, Costa CA, Coughlin MW, Coughlin SB, Coulon JP, Countryman ST, Couvares P, Cowan EE, Coward DM, Cowart MJ, Coyne DC, Coyne R, Craig K, Creighton JDE, Creighton TD, Cripe J, Crowder SG, Cruise AM, Cumming A, Cunningham L, Cuoco E, Dal Canton T, Danilishin SL, D'Antonio S, Danzmann K, Darman NS, Da Silva Costa CF, Dattilo V, Dave I, Daveloza HP, Davier M, Davies GS, Daw EJ, Day R, De S, DeBra D, Debreczeni G, Degallaix J, De Laurentis M, Deléglise S, Del Pozzo W, Denker T, Dent T, Dereli H, Dergachev V, DeRosa RT, De Rosa R, DeSalvo R, Dhurandhar S, Díaz MC, Di Fiore L, Di Giovanni M, Di Lieto A, Di Pace S, Di Palma I, Di Virgilio A, Dojcinoski G, Dolique V, Donovan F, Dooley KL, Doravari S, Douglas R, Downes TP, Drago M, Drever RWP, Driggers JC, Du Z, Ducrot M, Dwyer SE, Edo TB, Edwards MC, Effler A, Eggenstein HB, Ehrens P, Eichholz J, Eikenberry SS, Engels W, Essick RC, Etzel T, Evans M, Evans TM, Everett R, Factourovich M, Fafone V, Fair H, Fairhurst S, Fan X, Fang Q, Farinon S, Farr B, Farr WM, Favata M, Fays M, Fehrmann H, Fejer MM, Feldbaum D, Ferrante I, Ferreira EC, Ferrini F, Fidecaro F, Finn LS, Fiori I, Fiorucci D, Fisher RP, Flaminio R, Fletcher M, Fong H, Fournier JD, Franco S, Frasca S, Frasconi F, Frede M, Frei Z, Freise A, Frey R, Frey V, Fricke TT, Fritschel P, Frolov VV, Fulda P, Fyffe M, Gabbard HAG, Gair JR, Gammaitoni L, Gaonkar SG, Garufi F, Gatto A, Gaur G, Gehrels N, Gemme G, Gendre B, Genin E, Gennai A, George J, Gergely L, Germain V, Ghosh A, Ghosh A, Ghosh S, Giaime JA, Giardina KD, Giazotto A, Gill K, Glaefke A, Gleason JR, Goetz E, Goetz R, Gondan L, González G, Gonzalez Castro JM, Gopakumar A, Gordon NA, Gorodetsky ML, Gossan SE, Gosselin M, Gouaty R, Graef C, Graff PB, Granata M, Grant A, Gras S, Gray C, Greco G, Green AC, Greenhalgh RJS, Groot P, Grote H, Grunewald S, Guidi GM, Guo X, Gupta A, Gupta MK, Gushwa KE, Gustafson EK, Gustafson R, Hacker JJ, Hall BR, Hall ED, Hammond G, Haney M, Hanke MM, Hanks J, Hanna C, Hannam MD, Hanson J, Hardwick T, Harms J, Harry GM, Harry IW, Hart MJ, Hartman MT, Haster CJ, Haughian K, Healy J, Heefner J, Heidmann A, Heintze MC, Heinzel G, Heitmann H, Hello P, Hemming G, Hendry M, Heng IS, Hennig J, Heptonstall AW, Heurs M, Hild S, Hoak D, Hodge KA, Hofman D, Hollitt SE, Holt K, Holz DE, Hopkins P, Hosken DJ, Hough J, Houston EA, Howell EJ, Hu YM, Huang S, Huerta EA, Huet D, Hughey B, Husa S, Huttner SH, Huynh-Dinh T, Idrisy A, Indik N, Ingram DR, Inta R, Isa HN, Isac JM, Isi M, Islas G, Isogai T, Iyer BR, Izumi K, Jacobson MB, Jacqmin T, Jang H, Jani K, Jaranowski P, Jawahar S, Jiménez-Forteza F, Johnson WW, Johnson-McDaniel NK, Jones DI, Jones R, Jonker RJG, Ju L, Haris K, Kalaghatgi CV, Kalogera V, Kandhasamy S, Kang G, Kanner JB, Karki S, Kasprzack M, Katsavounidis E, Katzman W, Kaufer S, Kaur T, Kawabe K, Kawazoe F, Kéfélian F, Kehl MS, Keitel D, Kelley DB, Kells W, Kennedy R, Keppel DG, Key JS, Khalaidovski A, Khalili FY, Khan I, Khan S, Khan Z, Khazanov EA, Kijbunchoo N, Kim C, Kim J, Kim K, Kim NG, Kim N, Kim YM, King EJ, King PJ, Kinzel DL, Kissel JS, Kleybolte L, Klimenko S, Koehlenbeck SM, Kokeyama K, Koley S, Kondrashov V, Kontos A, Koranda S, Korobko M, Korth WZ, Kowalska I, Kozak DB, Kringel V, Krishnan B, Królak A, Krueger C, Kuehn G, Kumar P, Kumar R, Kuo L, Kutynia A, Kwee P, Lackey BD, Landry M, Lange J, Lantz B, Lasky PD, Lazzarini A, Lazzaro C, Leaci P, Leavey S, Lebigot EO, Lee CH, Lee HK, Lee HM, Lee K, Lenon A, Leonardi M, Leong JR, Leroy N, Letendre N, Levin Y, Levine BM, Li TGF, Libson A, Littenberg TB, Lockerbie NA, Logue J, Lombardi AL, London LT, Lord JE, Lorenzini M, Loriette V, Lormand M, Losurdo G, Lough JD, Lousto CO, Lovelace G, Lück H, Lundgren AP, Luo J, Lynch R, Ma Y, MacDonald T, Machenschalk B, MacInnis M, Macleod DM, Magaña-Sandoval F, Magee RM, Mageswaran M, Majorana E, Maksimovic I, Malvezzi V, Man N, Mandel I, Mandic V, Mangano V, Mansell GL, Manske M, Mantovani M, Marchesoni F, Marion F, Márka S, Márka Z, Markosyan AS, Maros E, Martelli F, Martellini L, Martin IW, Martin RM, Martynov DV, Marx JN, Mason K, Masserot A, Massinger TJ, Masso-Reid M, Matichard F, Matone L, Mavalvala N, Mazumder N, Mazzolo G, McCarthy R, McClelland DE, McCormick S, McGuire SC, McIntyre G, McIver J, McManus DJ, McWilliams ST, Meacher D, Meadors GD, Meidam J, Melatos A, Mendell G, Mendoza-Gandara D, Mercer RA, Merilh E, Merzougui M, Meshkov S, Messenger C, Messick C, Meyers PM, Mezzani F, Miao H, Michel C, Middleton H, Mikhailov EE, Milano L, Miller J, Millhouse M, Minenkov Y, Ming J, Mirshekari S, Mishra C, Mitra S, Mitrofanov VP, Mitselmakher G, Mittleman R, Moggi A, Mohan M, Mohapatra SRP, Montani M, Moore BC, Moore CJ, Moraru D, Moreno G, Morriss SR, Mossavi K, Mours B, Mow-Lowry CM, Mueller CL, Mueller G, Muir AW, Mukherjee A, Mukherjee D, Mukherjee S, Mukund N, Mullavey A, Munch J, Murphy DJ, Murray PG, Mytidis A, Nardecchia I, Naticchioni L, Nayak RK, Necula V, Nedkova K, Nelemans G, Neri M, Neunzert A, Newton G, Nguyen TT, Nielsen AB, Nissanke S, Nitz A, Nocera F, Nolting D, Normandin MEN, Nuttall LK, Oberling J, Ochsner E, O'Dell J, Oelker E, Ogin GH, Oh JJ, Oh SH, Ohme F, Oliver M, Oppermann P, Oram RJ, O'Reilly B, O'Shaughnessy R, Ott CD, Ottaway DJ, Ottens RS, Overmier H, Owen BJ, Pai A, Pai SA, Palamos JR, Palashov O, Palomba C, Pal-Singh A, Pan H, Pan Y, Pankow C, Pannarale F, Pant BC, Paoletti F, Paoli A, Papa MA, Paris HR, Parker W, Pascucci D, Pasqualetti A, Passaquieti R, Passuello D, Patricelli B, Patrick Z, Pearlstone BL, Pedraza M, Pedurand R, Pekowsky L, Pele A, Penn S, Perreca A, Pfeiffer HP, Phelps M, Piccinni O, Pichot M, Pickenpack M, Piergiovanni F, Pierro V, Pillant G, Pinard L, Pinto IM, Pitkin M, Poeld JH, Poggiani R, Popolizio P, Post A, Powell J, Prasad J, Predoi V, Premachandra SS, Prestegard T, Price LR, Prijatelj M, Principe M, Privitera S, Prix R, Prodi GA, Prokhorov L, Puncken O, Punturo M, Puppo P, Pürrer M, Qi H, Qin J, Quetschke V, Quintero EA, Quitzow-James R, Raab FJ, Rabeling DS, Radkins H, Raffai P, Raja S, Rakhmanov M, Ramet CR, Rapagnani P, Raymond V, Razzano M, Re V, Read J, Reed CM, Regimbau T, Rei L, Reid S, Reitze DH, Rew H, Reyes SD, Ricci F, Riles K, Robertson NA, Robie R, Robinet F, Rocchi A, Rolland L, Rollins JG, Roma VJ, Romano JD, Romano R, Romanov G, Romie JH, Rosińska D, Rowan S, Rüdiger A, Ruggi P, Ryan K, Sachdev S, Sadecki T, Sadeghian L, Salconi L, Saleem M, Salemi F, Samajdar A, Sammut L, Sampson LM, Sanchez EJ, Sandberg V, Sandeen B, Sanders GH, Sanders JR, Sassolas B, Sathyaprakash BS, Saulson PR, Sauter O, Savage RL, Sawadsky A, Schale P, Schilling R, Schmidt J, Schmidt P, Schnabel R, Schofield RMS, Schönbeck A, Schreiber E, Schuette D, Schutz BF, Scott J, Scott SM, Sellers D, Sengupta AS, Sentenac D, Sequino V, Sergeev A, Serna G, Setyawati Y, Sevigny A, Shaddock DA, Shaffer T, Shah S, Shahriar MS, Shaltev M, Shao Z, Shapiro B, Shawhan P, Sheperd A, Shoemaker DH, Shoemaker DM, Siellez K, Siemens X, Sigg D, Silva AD, Simakov D, Singer A, Singer LP, Singh A, Singh R, Singhal A, Sintes AM, Slagmolen BJJ, Smith JR, Smith MR, Smith ND, Smith RJE, Son EJ, Sorazu B, Sorrentino F, Souradeep T, Srivastava AK, Staley A, Steinke M, Steinlechner J, Steinlechner S, Steinmeyer D, Stephens BC, Stevenson SP, Stone R, Strain KA, Straniero N, Stratta G, Strauss NA, Strigin S, Sturani R, Stuver AL, Summerscales TZ, Sun L, Sutton PJ, Swinkels BL, Szczepańczyk MJ, Tacca M, Talukder D, Tanner DB, Tápai M, Tarabrin SP, Taracchini A, Taylor R, Theeg T, Thirugnanasambandam MP, Thomas EG, Thomas M, Thomas P, Thorne KA, Thorne KS, Thrane E, Tiwari S, Tiwari V, Tokmakov KV, Tomlinson C, Tonelli M, Torres CV, Torrie CI, Töyrä D, Travasso F, Traylor G, Trifirò D, Tringali MC, Trozzo L, Tse M, Turconi M, Tuyenbayev D, Ugolini D, Unnikrishnan CS, Urban AL, Usman SA, Vahlbruch H, Vajente G, Valdes G, Vallisneri M, van Bakel N, van Beuzekom M, van den Brand JFJ, Van Den Broeck C, Vander-Hyde DC, van der Schaaf L, van Heijningen JV, van Veggel AA, Vardaro M, Vass S, Vasúth M, Vaulin R, Vecchio A, Vedovato G, Veitch J, Veitch PJ, Venkateswara K, Verkindt D, Vetrano F, Viceré A, Vinciguerra S, Vine DJ, Vinet JY, Vitale S, Vo T, Vocca H, Vorvick C, Voss D, Vousden WD, Vyatchanin SP, Wade AR, Wade LE, Wade M, Waldman SJ, Walker M, Wallace L, Walsh S, Wang G, Wang H, Wang M, Wang X, Wang Y, Ward H, Ward RL, Warner J, Was M, Weaver B, Wei LW, Weinert M, Weinstein AJ, Weiss R, Welborn T, Wen L, Weßels P, Westphal T, Wette K, Whelan JT, Whitcomb SE, White DJ, Whiting BF, Wiesner K, Wilkinson C, Willems PA, Williams L, Williams RD, Williamson AR, Willis JL, Willke B, Wimmer MH, Winkelmann L, Winkler W, Wipf CC, Wiseman AG, Wittel H, Woan G, Worden J, Wright JL, Wu G, Yablon J, Yakushin I, Yam W, Yamamoto H, Yancey CC, Yap MJ, Yu H, Yvert M, Zadrożny A, Zangrando L, Zanolin M, Zendri JP, Zevin M, Zhang F, Zhang L, Zhang M, Zhang Y, Zhao C, Zhou M, Zhou Z, Zhu XJ, Zucker ME, Zuraw SE, Zweizig J. Observation of Gravitational Waves from a Binary Black Hole Merger. PHYSICAL REVIEW LETTERS 2016; 116:061102. [PMID: 26918975 DOI: 10.1103/physrevlett.116.061102] [Show More Authors] [Citation(s) in RCA: 1455] [Impact Index Per Article: 161.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 05/04/2023]
Abstract
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
Collapse
|
|
9 |
1455 |
2
|
Shi H, Ishitani M, Kim C, Zhu JK. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A 2000; 97:6896-901. [PMID: 10823923 PMCID: PMC18772 DOI: 10.1073/pnas.120170197] [Citation(s) in RCA: 978] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Arabidopsis thaliana, the SOS1 (Salt Overly Sensitive 1) locus is essential for Na(+) and K(+) homeostasis, and sos1 mutations render plants more sensitive to growth inhibition by high Na(+) and low K(+) environments. SOS1 is cloned and predicted to encode a 127-kDa protein with 12 transmembrane domains in the N-terminal part and a long hydrophilic cytoplasmic tail in the C-terminal part. The transmembrane region of SOS1 has significant sequence similarities to plasma membrane Na(+)/H(+) antiporters from bacteria and fungi. Sequence analysis of various sos1 mutant alleles reveals several residues and regions in the transmembrane as well as the tail parts that are critical for SOS1 function in plant salt tolerance. SOS1 gene expression in plants is up-regulated in response to NaCl stress. This up-regulation is abated in sos3 or sos2 mutant plants, suggesting that it is controlled by the SOS3/SOS2 regulatory pathway.
Collapse
|
research-article |
25 |
978 |
3
|
Burgay M, D'Amico N, Possenti A, Manchester RN, Lyne AG, Joshi BC, McLaughlin MA, Kramer M, Sarkissian JM, Camilo F, Kalogera V, Kim C, Lorimer DR. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature 2003; 426:531-3. [PMID: 14654834 DOI: 10.1038/nature02124] [Citation(s) in RCA: 724] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Accepted: 10/15/2003] [Indexed: 11/08/2022]
Abstract
The merger of close binary systems containing two neutron stars should produce a burst of gravitational waves, as predicted by the theory of general relativity. A reliable estimate of the double-neutron-star merger rate in the Galaxy is crucial in order to predict whether current gravity wave detectors will be successful in detecting such bursts. Present estimates of this rate are rather low, because we know of only a few double-neutron-star binaries with merger times less than the age of the Universe. Here we report the discovery of a 22-ms pulsar, PSR J0737-3039, which is a member of a highly relativistic double-neutron-star binary with an orbital period of 2.4 hours. This system will merge in about 85 Myr, a time much shorter than for any other known neutron-star binary. Together with the relatively low radio luminosity of PSR J0737-3039, this timescale implies an order-of-magnitude increase in the predicted merger rate for double-neutron-star systems in our Galaxy (and in the rest of the Universe).
Collapse
|
|
22 |
724 |
4
|
Pitcher JA, Inglese J, Higgins JB, Arriza JL, Casey PJ, Kim C, Benovic JL, Kwatra MM, Caron MG, Lefkowitz RJ. Role of beta gamma subunits of G proteins in targeting the beta-adrenergic receptor kinase to membrane-bound receptors. Science 1992; 257:1264-7. [PMID: 1325672 DOI: 10.1126/science.1325672] [Citation(s) in RCA: 563] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The rate and extent of the agonist-dependent phosphorylation of beta 2-adrenergic receptors and rhodopsin by beta-adrenergic receptor kinase (beta ARK) are markedly enhanced on addition of G protein beta gamma subunits. With a model peptide substrate it was demonstrated that direct activation of the kinase could not account for this effect. G protein beta gamma subunits were shown to interact directly with the COOH-terminal region of beta ARK, and formation of this beta ARK-beta gamma complex resulted in receptor-facilitated membrane localization of the enzyme. The beta gamma subunits of transducin were less effective at both enhancing the rate of receptor phosphorylation and binding to the COOH-terminus of beta ARK, suggesting that the enzyme preferentially binds specific beta gamma complexes. The beta gamma-mediated membrane localization of beta ARK serves to intimately link receptor activation to beta ARK-mediated desensitization.
Collapse
|
|
33 |
563 |
5
|
Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G. T-DNA insertional mutagenesis for functional genomics in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 22:561-70. [PMID: 10886776 DOI: 10.1046/j.1365-313x.2000.00767.x] [Citation(s) in RCA: 461] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We have produced 22 090 primary transgenic rice plants that carry a T-DNA insertion, which has resulted in 18 358 fertile lines. Genomic DNA gel-blot and PCR analyses have shown that approximately 65% of the population contains more than one copy of the inserted T-DNA. Hygromycin resistance tests revealed that transgenic plants contain an average of 1.4 loci of T-DNA inserts. Therefore, it can be estimated that approximately 25 700 taggings have been generated. The binary vector used in the insertion contained the promoterless beta-glucuronidase (GUS) reporter gene with an intron and multiple splicing donors and acceptors immediately next to the right border. Therefore, this gene trap vector is able to detect a gene fusion between GUS and an endogenous gene, which is tagged by T-DNA. Histochemical GUS assays were carried out in the leaves and roots from 5353 lines, mature flowers from 7026 lines, and developing seeds from 1948 lines. The data revealed that 1.6-2.1% of tested organs were GUS-positive in the tested organs, and that their GUS expression patterns were organ- or tissue-specific or ubiquitous in all parts of the plant. The large population of T-DNA-tagged lines will be useful for identifying insertional mutants in various genes and for discovering new genes in rice.
Collapse
|
|
25 |
461 |
6
|
Park EK, Jung HS, Yang HI, Yoo MC, Kim C, Kim KS. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm Res 2007; 56:45-50. [PMID: 17334670 DOI: 10.1007/s00011-007-6115-5] [Citation(s) in RCA: 440] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES The differentiation of THP-1 monocytes into macrophages is mainly conducted at a phorbol 12-myristate 13-acetate (PMA) concentration of 10-400 ng/ml. However, this concentration might be high enough to upregulate the expressions of some genes in differentiated macrophages, which could overwhelm gene expression increases induced by other stimuli. The present study was performed to optimize the PMA concentration required to differentiate monocytes whilst minimizing gene upregulation. METHODS THP-1 cells were treated with 2.5-100 ng/ml PMA and analyzed for the extent of cell adherence, the surface marker of macrophages, and stable differentiation without undesirable gene upregulation. The stably differentiated THP-1 cells at the minimum PMA concentration were treated with 10 ng/ml LPS or 125 nM amyloid beta (Abeta(1-42)). RESULTS The treatment of THP-1 with 5 ng/ml PMA was found to be sufficient to induce stable differentiation without undesirable gene upregulation. These macrophages differentiated at 5 ng/ml responded well to secondary weak stimuli like 10 ng/ml LPS or 125 nM of amyloid beta (Abeta(1-42)). CONCLUSIONS This finding suggests that THP-1 cells are well differentiated by 5 ng/ml PMA, and that the resulting differentiated macrophages respond well to secondary weak stimuli without being overwhelmed by undesirable gene upregulation induced by PMA.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
440 |
7
|
Roberts AW, Kim C, Zhen L, Lowe JB, Kapur R, Petryniak B, Spaetti A, Pollock JD, Borneo JB, Bradford GB, Atkinson SJ, Dinauer MC, Williams DA. Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 1999; 10:183-96. [PMID: 10072071 DOI: 10.1016/s1074-7613(00)80019-9] [Citation(s) in RCA: 434] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In mammals, the Rho family GTPase Rac2 is restricted in expression to hematopoietic cells, where it is coexpressed with Rac1. Rac2-deficient mice were created to define the physiological requirement for two near-identical Rac proteins in hematopoietic cells. rac2-/- neutrophils displayed significant defects in chemotaxis, in shear-dependent L-selectin-mediated capture on the endothelial substrate Glycam-1, and in both F-actin generation and p38 and, unexpectedly, p42/p44 MAP kinase activation induced by chemoattractants. Superoxide production by rac2-/- bone marrow neutrophils was significantly reduced compared to wild type, but it was normal in activated peritoneal exudate neutrophils. These defects were reflected in vivo by baseline neutrophilia, reduced inflammatory peritoneal exudate formation, and increased mortality when challenged with Aspergillus fumigatus. Rac2 is an essential regulator of multiple specialized neutrophil functions.
Collapse
|
|
26 |
434 |
8
|
Elia J, Gai X, Xie HM, Perin JC, Geiger E, Glessner JT, D'arcy M, deBerardinis R, Frackelton E, Kim C, Lantieri F, Muganga BM, Wang L, Takeda T, Rappaport EF, Grant SFA, Berrettini W, Devoto M, Shaikh TH, Hakonarson H, White PS. Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol Psychiatry 2010; 15:637-46. [PMID: 19546859 PMCID: PMC2877197 DOI: 10.1038/mp.2009.57] [Citation(s) in RCA: 399] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and highly heritable disorder, but specific genetic factors underlying risk remain elusive. To assess the role of structural variation in ADHD, we identified 222 inherited copy number variations (CNVs) within 335 ADHD patients and their parents that were not detected in 2026 unrelated healthy individuals. Although no excess CNVs, either deletions or duplications, were found in the ADHD cohort relative to controls, the inherited rare CNV-associated gene set was significantly enriched for genes reported as candidates in studies of autism, schizophrenia and Tourette syndrome, including A2BP1, AUTS2, CNTNAP2 and IMMP2L. The ADHD CNV gene set was also significantly enriched for genes known to be important for psychological and neurological functions, including learning, behavior, synaptic transmission and central nervous system development. Four independent deletions were located within the protein tyrosine phosphatase gene, PTPRD, recently implicated as a candidate gene for restless legs syndrome, which frequently presents with ADHD. A deletion within the glutamate receptor gene, GRM5, was found in an affected parent and all three affected offspring whose ADHD phenotypes closely resembled those of the GRM5 null mouse. Together, these results suggest that rare inherited structural variations play an important role in ADHD development and indicate a set of putative candidate genes for further study in the etiology of ADHD.
Collapse
|
research-article |
15 |
399 |
9
|
Kim BJ, Jin H, Moon SJ, Kim JY, Park BG, Leem CS, Yu J, Noh TW, Kim C, Oh SJ, Park JH, Durairaj V, Cao G, Rotenberg E. Novel Jeff=1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. PHYSICAL REVIEW LETTERS 2008; 101:076402. [PMID: 18764560 DOI: 10.1103/physrevlett.101.076402] [Citation(s) in RCA: 371] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Indexed: 05/23/2023]
Abstract
We investigated the electronic structure of 5d transition-metal oxide Sr2IrO4 using angle-resolved photoemission, optical conductivity, x-ray absorption measurements, and first-principles band calculations. The system was found to be well described by novel effective total angular momentum Jeff states, in which the relativistic spin-orbit coupling is fully taken into account under a large crystal field. Despite delocalized Ir 5d states, the Jeff states form such narrow bands that even a small correlation energy leads to the Jeff=1/2 Mott ground state with unique electronic and magnetic behaviors, suggesting a new class of Jeff quantum spin driven correlated-electron phenomena.
Collapse
|
|
17 |
371 |
10
|
Ghio AJ, Kim C, Devlin RB. Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am J Respir Crit Care Med 2000; 162:981-8. [PMID: 10988117 DOI: 10.1164/ajrccm.162.3.9911115] [Citation(s) in RCA: 328] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We tested the hypothesis that exposure of healthy volunteers to concentrated ambient particles (CAPS) is associated with an influx of inflammatory cells into the lower respiratory tract. Thirty-eight volunteers were exposed to either filtered air or particles concentrated from the immediate environment of the Environmental Protection Agency (EPA) Human Studies Facility in Chapel Hill, North Carolina. Particle concentrations in the chamber during the exposures ranged from 23.1 to 311.1 microgram/m(3). While in the exposure chamber, volunteers alternated between moderate exercise (15 min) and rest (15 min) for a total exposure time of 2 h. There were no symptoms noted by volunteers after the exposure. Similarly, there were no decrements in pulmonary function. Eighteen hours after exposure, analysis of cells and fluid obtained by bronchoalveolar lavage showed a mild increase in neutrophils in both the bronchial and alveolar fractions in those individuals exposed to CAPS (8.44 +/- 1.99 and 4.20 +/- 1.69%, respectively, in those with the greatest exposure) relative to filtered air (2.69 +/- 0.55 and 0.75 +/- 0.28%, respectively). Blood obtained 18 h after exposure to CAPS contained significantly more fibrinogen relative to samples obtained before exposure. We conclude that ambient air particles are capable of inducing a mild inflammation in the lower respiratory tract, as well as an increased concentration of blood fibrinogen.
Collapse
|
|
25 |
328 |
11
|
August PR, Tang L, Yoon YJ, Ning S, Müller R, Yu TW, Taylor M, Hoffmann D, Kim CG, Zhang X, Hutchinson CR, Floss HG. Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. CHEMISTRY & BIOLOGY 1998; 5:69-79. [PMID: 9512878 DOI: 10.1016/s1074-5521(98)90141-7] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The ansamycin class of antibiotics are produced by various Actinomycetes. Their carbon framework arises from the polyketide pathway via a polyketide synthase (PKS) that uses an unusual starter unit. Rifamycin (rif), produced by Amycolatopsis mediterranei, is the archetype ansamycin and it is medically important. Although its basic precursors (3-amino-5-hydroxy benzoic acid AHBA, and acetic and propionic acids) had been established, and several biosynthetic intermediates had been identified, very little was known about the origin of AHBA nor had the PKS and the various genes and enzymes that modify the initial intermediate been characterized. RESULTS A set of 34 genes clustered around the rifK gene encoding AHBA synthase were defined by sequencing all but 5 kilobases (kb) of a 95 kb contiguous region of DNA from A. mediterranei. The involvement of some of the genes in the biosynthesis of rifamycin B was examined. At least five genes were shown to be essential for the synthesis of AHBA, five genes were determined to encode the modular type I PKS that uses AHBA as the starter unit, and 20 or more genes appear to govern modification of the polyketide-derived framework, and rifamycin resistance and export. Putative regulatory genes were also identified. Disruption of the PKS genes at the end of rifA abolished rifamycin B production and resulted in the formation of P8/1-OG, a known shunt product of rifamycin biosynthesis, whereas disruption of the orf6 and orf9 genes, which may encode deoxysugar biosynthesis enzymes, had no apparent effect. CONCLUSIONS Rifamycin production in A. mediterranei is governed by a single gene cluster consisting of structural, resistance and export, and regulatory genes. The genes characterized here could be modified to produce novel forms of the rifamycins that may be effective against rifamycin-resistant microorganisms.
Collapse
|
|
27 |
273 |
12
|
Robbins BL, Srinivas RV, Kim C, Bischofberger N, Fridland A. Anti-human immunodeficiency virus activity and cellular metabolism of a potential prodrug of the acyclic nucleoside phosphonate 9-R-(2-phosphonomethoxypropyl)adenine (PMPA), Bis(isopropyloxymethylcarbonyl)PMPA. Antimicrob Agents Chemother 1998; 42:612-7. [PMID: 9517941 PMCID: PMC105507 DOI: 10.1128/aac.42.3.612] [Citation(s) in RCA: 265] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bis(isopropyloxymethylcarbonyl) 9-R-(2-phosphonomethoxypropyl)adenine [bis(POC)PMPA] has been identified as a novel prodrug of PMPA. The anti-human immunodeficiency virus activity of bis(POC)PMPA was >100-fold greater than that of PMPA in both an established T-cell line and primary peripheral blood lymphocytes. This improved efficacy was shown to be due to a rapid intracellular uptake of the prodrug resulting in an increased intracellular accumulation of PMPA diphosphate (PMPApp), the pharmacologically active metabolite. PMPApp levels in bis(POC)PMPA-treated cells exceeded by >1,000-fold the levels seen in cells treated with unmodified PMPA in both resting and activated peripheral blood lymphocytes. Significant differences in the intracellular catabolism of PMPA metabolites were noted between the resting and activated lymphocytes. The half-life for the disappearance of PMPApp, derived from either bis(POC)PMPA or PMPA, was 12 to 15 h in the activated lymphocytes and 33 to 50 h in the resting lymphocytes. This long persistence of PMPApp, particularly in resting lymphocytes, may be unique to the nucleoside phosphonate analogs and indicates that effective levels of the active metabolite can be achieved and maintained with relatively infrequent administration of the parent drug.
Collapse
|
research-article |
27 |
265 |
13
|
Gardner RG, Swarbrick GM, Bays NW, Cronin SR, Wilhovsky S, Seelig L, Kim C, Hampton RY. Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3p. J Cell Biol 2000; 151:69-82. [PMID: 11018054 PMCID: PMC2189800 DOI: 10.1083/jcb.151.1.69] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is required for ubiquitin-mediated destruction of numerous proteins. ERAD occurs by processes on both sides of the ER membrane, including lumenal substrate scanning and cytosolic destruction by the proteasome. The ER resident membrane proteins Hrd1p and Hrd3p play central roles in ERAD. We show that these two proteins directly interact through the Hrd1p transmembrane domain, allowing Hrd1p stability by Hrd3p-dependent control of the Hrd1p RING-H2 domain activity. Rigorous reevaluation of Hrd1p topology demonstrated that the Hrd1p RING-H2 domain is located and functions in the cytosol. An engineered, completely lumenal, truncated version of Hrd3p functioned normally in both ERAD and Hrd1p stabilization, indicating that the lumenal domain of Hrd3p regulates the cytosolic Hrd1p RING-H2 domain by signaling through the Hrd1p transmembrane domain. Additionally, we identified a lumenal region of Hrd3p dispensable for regulation of Hrd1p stability, but absolutely required for normal ERAD. Our studies show that Hrd1p and Hrd3p form a stoichiometric complex with ERAD determinants in both the lumen and the cytosol. The HRD complex engages in lumen to cytosol communication required for regulation of Hrd1p stability and the coordination of ERAD events on both sides of the ER membrane.
Collapse
|
research-article |
25 |
257 |
14
|
Abstract
To determine the accuracy of the exercise electrocardiogram (ECG), exercise thallium, and exercise echocardiogram (echo) for the diagnosis of coronary artery disease in women, English language studies published between 1966 and 1995 were identified through a MEDLINE search. Studies that contained data on at least 50 women who underwent both an exercise test and coronary angiography were examined. Studies were reviewed for sensitivity, specificity, and methodologic characteristics by 2 independent reviewers. Nineteen studies met the inclusion criteria for exercise electrocardiography, 5 studies for exercise thallium, and 3 studies for exercise echo. The exercise ECG had a weighted mean sensitivity, specificity, and a likelihood ratio (LR) of 0.61 (95% confidence intervals 0.54 to 0.68), 0.70 (0.64 to 0.75), (+) LR 2.25 (1.84 to 2.66), (-) LR 0.55 (0.47 to 0.62), respectively. The exercise thallium had a weighted mean sensitivity, specificity, and LRs of 0.78 (0.72 to 0.83), 0.64 (0.51 to 0.77), (+) LR 2.87 (1.0 to 4.96), (-) LR 0.36 (0.27 to 0.45). The exercise echo had a weighted mean sensitivity, specificity, and LRs of 0.86 (0.75 to 0.96), 0.79 (0.72 to 0.86), (+) LR 4.29 (2.93 to 5.65), (-) LR 0.18 (0.05 to 0.31). Thallium subset analysis revealed that studies using planar imaging were more specific than those using tomographic imaging. Thus, currently available exercise tests are only moderately sensitive and specific for the diagnosis of coronary artery disease in women.
Collapse
|
Meta-Analysis |
26 |
256 |
15
|
Ronning F, Kim C, Feng DL, Marshall DS, Loeser AG, Miller LL, Eckstein JN, Bozovic I, Shen Z. Photoemission evidence for a remnant fermi surface and a d-wave-like dispersion in insulating Ca2CuO2Cl2. Science 1998; 282:2067-72. [PMID: 9851925 DOI: 10.1126/science.282.5396.2067] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
An angle-resolved photoemission study is reported on Ca2CuO2Cl2, a parent compound of high-Tc superconductors. Analysis of the electron occupation probability, n(k), from the spectra shows a steep drop in spectral intensity across a contour that is close to the Fermi surface predicted by the band calculation. This analysis reveals a Fermi surface remnant, even though Ca2CuO2Cl2 is a Mott insulator. The lowest energy peak exhibits a dispersion with approximately the &cjs3539;coskxa - coskya&cjs3539; form along this remnant Fermi surface. Together with the data from Dy-doped Bi2Sr2CaCu2O8+delta, these results suggest that this d-wave-like dispersion of the insulator is the underlying reason for the pseudo gap in the underdoped regime.
Collapse
|
|
27 |
239 |
16
|
Feng DL, Lu DH, Shen KM, Kim C, Eisaki H, Damascelli A, Yoshizaki R, Shimoyama J, Kishio K, Gu GD, Oh S, Andrus A, O'Donnell J, Eckstein JN, Shen Z. Signature of superfluid density in the single-particle excitation spectrum of Bi(2)Sr(2)CaCu(2)O(8+delta). Science 2000; 289:277-81. [PMID: 10894771 DOI: 10.1126/science.289.5477.277] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We report that the doping and temperature dependence of photoemission spectra near the Brillouin zone boundary of Bi(2)Sr(2)CaCu(2)O(8+delta)exhibit unexpected sensitivity to the superfluid density. In the superconducting state, the photoemission peak intensity as a function of doping scales with the superfluid density and the condensation energy. As a function of temperature, the peak intensity shows an abrupt behavior near the superconducting phase transition temperature where phase coherence sets in, rather than near the temperature where the gap opens. This anomalous manifestation of collective effects in single-particle spectroscopy raises important questions concerning the mechanism of high-temperature superconductivity.
Collapse
|
|
25 |
224 |
17
|
Kim C, Paulus BF, Wold MS. Interactions of human replication protein A with oligonucleotides. Biochemistry 1994; 33:14197-206. [PMID: 7947831 DOI: 10.1021/bi00251a031] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Replication protein A (RPA) is a heterotrimeric, single-stranded DNA binding protein that is essential for eukaryotic DNA replication. In order to gain a better understanding of the interactions between RPA and DNA, we have examined the interactions of human RPA with single-stranded oligonucleotides. Our analysis of RPA.DNA complexes demonstrated that RPA binds as a heterotrimer. Stoichiometric binding reactions monitored by fluorescence quenching indicated that the binding site size of human RPA is 30 nucleotides and that between 20-30 nucleotides of DNA directly interact with RPA. The binding of RPA to DNA of different lengths was systematically examined using deoxythymidine-containing oligonucleotides. We found that the binding affinity of RPA for short oligonucleotides was length dependent. The apparent association constant of RPA varied over 200-fold from approximately 7 x 10(7) M-1 for oligo(dT)10 to approximately 1.5 x 10(10) M-1 for oligo(dT)50. Human RPA binds to oligonucleotides with low cooperativity; the cooperativity parameter (omega) for RPA binding was estimated to be approximately 15.
Collapse
|
|
31 |
205 |
18
|
Kim CG, Kim KH, Pyo KH, Xin CF, Hong MH, Ahn BC, Kim Y, Choi SJ, Yoon HI, Lee JG, Lee CY, Park SY, Park SH, Cho BC, Shim HS, Shin EC, Kim HR. Hyperprogressive disease during PD-1/PD-L1 blockade in patients with non-small-cell lung cancer. Ann Oncol 2019; 30:1104-1113. [PMID: 30977778 DOI: 10.1093/annonc/mdz123] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Immune checkpoint blockade with Programmed cell death 1 (PD-1)/PD-L1 inhibitors has been effective in various malignancies and is considered as a standard treatment modality for patients with non-small-cell lung cancer (NSCLC). However, emerging evidence show that PD-1/PD-L1 blockade can lead to hyperprogressive disease (HPD), a flair-up of tumor growth linked to dismal prognosis. This study aimed to evaluate the incidence of HPD and identify the determinants associated with HPD in patients with NSCLC treated with PD-1/PD-L1 blockade. PATIENTS AND METHODS We enrolled patients with recurrent and/or metastatic NSCLC treated with PD-1/PD-L1 inhibitors between April 2014 and November 2018. Clinicopathologic variables, dynamics of tumor growth, and treatment outcomes were analyzed in patients with NSCLC who received PD-1/PD-L1 blockade. HPD was defined according to tumor growth kinetics (TGK), tumor growth rate (TGR), and time to treatment failure (TTF). Immunophenotyping of peripheral blood CD8+ T lymphocytes was conducted to explore the potential predictive biomarkers of HPD. RESULTS A total of 263 patients were analyzed. HPD was observed in 55 (20.9%), 54 (20.5%), and 98 (37.3%) patients according to the TGK, TGR, and TTF. HPD meeting both TGK and TGR criteria was associated with worse progression-free survival [hazard ratio (HR) 4.619; 95% confidence interval (CI) 2.868-7.440] and overall survival (HR, 5.079; 95% CI, 3.136-8.226) than progressive disease without HPD. There were no clinicopathologic variables specific for HPD. In the exploratory biomarker analysis with peripheral blood CD8+ T lymphocytes, a lower frequency of effector/memory subsets (CCR7-CD45RA- T cells among the total CD8+ T cells) and a higher frequency of severely exhausted populations (TIGIT+ T cells among PD-1+CD8+ T cells) were associated with HPD and inferior survival rate. CONCLUSION HPD is common in NSCLC patients treated with PD-1/PD-L1 inhibitors. Biomarkers derived from rationally designed analysis may successfully predict HPD and worse outcomes, meriting further investigation of HPD.
Collapse
|
|
6 |
200 |
19
|
Abbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P, Allen B, Allocca A, Altin PA, Anderson SB, Anderson WG, Arai K, Araya MC, Arceneaux CC, Areeda JS, Arnaud N, Arun KG, Ascenzi S, Ashton G, Ast M, Aston SM, Astone P, Aufmuth P, Aulbert C, Babak S, Bacon P, Bader MKM, Baker PT, Baldaccini F, Ballardin G, Ballmer SW, Barayoga JC, Barclay SE, Barish BC, Barker D, Barone F, Barr B, Barsotti L, Barsuglia M, Barta D, Bartlett J, Bartos I, Bassiri R, Basti A, Batch JC, Baune C, Bavigadda V, Bazzan M, Behnke B, Bejger M, Bell AS, Bell CJ, Berger BK, Bergman J, Bergmann G, Berry CPL, Bersanetti D, Bertolini A, Betzwieser J, Bhagwat S, Bhandare R, Bilenko IA, Billingsley G, Birch J, Birney R, Birnholtz O, Biscans S, Bisht A, Bitossi M, Biwer C, Bizouard MA, Blackburn JK, Blair CD, Blair DG, Blair RM, Bloemen S, Bock O, Bodiya TP, Boer M, Bogaert G, Bogan C, Bohe A, Bojtos P, Bond C, Bondu F, Bonnand R, Boom BA, et alAbbott BP, Abbott R, Abbott TD, Abernathy MR, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB, Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P, Allen B, Allocca A, Altin PA, Anderson SB, Anderson WG, Arai K, Araya MC, Arceneaux CC, Areeda JS, Arnaud N, Arun KG, Ascenzi S, Ashton G, Ast M, Aston SM, Astone P, Aufmuth P, Aulbert C, Babak S, Bacon P, Bader MKM, Baker PT, Baldaccini F, Ballardin G, Ballmer SW, Barayoga JC, Barclay SE, Barish BC, Barker D, Barone F, Barr B, Barsotti L, Barsuglia M, Barta D, Bartlett J, Bartos I, Bassiri R, Basti A, Batch JC, Baune C, Bavigadda V, Bazzan M, Behnke B, Bejger M, Bell AS, Bell CJ, Berger BK, Bergman J, Bergmann G, Berry CPL, Bersanetti D, Bertolini A, Betzwieser J, Bhagwat S, Bhandare R, Bilenko IA, Billingsley G, Birch J, Birney R, Birnholtz O, Biscans S, Bisht A, Bitossi M, Biwer C, Bizouard MA, Blackburn JK, Blair CD, Blair DG, Blair RM, Bloemen S, Bock O, Bodiya TP, Boer M, Bogaert G, Bogan C, Bohe A, Bojtos P, Bond C, Bondu F, Bonnand R, Boom BA, Bork R, Boschi V, Bose S, Bouffanais Y, Bozzi A, Bradaschia C, Brady PR, Braginsky VB, Branchesi M, Brau JE, Briant T, Brillet A, Brinkmann M, Brisson V, Brockill P, Brooks AF, Brown DA, Brown DD, Brown NM, Buchanan CC, Buikema A, Bulik T, Bulten HJ, Buonanno A, Buskulic D, Buy C, Byer RL, Cadonati L, Cagnoli G, Cahillane C, Calderón Bustillo J, Callister T, Calloni E, Camp JB, Cannon KC, Cao J, Capano CD, Capocasa E, Carbognani F, Caride S, Casanueva Diaz J, Casentini C, Caudill S, Cavaglià M, Cavalier F, Cavalieri R, Cella G, Cepeda CB, Cerboni Baiardi L, Cerretani G, Cesarini E, Chakraborty R, Chalermsongsak T, Chamberlin SJ, Chan M, Chao S, Charlton P, Chassande-Mottin E, Chen HY, Chen Y, Cheng C, Chincarini A, Chiummo A, Cho HS, Cho M, Chow JH, Christensen N, Chu Q, Chua S, Chung S, Ciani G, Clara F, Clark JA, Cleva F, Coccia E, Cohadon PF, Colla A, Collette CG, Cominsky L, Constancio M, Conte A, Conti L, Cook D, Corbitt TR, Cornish N, Corsi A, Cortese S, Costa CA, Coughlin MW, Coughlin SB, Coulon JP, Countryman ST, Couvares P, Cowan EE, Coward DM, Cowart MJ, Coyne DC, Coyne R, Craig K, Creighton JDE, Cripe J, Crowder SG, Cumming A, Cunningham L, Cuoco E, Dal Canton T, Danilishin SL, D'Antonio S, Danzmann K, Darman NS, Dattilo V, Dave I, Daveloza HP, Davier M, Davies GS, Daw EJ, Day R, DeBra D, Debreczeni G, Degallaix J, De Laurentis M, Deléglise S, Del Pozzo W, Denker T, Dent T, Dereli H, Dergachev V, De Rosa R, DeRosa RT, DeSalvo R, Dhurandhar S, Díaz MC, Di Fiore L, Di Giovanni M, Di Lieto A, Di Pace S, Di Palma I, Di Virgilio A, Dojcinoski G, Dolique V, Donovan F, Dooley KL, Doravari S, Douglas R, Downes TP, Drago M, Drever RWP, Driggers JC, Du Z, Ducrot M, Dwyer SE, Edo TB, Edwards MC, Effler A, Eggenstein HB, Ehrens P, Eichholz J, Eikenberry SS, Engels W, Essick RC, Etzel T, Evans M, Evans TM, Everett R, Factourovich M, Fafone V, Fair H, Fairhurst S, Fan X, Fang Q, Farinon S, Farr B, Farr WM, Favata M, Fays M, Fehrmann H, Fejer MM, Ferrante I, Ferreira EC, Ferrini F, Fidecaro F, Fiori I, Fiorucci D, Fisher RP, Flaminio R, Fletcher M, Fournier JD, Franco S, Frasca S, Frasconi F, Frei Z, Freise A, Frey R, Frey V, Fricke TT, Fritschel P, Frolov VV, Fulda P, Fyffe M, Gabbard HAG, Gair JR, Gammaitoni L, Gaonkar SG, Garufi F, Gatto A, Gaur G, Gehrels N, Gemme G, Gendre B, Genin E, Gennai A, George J, Gergely L, Germain V, Ghosh A, Ghosh A, Ghosh S, Giaime JA, Giardina KD, Giazotto A, Gill K, Glaefke A, Goetz E, Goetz R, Gondan L, González G, Gonzalez Castro JM, Gopakumar A, Gordon NA, Gorodetsky ML, Gossan SE, Gosselin M, Gouaty R, Graef C, Graff PB, Granata M, Grant A, Gras S, Gray C, Greco G, Green AC, Groot P, Grote H, Grunewald S, Guidi GM, Guo X, Gupta A, Gupta MK, Gushwa KE, Gustafson EK, Gustafson R, Hacker JJ, Hall BR, Hall ED, Hammond G, Haney M, Hanke MM, Hanks J, Hanna C, Hannam MD, Hanson J, Hardwick T, Harms J, Harry GM, Harry IW, Hart MJ, Hartman MT, Haster CJ, Haughian K, Healy J, Heidmann A, Heintze MC, Heitmann H, Hello P, Hemming G, Hendry M, Heng IS, Hennig J, Heptonstall AW, Heurs M, Hild S, Hoak D, Hodge KA, Hofman D, Hollitt SE, Holt K, Holz DE, Hopkins P, Hosken DJ, Hough J, Houston EA, Howell EJ, Hu YM, Huang S, Huerta EA, Huet D, Hughey B, Husa S, Huttner SH, Huynh-Dinh T, Idrisy A, Indik N, Ingram DR, Inta R, Isa HN, Isac JM, Isi M, Islas G, Isogai T, Iyer BR, Izumi K, Jacqmin T, Jang H, Jani K, Jaranowski P, Jawahar S, Jiménez-Forteza F, Johnson WW, Johnson-McDaniel NK, Jones DI, Jones R, Jonker RJG, Ju L, Haris MK, Kalaghatgi CV, Kalogera V, Kandhasamy S, Kang G, Kanner JB, Karki S, Kasprzack M, Katsavounidis E, Katzman W, Kaufer S, Kaur T, Kawabe K, Kawazoe F, Kéfélian F, Kehl MS, Keitel D, Kelley DB, Kells W, Kennedy R, Key JS, Khalaidovski A, Khalili FY, Khan I, Khan S, Khan Z, Khazanov EA, Kijbunchoo N, Kim C, Kim J, Kim K, Kim NG, Kim N, Kim YM, King EJ, King PJ, Kinzel DL, Kissel JS, Kleybolte L, Klimenko S, Koehlenbeck SM, Kokeyama K, Koley S, Kondrashov V, Kontos A, Korobko M, Korth WZ, Kowalska I, Kozak DB, Kringel V, Krishnan B, Królak A, Krueger C, Kuehn G, Kumar P, Kuo L, Kutynia A, Lackey BD, Landry M, Lange J, Lantz B, Lasky PD, Lazzarini A, Lazzaro C, Leaci P, Leavey S, Lebigot EO, Lee CH, Lee HK, Lee HM, Lee K, Lenon A, Leonardi M, Leong JR, Leroy N, Letendre N, Levin Y, Levine BM, Li TGF, Libson A, Littenberg TB, Lockerbie NA, Logue J, Lombardi AL, London LT, Lord JE, Lorenzini M, Loriette V, Lormand M, Losurdo G, Lough JD, Lousto CO, Lovelace G, Lück H, Lundgren AP, Luo J, Lynch R, Ma Y, MacDonald T, Machenschalk B, MacInnis M, Macleod DM, Magaña-Sandoval F, Magee RM, Mageswaran M, Majorana E, Maksimovic I, Malvezzi V, Man N, Mandel I, Mandic V, Mangano V, Mansell GL, Manske M, Mantovani M, Marchesoni F, Marion F, Márka S, Márka Z, Markosyan AS, Maros E, Martelli F, Martellini L, Martin IW, Martin RM, Martynov DV, Marx JN, Mason K, Masserot A, Massinger TJ, Masso-Reid M, Matichard F, Matone L, Mavalvala N, Mazumder N, Mazzolo G, McCarthy R, McClelland DE, McCormick S, McGuire SC, McIntyre G, McIver J, McManus DJ, McWilliams ST, Meacher D, Meadors GD, Meidam J, Melatos A, Mendell G, Mendoza-Gandara D, Mercer RA, Merilh E, Merzougui M, Meshkov S, Messenger C, Messick C, Meyers PM, Mezzani F, Miao H, Michel C, Middleton H, Mikhailov EE, Milano L, Miller J, Millhouse M, Minenkov Y, Ming J, Mirshekari S, Mishra C, Mitra S, Mitrofanov VP, Mitselmakher G, Mittleman R, Moggi A, Mohan M, Mohapatra SRP, Montani M, Moore BC, Moore CJ, Moraru D, Moreno G, Morriss SR, Mossavi K, Mours B, Mow-Lowry CM, Mueller CL, Mueller G, Muir AW, Mukherjee A, Mukherjee D, Mukherjee S, Mukund N, Mullavey A, Munch J, Murphy DJ, Murray PG, Mytidis A, Nardecchia I, Naticchioni L, Nayak RK, Necula V, Nedkova K, Nelemans G, Neri M, Neunzert A, Newton G, Nguyen TT, Nielsen AB, Nissanke S, Nitz A, Nocera F, Nolting D, Normandin ME, Nuttall LK, Oberling J, Ochsner E, O'Dell J, Oelker E, Ogin GH, Oh JJ, Oh SH, Ohme F, Oliver M, Oppermann P, Oram RJ, O'Reilly B, O'Shaughnessy R, Ottaway DJ, Ottens RS, Overmier H, Owen BJ, Pai A, Pai SA, Palamos JR, Palashov O, Palomba C, Pal-Singh A, Pan H, Pan Y, Pankow C, Pannarale F, Pant BC, Paoletti F, Paoli A, Papa MA, Paris HR, Parker W, Pascucci D, Pasqualetti A, Passaquieti R, Passuello D, Patricelli B, Patrick Z, Pearlstone BL, Pedraza M, Pedurand R, Pekowsky L, Pele A, Penn S, Perreca A, Pfeiffer HP, Phelps M, Piccinni O, Pichot M, Piergiovanni F, Pierro V, Pillant G, Pinard L, Pinto IM, Pitkin M, Poggiani R, Popolizio P, Post A, Powell J, Prasad J, Predoi V, Premachandra SS, Prestegard T, Price LR, Prijatelj M, Principe M, Privitera S, Prix R, Prodi GA, Prokhorov L, Puncken O, Punturo M, Puppo P, Pürrer M, Qi H, Qin J, Quetschke V, Quintero EA, Quitzow-James R, Raab FJ, Rabeling DS, Radkins H, Raffai P, Raja S, Rakhmanov M, Rapagnani P, Raymond V, Razzano M, Re V, Read J, Reed CM, Regimbau T, Rei L, Reid S, Reitze DH, Rew H, Reyes SD, Ricci F, Riles K, Robertson NA, Robie R, Robinet F, Rocchi A, Rolland L, Rollins JG, Roma VJ, Romano R, Romanov G, Romie JH, Rosińska D, Rowan S, Rüdiger A, Ruggi P, Ryan K, Sachdev S, Sadecki T, Sadeghian L, Salconi L, Saleem M, Salemi F, Samajdar A, Sammut L, Sanchez EJ, Sandberg V, Sandeen B, Sanders JR, Sassolas B, Sathyaprakash BS, Saulson PR, Sauter O, Savage RL, Sawadsky A, Schale P, Schilling R, Schmidt J, Schmidt P, Schnabel R, Schofield RMS, Schönbeck A, Schreiber E, Schuette D, Schutz BF, Scott J, Scott SM, Sellers D, Sengupta AS, Sentenac D, Sequino V, Sergeev A, Serna G, Setyawati Y, Sevigny A, Shaddock DA, Shah S, Shahriar MS, Shaltev M, Shao Z, Shapiro B, Shawhan P, Sheperd A, Shoemaker DH, Shoemaker DM, Siellez K, Siemens X, Sigg D, Silva AD, Simakov D, Singer A, Singer LP, Singh A, Singh R, Singhal A, Sintes AM, Slagmolen BJJ, Smith JR, Smith ND, Smith RJE, Son EJ, Sorazu B, Sorrentino F, Souradeep T, Srivastava AK, Staley A, Steinke M, Steinlechner J, Steinlechner S, Steinmeyer D, Stephens BC, Stone R, Strain KA, Straniero N, Stratta G, Strauss NA, Strigin S, Sturani R, Stuver AL, Summerscales TZ, Sun L, Sutton PJ, Swinkels BL, Szczepańczyk MJ, Tacca M, Talukder D, Tanner DB, Tápai M, Tarabrin SP, Taracchini A, Taylor R, Theeg T, Thirugnanasambandam MP, Thomas EG, Thomas M, Thomas P, Thorne KA, Thorne KS, Thrane E, Tiwari S, Tiwari V, Tokmakov KV, Tomlinson C, Tonelli M, Torres CV, Torrie CI, Töyrä D, Travasso F, Traylor G, Trifirò D, Tringali MC, Trozzo L, Tse M, Turconi M, Tuyenbayev D, Ugolini D, Unnikrishnan CS, Urban AL, Usman SA, Vahlbruch H, Vajente G, Valdes G, Vallisneri M, van Bakel N, van Beuzekom M, van den Brand JFJ, Van Den Broeck C, Vander-Hyde DC, van der Schaaf L, van Heijningen JV, van Veggel AA, Vardaro M, Vass S, Vasúth M, Vaulin R, Vecchio A, Vedovato G, Veitch J, Veitch PJ, Venkateswara K, Verkindt D, Vetrano F, Viceré A, Vinciguerra S, Vine DJ, Vinet JY, Vitale S, Vo T, Vocca H, Vorvick C, Voss D, Vousden WD, Vyatchanin SP, Wade AR, Wade LE, Wade M, Walker M, Wallace L, Walsh S, Wang G, Wang H, Wang M, Wang X, Wang Y, Ward RL, Warner J, Was M, Weaver B, Wei LW, Weinert M, Weinstein AJ, Weiss R, Welborn T, Wen L, Weßels P, Westphal T, Wette K, Whelan JT, White DJ, Whiting BF, Williams D, Williams RD, Williamson AR, Willis JL, Willke B, Wimmer MH, Winkler W, Wipf CC, Wittel H, Woan G, Worden J, Wright JL, Wu G, Yablon J, Yam W, Yamamoto H, Yancey CC, Yap MJ, Yu H, Yvert M, Zadrożny A, Zangrando L, Zanolin M, Zendri JP, Zevin M, Zhang F, Zhang L, Zhang M, Zhang Y, Zhao C, Zhou M, Zhou Z, Zhu XJ, Zucker ME, Zuraw SE, Zweizig J, Boyle M, Campanelli M, Hemberger DA, Kidder LE, Ossokine S, Scheel MA, Szilagyi B, Teukolsky S, Zlochower Y. Tests of General Relativity with GW150914. PHYSICAL REVIEW LETTERS 2016; 116:221101. [PMID: 27314708 DOI: 10.1103/physrevlett.116.221101] [Show More Authors] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Indexed: 05/27/2023]
Abstract
The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant's mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following the peak of GW150914 are consistent with the least-damped quasinormal mode inferred from the mass and spin of the remnant black hole. By using waveform models that allow for parametrized general-relativity violations during the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical regime and we determine the first empirical bounds on several high-order post-Newtonian coefficients. We constrain the graviton Compton wavelength, assuming that gravitons are dispersed in vacuum in the same way as particles with mass, obtaining a 90%-confidence lower bound of 10^{13} km. In conclusion, within our statistical uncertainties, we find no evidence for violations of general relativity in the genuinely strong-field regime of gravity.
Collapse
|
|
9 |
188 |
20
|
MacCallum RC, Kim C, Malarkey WB, Kiecolt-Glaser JK. Studying Multivariate Change Using Multilevel Models and Latent Curve Models. MULTIVARIATE BEHAVIORAL RESEARCH 1997; 32:215-253. [PMID: 26761610 DOI: 10.1207/s15327906mbr3203_1] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In longitudinal research investigators often measure multiple variables at multiple points in time and are interested in investigating individual differences in patterns of change on those variables. In the vast majority of applications, researchers focus on studying change in one variable at a time. In this article we consider methods for studying relations1.1ips between patterns of change on different variables. We show how the multilevel modeling framework, which is often used to study univariate change, can be extended to the multivariate case to yield estimates of covariances of parameters representing aspects of change on different variables. We illustrate this approach using data from a study of physiological response to marital conflict in older married couples, showing a substantial correlation between rate of linear change on different stress-related hormones during conflict. We also consider how similar issues can be studied using extensions of latent curve models to the multivariate case, and we show how such models are related to multivariate multilevel models.
Collapse
|
|
28 |
179 |
21
|
Abstract
BACKGROUND The incidence of sudden cardiac death is roughly 3 times greater in men than in women. However, in patients treated for out-of-hospital cardiac arrest, the relationships between sex and survival after adjustment for age and cardiac rhythm are unclear. METHODS AND RESULTS In this retrospective cohort study, we examined 7069 men and 2582 women who were treated for out-of-hospital cardiac arrest in Seattle and suburban King County between 1990 and 1998. We compared successful prehospital resuscitation (hospital admission) and survival from event to discharge in men and women. Women had markedly reduced rates of ventricular fibrillation (VF), slightly older age, fewer witnessed arrests, and fewer arrests in public locations than men. Although their unadjusted resuscitation rate was lower (29% versus 32%, P<0.0001), women had a greater likelihood of resuscitation than men after adjustment for VF (odds ratio [OR] 1.13; 95% confidence interval [CI], 1.03 to 1.25) and after adjustment for VF plus additional factors (OR, 1.27; 95% CI, 1.14 to 1.41). The difference in resuscitation rates between men and women decreased as they aged (test for trend, P<0.0001). Unadjusted survival rates were also lower in women than in men (11% versus 15%, P<0.0001). Women had similar survival after adjustment for VF (OR, 0.97; 95% CI, 0.85 to 1.11) and after adjustment for VF plus additional factors (OR, 1.09; 95% CI, 0.93 to 1.27). CONCLUSIONS The lower unadjusted resuscitation and survival rates observed in women were primarily due to women's lower incidence of VF, a relatively favorable cardiac rhythm. After adjustment for VF and other factors, women had higher resuscitation rates than men, but similar rates of survival from event to discharge.
Collapse
|
Comparative Study |
24 |
177 |
22
|
Park SY, Kim CG. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. CHEMOSPHERE 2019; 222:527-533. [PMID: 30721811 DOI: 10.1016/j.chemosphere.2019.01.159] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/17/2019] [Accepted: 01/27/2019] [Indexed: 05/20/2023]
Abstract
In this study, we investigated the decomposition of micro-sized polyethylene (PE) by mesophilic mixed bacterial culture isolates obtained from a municipal landfill sediment. Among these, Bacillus sp. and Paenibacillus sp. were more specifically enriched in the non-carbonaceous nutrient medium (i.e., Basal medium) as they were the most dominant species when they were exposed to PE microplastics. They reduced the dry weight of particles (14.7% after 60 d) and the mean particle diameter (22.8% after 60 d; obtained by field-emission scanning electron microscopy analysis). In the gas chromatography-mass spectrometer analysis of biologically aged particles, the amount and types of organic contents eluted from the PE microplastics were far lower in the early decomposition phase; however, they increased in the later phase. Thermal gravimetric analysis showed that the aged particles had higher thermal stability at temperatures greater than 570 °C compared to the control, thereby suggesting that microplastics were degraded by enzymatic chain scission, which could in turn be ascribed to the greater refractory fractions of aged particles remaining at a high combustion temperature. It was further verified that PE particles could be biologically utilized as a sole carbon source and broken down during the test period.
Collapse
|
|
6 |
169 |
23
|
Kim CG, Park D, Rhee SG. The role of carboxyl-terminal basic amino acids in Gqalpha-dependent activation, particulate association, and nuclear localization of phospholipase C-beta1. J Biol Chem 1996; 271:21187-92. [PMID: 8702889 DOI: 10.1074/jbc.271.35.21187] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The phospholipase C (PLC)-beta isozymes differ from the PLC-gamma and PLC-delta isozymes in that they possess a long COOH-terminal sequence downstream of their catalytic domain, are activated by alpha subunits of the Gq class of G proteins, associate with the particulate subcellular fraction, and are present in the nucleus. Most of the COOH-terminal domain of PLC-beta isozymes is predicted to be helical, and three regions in this domain, PLC-beta1 residues 911-928 (region 1), 1055-1072 (region 2), and 1109-1126 (region 3), contain a high proportion of basic residues that are highly conserved. Projection of the sequences of these three regions in helical wheels reveals clustering of the basic residues. The role of the COOH terminus and the clustered basic residues in PLC-beta1 was investigated by either truncating the entire COOH-terminal domain (mutant DeltaC) or replacing two or three clustered basic residues with isoleucine (or methionine), and expressing the mutant enzymes in CV-1, Rat-2, or Swiss 3T3 cells. The DeltaC mutant no longer showed the ability to be activated by Gqalpha, to translocate to the nucleus, or to associate with the particulate fraction. Substitution of clusters of basic residues in regions 1 and 2 generally reduced the extent of activation by Gqalpha, whereas substitution of a basic cluster in region 3 had no effect. Substitution of the cluster of lysine residues 914, 921, and 925 in region 1 had the most marked effect, reducing Gqalpha-dependent activity to 10% of that of wild type. All substitution mutants, with the exception of that in which lysine residues 1056, 1063, and 1070 in region 2 were substituted with isoleucine, behaved like the wild-type enzyme in showing an approximately equal distribution between cytoplasm and nucleus; only 12% of the region 2 mutant was present in the nucleus. None of the basic clusters appeared critical for particulate association; however, replacement of each cluster reduced the amount of PLC-beta1 in the particulate fraction by some extent, suggesting that all the basic residues contribute to the association, presumably by interacting with acidic residues in the particulate fraction. Membrane localization of PLC-beta isozymes is therefore likely mediated by both the COOH-terminal domain and the pleckstrin homology domain, the latter of which is known to bind phosphatidylinositol 4,5-biphosphate.
Collapse
|
|
29 |
169 |
24
|
Kim C, Hung YC, Brackett RE. Roles of oxidation-reduction potential in electrolyzed oxidizing and chemically modified water for the inactivation of food-related pathogens. J Food Prot 2000; 63:19-24. [PMID: 10643764 DOI: 10.4315/0362-028x-63.1.19] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study investigates the properties of electrolyzed oxidizing (EO) water for the inactivation of pathogen and to evaluate the chemically modified solutions possessing properties similar to EO water in killing Escherichia coli O157:H7. A five-strain cocktail (10(10) CFU/ml) of E. coli O157:H7 was subjected to deionized water (control), EO water with 10 mg/liter residual chlorine (J.A.W-EO water), EO water with 56 mg/liter residual chlorine (ROX-EO water), and chemically modified solutions. Inactivation (8.88 log10 CFU/ml reduction) of E. coli O157:H7 occurred within 30 s after application of EO water and chemically modified solutions containing chlorine and 1% bromine. Iron was added to EO or chemically modified solutions to reduce oxidation-reduction potential (ORP) readings and neutralizing buffer was added to neutralize chlorine. J.A.W-EO water with 100 mg/liter iron, acetic acid solution, and chemically modified solutions containing neutralizing buffer or 100 mg/liter iron were ineffective in reducing the bacteria population. ROX-EO water with 100 mg/liter iron was the only solution still effective in inactivation of E. coli O157:H7 and having high ORP readings regardless of residual chlorine. These results suggest that it is possible to simulate EO water by chemically modifying deionized water and ORP of the solution may be the primary factor affecting microbial inactivation.
Collapse
|
|
25 |
162 |
25
|
Hromas R, Broxmeyer HE, Kim C, Nakshatri H, Christopherson K, Azam M, Hou YH. Cloning of BRAK, a novel divergent CXC chemokine preferentially expressed in normal versus malignant cells. Biochem Biophys Res Commun 1999; 255:703-6. [PMID: 10049774 DOI: 10.1006/bbrc.1999.0257] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chemokines are a family of related proteins that regulate leukocyte infiltration into inflamed tissue and play important roles in many disease processes. Chemokines are divided into two major groups, CC or CXC, based on their sequence around the amino terminal cysteines. We report the PCR cloning of a novel human chemokine termed BRAK for its initial isolation from breast and kidney cells. This novel chemokine is distantly related to other CXC chemokines (30% identity with MIP-2alpha and beta) and shares several biological activities. BRAK is expressed ubiquitously and highly in normal tissue. However, it was expressed in only 2 of 18 cancer cell lines. BRAK is located on human chromosome 5q31.
Collapse
|
|
26 |
162 |